CN110824397A - 一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法 - Google Patents

一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法 Download PDF

Info

Publication number
CN110824397A
CN110824397A CN201911279812.3A CN201911279812A CN110824397A CN 110824397 A CN110824397 A CN 110824397A CN 201911279812 A CN201911279812 A CN 201911279812A CN 110824397 A CN110824397 A CN 110824397A
Authority
CN
China
Prior art keywords
coil
design
gradient coil
magnetic resonance
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911279812.3A
Other languages
English (en)
Other versions
CN110824397B (zh
Inventor
刘震宇
潘辉
王强龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201911279812.3A priority Critical patent/CN110824397B/zh
Publication of CN110824397A publication Critical patent/CN110824397A/zh
Application granted granted Critical
Publication of CN110824397B publication Critical patent/CN110824397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3858Manufacture and installation of gradient coils, means for providing mechanical support to parts of the gradient-coil assembly

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法,属于磁共振系统线圈设计制造领域。本发明针对已有缠绕形式梯度线圈的不足,提出采用非缠绕形式梯度线圈来替代现有缠绕式梯度线圈。该发明有助于扩展成像空间、缩短成像时间、减小功耗、降低涡流效应、减小设备体积等,同时提高MRI成像质量、节省成本。另一方面,本发明提出一种新的线圈构型,可以有效减小自感的影响,有助于磁场的快速切换;减少线圈个数,保证线圈激励信号的高度一致性。本发明提供的设计方法,提出了3D打印,刻蚀等方式制造,有效提高了线圈的制造精度和实现复杂形状线圈的制造问题。解决了已有绕线的制造方法中制造精度低,对复杂形状难以制造的问题。

