CN110790587A - 一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法 - Google Patents

一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法 Download PDF

Info

Publication number
CN110790587A
CN110790587A CN201911191872.XA CN201911191872A CN110790587A CN 110790587 A CN110790587 A CN 110790587A CN 201911191872 A CN201911191872 A CN 201911191872A CN 110790587 A CN110790587 A CN 110790587A
Authority
CN
China
Prior art keywords
mosi
zrb
sic
coating
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911191872.XA
Other languages
English (en)
Other versions
CN110790587B (zh
Inventor
任宣儒
王炜光
冯培忠
褚洪傲
武科佑
张安妮
孙科
胡昱雯
马灿
陈玥荣
叶凡
王杉
孙雷昊
许颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201911191872.XA priority Critical patent/CN110790587B/zh
Publication of CN110790587A publication Critical patent/CN110790587A/zh
Application granted granted Critical
Publication of CN110790587B publication Critical patent/CN110790587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5071Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开一种ZrB2‑MoSi2‑SiC超高温陶瓷抗氧化涂层的制备方法,属于抗氧化涂层的技术领域。本发明以ZrB2、MoSi2、SiC粉末为原料,在碳基试样表面以放电等离子烧结的方式,直接制备组分和厚度可控,组织细小、均匀致密且无明显缺陷的ZrB2‑MoSi2‑SiC超高温陶瓷抗氧化涂层,通过涂层保护提高碳基材料高温抗氧化性能。本发明通过控制复合粉体配比及添加量来实现对涂层组分及厚度的控制;通过调整放电等离子烧结参数