Description

一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法
本申请是公开号为106772162A的专利申请(原申请)的分案申请,原申请的申请日为2016年12月26日、申请号为201611215604.3、发明创造名称为用于磁共振成像系统的非缠绕形式梯度线圈及其设计方法。
技术领域
本发明涉及磁共振系统梯度线圈设计制造领域,具体涉及一种用于磁共振成像系统的非缠绕形式梯度线圈及其设计方法。
背景技术
梯度线圈作为磁共振系统的核心功能部件,其线性度、电感等性能参数将直接影响到磁共振成像系统的成像质量和响应时间。目前,现有的梯度线圈都是以缠绕形式来产生目标磁场。为了达到缠绕的形式,需要额外增加线圈的回绕部分。一方面引起了线圈的长度增加,增加了线圈所需空间,降低了磁共振系统空间利用率;另一方面,由于线圈长度增加以及缠绕的形式,增大了梯度线圈的电感、电阻,从而增大了能源消耗、发热量和系统响应时间。
发明内容
本发明针对已有缠绕形式梯度线圈存在的技术问题,提出了一种新型的用于磁共振成像系统的非缠绕形式梯度线圈及其设计方法。
为了解决上述技术问题,本发明的技术方案具体如下:
一种用于磁共振成像系统的非缠绕形式梯度线圈,所述非缠绕形式梯度线圈由两条或者多条导线连接而成,所述非缠绕形式梯度线圈中导线的连接方式包括并联、串联或者其他可行的拓扑结构。
在上述技术方案中,所述非缠绕形式梯度线圈采用电流或电压驱动。
在上述技术方案中,所述非缠绕形式梯度线圈为单输入式或多输入式,对一对或多对节点施加额定电压产生所需梯度磁场。
在上述技术方案中,所述非缠绕形式梯度线圈用于设计梯度磁场线圈、匀场线圈或屏蔽线圈等用于磁共振成像系统的电磁线圈。
在上述技术方案中,所述非缠绕形式梯度线圈构型在平面、圆柱面或者任意光滑单连通或多连通曲面上实现其功能。
在上述技术方案中,所述非缠绕形式梯度线圈可采用但不局限于数控加工导体线、导体带,柔性PCB板结合3D打印技术加工,或结合刻蚀技术等各种加工方式。
一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法,包括以下步骤:
采用参数优化方法设计连接方式为并联或者串联的非缠绕形式梯度线圈;采用拓扑优化方法设计连接方式为拓扑结构的非缠绕形式梯度线圈。
在上述技术方案中,采用参数优化方法设计连接方式为并联或者串联的非缠绕形式梯度线圈的具体步骤如下:
步骤一:参数化建模:引入设计变量,目标函数建立非缠绕形式梯度线圈分析模型,建立线型f(r0,θ,z)的参数化方程表示为:
Figure BDA0002316414820000021
其中,(r0,θ,z)对应圆柱坐标系下线型的坐标,r0是圆柱设计表面的半径,g(θ)是选定线型的特征参数方程。
根据Biot-Savart定律
Figure BDA0002316414820000031
其中,
Figure BDA0002316414820000032
是场点坐标,
Figure BDA0002316414820000033
是源点坐标;I是通过导线的电流,μ0是真空磁导率,L是导线分布,
Figure BDA0002316414820000034
是导线分布的向量函数l的微分,l是导线分布L的向量函数;
可得到磁场强度Z方向分量Bz为:
根据需求可建立目标方程:
Figure BDA0002316414820000036
其中,Bzobj是目标磁场强度在Z方向的分量;
步骤二:模型求解:引入合适的优化算法求解模型,计算磁场强度;
步骤三:计算结果正向验证,如满足设计要求进行加工,实验测量。
在上述技术方案中,采用拓扑优化方法设计连接方式为拓扑结构的非缠绕形式梯度线圈的具体步骤如下:
步骤一:采用连续体拓扑优化,以电磁线圈的物理量为设计变量来优化导电材料的分布;设计变量表达式为:
σ(ρ)=σAirpCuAir)
其中,σAir是空气的电导率,σCu是所用铜导电材料的电导率,p是惩罚项;ρ是设计变量:
Figure BDA0002316414820000037
设计变量满足连续性方程:
▽·(σ(ρ)▽V)=0
其中,V是电势,σ(ρ)是设计区域电导率分布函数,▽是微分算子;
再根据Biot-Savart定律
Figure BDA0002316414820000041
其中,B是磁场强度,μ0是真空磁导率,Γcoil是线圈设计区域,
Figure BDA0002316414820000042
是电流密度函数,(x,y)是笛卡尔坐标系下的坐标,
Figure BDA0002316414820000043
是场点坐标,
Figure BDA0002316414820000044
是源点坐标,dS是线圈设计区域Γcoil的微分;可得到磁场强度在Z方向的分量Bz的表达式
Figure BDA0002316414820000045
其中RC=r cosθ-ri cosθi,RS=r sinθ-ri sinθi,Jx,Jy为电流密度在展开面中x,y方向的分量,μ0是真空磁导率,(r,θ,z)是圆柱坐标系下坐标,(rii,zi)第i点处的圆柱坐标系下坐标值,dl是导线分布的向量函数l的微分,dz是导线在Z方向的微分,zl是Z方向的坐标下端值,zu是Z方向的坐标上端值;
步骤二:根据步骤一推导的公式在软件中建立几何模型,利用半解析或数值方法求解Bz,利用伴随方程法求解敏度;
步骤三:结果后处理,提取计算结果并根据结果形状,选取不同加工方法;如果不是单连通线圈则可制成版图;
步骤四:进行加工制造,并检测磁场强度。本发明具有以下的有益效果:
本发明的用于磁共振成像系统的非缠绕形式梯度线圈具有电感低,电磁转化率高等优势。其结构可通过参数优化或结构拓扑优化来设计,可采用数控加工或结合3D打印与柔性PCB板等技术方法制造加工。
本发明的用于磁共振成像系统的非缠绕形式梯度线圈,不仅可以有效减小自感的影响,有助于磁场的快速切换;而且可实现单输入线圈,对一对节点施加额定电压产生所需梯度磁场,减小由于线圈分别通电流的影响,能够保证线圈激励信号的高度一致性。
本发明的用于磁共振成像系统的非缠绕形式梯度线圈在满足磁场强度分布的基础下,设计导线构型方式,去除传统线圈中无效的回绕部分;同时优化线圈的电感能耗等参数。在此基础上,本发明可以有效减小磁共振系统占用的空间体积;减小电感实现快速成像;以及减小线圈电阻,减小系统能耗。
本发明的用于磁共振成像系统的非缠绕形式梯度线圈采用参数优化设计的并联梯度线圈,其纵向长度可减至目标区域的1.6倍;相对于传统缠绕式梯度线圈纵向长度减小了50%以上;有效提高了磁共振系统的空间利用率。另一方面,由于其高度对称性,减小了电感值,可有效降低自感的影响,其电阻、电感等参数明显减小,减小了线圈的能耗与响应时间。
本发明提供的用于磁共振成像系统的非缠绕形式梯度线圈的设计方法,在制造上,由于设计方法导致导线可能不规则,传统绕线方法难以实现;进而提出了通过参数优化或结构拓扑优化来设计结合数控加工、3D打印、刻蚀等方式制造,有效提高了线圈的制造精度和实现复杂形状线圈的制造问题。解决了已有绕线的制造方法中制造精度低,对复杂形状难以制造的问题。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1是圆柱型梯度线圈的参数化设计模型示意图。
图2a-2c是以横向梯度磁场为设计目标的三种不同导线构型示意图;其中:
图2a是基于流函数法计算出的串联线圈构型示意图,实际制造中需要打开闭合线圈,并把各同心线圈串联起来;
图2b、图2c分别是参数法设计的并联线圈构型示意图;图2c可由单对节点加电压驱动(黑色圆点为电压输入位置)。
图3a是圆柱型梯度线圈的连续体拓扑优化模型示意图。
图3b是其一种可能出现的优化结果形式(1/4)设计区域示意图;
本发明保护的结果不局限于附图中所出现的结果,还应包括其他以改变线圈拓扑结构,非缠绕形式的线圈。
具体实施方式
本发明的发明思想为:本发明针对现有梯度线圈形式的不足,提出采用非缠绕式梯度线圈。非缠绕式梯度线圈包括导线的串联、并联、拓扑结构和其他混合连接形式等各种连接方式,不局限于附图所出现的结构形式,还应包含以非缠绕线圈构型为目标进行参数优化、拓扑优化出现的形式。其线型分布的结构形式可通过参数优化或拓扑优化的方法设计。但设计方法不局限于这类方法,还应包括其他以得到线圈并联形式为目标的方法,如形状优化,尺寸优化;该方法避免了需要增加额外的回绕部分,因此会有效提高磁共振系统的空间利用率和响应时间。经计算,该方法可使梯度线圈纵向尺寸至少缩减50%,导线长度,电阻值明显减小。另一方面,本发明提出一种新的并联线圈构型,不仅可以有效减小自感的影响,有助于磁场的快速切换;而且可实现单输入线圈,保证线圈激励信号的高度一致性。
本申请针对传统梯度线圈,绕线的制造方法中制造精度低,对复杂形状难以制造的问题,提出了结合数控加工、3D打印、刻蚀等方式制造,有效提高了线圈的制造精度和实现了复杂形状线圈的制造问题。
下面结合附图对本发明做以详细说明。
实施例一
下面以参数结构优化的方式说明本发明的用于磁共振成像系统的非缠绕形式梯度线圈及其设计方法。
步骤一:参数化建模:引入设计变量,目标函数建立非缠绕形式梯度线圈分析模型,如图1所示为圆柱型梯度线圈的物理模型;其中
建立线型f(r0,θ,z)的参数化方程可表示为:
Figure BDA0002316414820000071
其中,(r0,θ,z)对应圆柱坐标系下线型的坐标,r0是圆柱设计表面的半径,g(θ)是选定线型的特征参数方程(本实施例中选取
Figure BDA0002316414820000072
n=2,4,6,...,b,n为设计参数,本专利参数方程不局限于该形式);
根据Biot-Savart定律
Figure BDA0002316414820000073
其中,
Figure BDA0002316414820000074
是场点坐标,
Figure BDA0002316414820000075
是源点坐标,I是通过导线的电流,μ0是真空磁导率L是导线分布,
Figure BDA0002316414820000076
是导线分布的向量函数l的微分,l是导线分布L的向量函数;
可得到磁场强度Z方向分量Bz
Figure BDA0002316414820000077
根据需求可建立目标方程:
Figure BDA0002316414820000078
其中,Bzobj是目标磁场强度在Z方向的分量;
步骤二:模型求解:引入合适的优化算法求解模型,计算磁场强度;
对于该实施案例,采用最小二乘法进行求解,但不限于该方法;
步骤三:计算结果正向验证,如满足设计要求进行加工,实验测量。根据优化出的线型,可选择布线或者制版,刻蚀的方式进行制造。
如图2b和图2c所示,为参数化设计的并联非缠绕形式梯度线圈,其纵向长度明显减小,减至目标区域的1.6倍;相对于传统缠绕式梯度线圈纵向长度减小了50%以上;有效提高了磁共振系统的空间利用率。另一方面,其电阻、电感等参数明显减小,减小了线圈的能耗与响应时间。
实施例二
下面采用拓扑优化的方式说明本发明的用于磁共振成像系统的非缠绕形式梯度线圈及其设计方法。
步骤一:如图3a和图3b所示,采用连续体拓扑优化,以电磁线圈的物理量(如电导率σ(ρ))为设计变量来优化导电材料的分布;设计变量可表达式为:
σ(ρ)=σAirpCuAir)
其中σAir是空气的电导率,σCu是所用导电材料的电导率,该模型中采用铜,p是惩罚项;ρ是设计变量:
Figure BDA0002316414820000081
设计变量满足连续性方程:
▽·(σ(ρ)▽V)=0
其中V是电势,σ(ρ)是设计区域电导率分布函数,▽是微分算子;再根据Biot-Savart定律:
Figure BDA0002316414820000082
其中,B是磁场强度,μ0是真空磁导率,Γcoil是线圈设计区域,
Figure BDA0002316414820000083
是电流密度函数,(x,y)是笛卡尔坐标系下的坐标,
Figure BDA0002316414820000084
是场点坐标,
Figure BDA0002316414820000085
是源点坐标,dS是线圈设计区域Γcoil的微分;
可得到磁场强度在Z方向的分量Bz的表达式:
Figure BDA0002316414820000091
其中RC=r cosθ-ri cosθi,RS=r sinθ-ri sinθi,Jx,Jy为电流密度在展开面中x,y方向的分量,μ0是真空磁导率,(r,θ,z)是圆柱坐标系下坐标,(rii,zi)第i点处的圆柱坐标系下坐标值,dl是导线分布的向量函数l的微分,dz是导线在Z方向的微分,zl是Z方向的坐标下端值,zu是Z方向的坐标上端值;
步骤二:根据步骤一推导的公式在软件中建立几何模型,利用半解析或数值方法(FEM、BEM等)求解Bz,利用伴随方程法求解敏度;本专利求解方法不局限与该方法;
步骤三:结果后处理,提取计算结果并根据结果形状,选取不同加工方法;如果不是单连通线圈则可制成版图;
步骤四:采用光刻技术,3D打印,数控加工等加工技术方式,进行加工制造,并检测磁场强度。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (1)

1.一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法,其特征在于,采用拓扑优化方法设计连接方式为拓扑结构的非缠绕形式梯度线圈的具体步骤如下:
步骤一:采用连续体拓扑优化,以电磁线圈的物理量为设计变量来优化导电材料的分布;设计变量表达式为:
σ(ρ)=σAirpCuAir)
其中,σAir是空气的电导率,σCu是所用铜导电材料的电导率,p是惩罚项;ρ是设计变量:
Figure FDA0002316414810000011
设计变量满足连续性方程:
Figure FDA0002316414810000012
其中,V是电势,σ(ρ)是设计区域电导率分布函数,▽是微分算子;
再根据Biot-Savart定律
Figure FDA0002316414810000013
其中,B是磁场强度,μ0是真空磁导率,Γcoil是线圈设计区域,
Figure FDA0002316414810000014
是电流密度函数,(x,y)是笛卡尔坐标系下的坐标,
Figure FDA0002316414810000015
是场点坐标,
Figure FDA0002316414810000016
是源点坐标,dS是线圈设计区域Γcoil的微分;可得到磁场强度在Z方向的分量Bz的表达式
Figure FDA0002316414810000017
其中RC=rcosθ-ricosθi,RS=rsinθ-risinθi,Jx,Jy为电流密度在展开面中x,y方向的分量,μ0是真空磁导率,(r,θ,z)是圆柱坐标系下坐标,(rii,zi)第i点处的圆柱坐标系下坐标值,dl是导线分布的向量函数l的微分,dz是导线在Z方向的微分,zl是Z方向的坐标下端值,zu是Z方向的坐标上端值;
步骤二:根据步骤一推导的公式在软件中建立几何模型,利用半解析或数值方法求解Bz,利用伴随方程法求解敏度;
步骤三:结果后处理,提取计算结果并根据结果形状,选取不同加工方法;如果不是单连通线圈则可制成版图;
步骤四:进行加工制造,并检测磁场强度。
CN201911279812.3A 2016-12-26 2016-12-26 一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法 Active CN110824397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911279812.3A CN110824397B (zh) 2016-12-26 2016-12-26 一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611215604.3A CN106772162B (zh) 2016-12-26 2016-12-26 用于磁共振成像系统的非缠绕形式梯度线圈及其设计方法
CN201911279812.3A CN110824397B (zh) 2016-12-26 2016-12-26 一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201611215604.3A Division CN106772162B (zh) 2016-12-26 2016-12-26 用于磁共振成像系统的非缠绕形式梯度线圈及其设计方法

Publications (2)

Publication Number Publication Date
CN110824397A true CN110824397A (zh) 2020-02-21
CN110824397B CN110824397B (zh) 2020-09-08

Family

ID=58926759

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201611215604.3A Active CN106772162B (zh) 2016-12-26 2016-12-26 用于磁共振成像系统的非缠绕形式梯度线圈及其设计方法
CN201911279812.3A Active CN110824397B (zh) 2016-12-26 2016-12-26 一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201611215604.3A Active CN106772162B (zh) 2016-12-26 2016-12-26 用于磁共振成像系统的非缠绕形式梯度线圈及其设计方法

Country Status (1)

Country Link
CN (2) CN106772162B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109598004B (zh) * 2017-09-30 2022-09-20 中国科学院长春光学精密机械与物理研究所 用于微尺度磁共振成像系统的横向梯度线圈及其设计方法
CN109885957A (zh) * 2019-03-01 2019-06-14 中国科学院长春光学精密机械与物理研究所 一种用于生物医学成像系统的梯度线圈设计方法及梯度线圈

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930484A (zh) * 2004-03-15 2007-03-14 皇家飞利浦电子股份有限公司 磁共振成像设备的主磁体带孔涡流屏蔽
CN101464924A (zh) * 2009-01-16 2009-06-24 清华大学 磁共振成像横向梯度线圈的一种计算机辅助设计方法
CN101794329A (zh) * 2009-12-07 2010-08-04 清华大学 一种计算磁共振成像rf线圈信噪比的方法
CN101996273A (zh) * 2010-11-29 2011-03-30 浙江大学 Mri系统梯度线圈的有限差分设计方法
CN102291925A (zh) * 2005-03-07 2011-12-21 加州大学评议会 等离子体发电系统
CN102540124A (zh) * 2010-09-23 2012-07-04 通用电气公司 多视场梯度线圈
CN102651043A (zh) * 2012-03-30 2012-08-29 南方医科大学 一种射频线圈的混合设计方法
CN102879753A (zh) * 2012-10-11 2013-01-16 中国科学院近代物理研究所 用于高均匀度磁体匀场线圈设计的自动化实现方法
US20130162250A1 (en) * 2011-12-21 2013-06-27 General Electric Company System and method to reduce power loss in a gradient amplifier
CN103261907A (zh) * 2010-12-20 2013-08-21 皇家飞利浦电子股份有限公司 用于mri梯度线圈电源的在数字域中的状态空间反馈控制器
CN103633745A (zh) * 2007-03-27 2014-03-12 麻省理工学院 用于无线能量传输的方法
CN103649766A (zh) * 2011-05-16 2014-03-19 皇家飞利浦有限公司 用于mr成像引导的介入的个性化rf线圈阵列
CN103852740A (zh) * 2012-11-30 2014-06-11 通用电气公司 降低涡电流磁场的系统和方法
WO2014144083A1 (en) * 2013-03-15 2014-09-18 Millikelvin Technologies Llc Improved techniques, systems and machine readable programs for magnetic resonance
CN104198969A (zh) * 2014-08-14 2014-12-10 南京工程学院 一种梯度线圈设计方法
CN104792875A (zh) * 2015-03-20 2015-07-22 西安交通大学 基于双线圈结构的柔性电磁超声检测系统及检测方法
CN104833930A (zh) * 2015-04-21 2015-08-12 中国科学院电工研究所 开放式磁共振系统梯度线圈磁场强度的计算方法
CN105308472A (zh) * 2013-06-17 2016-02-03 皇家飞利浦有限公司 磁共振成像梯度线圈

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0204023D0 (en) * 2002-02-20 2002-04-03 Tesla Engineering Ltd Gradient coil structure for magnetic resonance imaging
WO2006003580A1 (en) * 2004-06-29 2006-01-12 Koninklijke Philips Electronics N.V. Magnetic resonance imaging device and method for operating a magnetic resonance imaging device
CN101852843B (zh) * 2010-05-27 2014-07-30 南京丰盛超导技术有限公司 一种超导磁体外磁屏蔽线圈的优化设计方法
CN102967835B (zh) * 2011-08-31 2017-07-04 通用电气公司 用于磁共振成像设备的螺旋梯度线圈
WO2013035494A1 (ja) * 2011-09-05 2013-03-14 株式会社 日立メディコ 傾斜磁場コイル装置、その調整方法及び磁気共鳴イメージング装置
CN104020429A (zh) * 2014-06-06 2014-09-03 南京工程学院 一种梯度线圈并联分层的布线结构和布线方法
CN104062613B (zh) * 2014-06-13 2017-05-03 河海大学 一种有源屏蔽梯度线圈及其设计方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930484A (zh) * 2004-03-15 2007-03-14 皇家飞利浦电子股份有限公司 磁共振成像设备的主磁体带孔涡流屏蔽
CN102291925A (zh) * 2005-03-07 2011-12-21 加州大学评议会 等离子体发电系统
CN103633745A (zh) * 2007-03-27 2014-03-12 麻省理工学院 用于无线能量传输的方法
CN101464924A (zh) * 2009-01-16 2009-06-24 清华大学 磁共振成像横向梯度线圈的一种计算机辅助设计方法
CN101794329A (zh) * 2009-12-07 2010-08-04 清华大学 一种计算磁共振成像rf线圈信噪比的方法
CN102540124A (zh) * 2010-09-23 2012-07-04 通用电气公司 多视场梯度线圈
CN101996273A (zh) * 2010-11-29 2011-03-30 浙江大学 Mri系统梯度线圈的有限差分设计方法
CN103261907A (zh) * 2010-12-20 2013-08-21 皇家飞利浦电子股份有限公司 用于mri梯度线圈电源的在数字域中的状态空间反馈控制器
CN103649766A (zh) * 2011-05-16 2014-03-19 皇家飞利浦有限公司 用于mr成像引导的介入的个性化rf线圈阵列
US20130162250A1 (en) * 2011-12-21 2013-06-27 General Electric Company System and method to reduce power loss in a gradient amplifier
CN102651043A (zh) * 2012-03-30 2012-08-29 南方医科大学 一种射频线圈的混合设计方法
CN102879753A (zh) * 2012-10-11 2013-01-16 中国科学院近代物理研究所 用于高均匀度磁体匀场线圈设计的自动化实现方法
CN103852740A (zh) * 2012-11-30 2014-06-11 通用电气公司 降低涡电流磁场的系统和方法
WO2014144083A1 (en) * 2013-03-15 2014-09-18 Millikelvin Technologies Llc Improved techniques, systems and machine readable programs for magnetic resonance
CN105308472A (zh) * 2013-06-17 2016-02-03 皇家飞利浦有限公司 磁共振成像梯度线圈
CN104198969A (zh) * 2014-08-14 2014-12-10 南京工程学院 一种梯度线圈设计方法
CN104792875A (zh) * 2015-03-20 2015-07-22 西安交通大学 基于双线圈结构的柔性电磁超声检测系统及检测方法
CN104833930A (zh) * 2015-04-21 2015-08-12 中国科学院电工研究所 开放式磁共振系统梯度线圈磁场强度的计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JEFFRY R 等: "Quantitative Proton Magnetic Resonance Spectroscopy and Spectroscopic Imaging of the Brain: A Didactic Review", 《NIH-PA AUTHOR MANUSCRIPT》 *
陆伟: "轴向磁场无槽永磁同步电机的电磁场分析", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Also Published As

Publication number Publication date
CN110824397B (zh) 2020-09-08
CN106772162B (zh) 2020-01-14
CN106772162A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Nan et al. An equivalent complex permeability model for litz-wire windings
Liu et al. Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform
CN110824397B (zh) 一种用于磁共振成像系统的非缠绕形式梯度线圈的设计方法
CN112417727B (zh) 一种考虑端部效应的高频变压器漏电感参数计算方法
CN101852843B (zh) 一种超导磁体外磁屏蔽线圈的优化设计方法
CN112966405A (zh) 一种nr型功率电感及基于有限元仿真的优化设计方法
Delgado et al. Equivalent conductor layer for fast 3-D finite element simulations of inductive power transfer coils
Van Lanen et al. Simulation of interstrand coupling loss in cable-in-conduit conductors with JackPot-AC
Shen et al. The faraday shields loss of transformers
Kacprzak et al. An improved magnetic design for inductively coupled power transfer system pickups
Nogueira Calculation of power transformers equivalent circuit parameters using numerical field solutions
Ammouri et al. Design and modeling of planar magnetic inductors for power converters applications
Salas et al. Nonlinear saturation modeling of magnetic components with an RM-type core
CN103575959B (zh) 一种新型非接触式三相电流测量方法
Alotto et al. A boundary integral formulation for eddy current problems based on the cell method
CN105319446A (zh) 非均匀多导体传输线电感矩阵的直接估算方法
Zhang et al. Study on PCB based litz wire applications for air-core inductor and planar transformer
Evans et al. Losses in foil-wound secondaries in high-frequency transformers
CN111753450B (zh) 一种光学电流传感器优化设计方法
Talaat et al. Experimental and simulation study of wireless power transfer using resonators with coupled electric fields
Ammouri et al. PCB-planar transformers equivalent circuit model identification using genetic algorithm
CN112906254A (zh) 一种变压器绕组漏磁场仿真建模方法
CN114462279A (zh) 考虑绞合结构和节距的非完全绞合利兹线损耗计算方法
CN117674439A (zh) 一种考虑有限尺寸磁心的wpt系统磁耦合机构宽适用范围快速解析方法
CN114048644B (zh) 一种干式变压器声学诊断数据库构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant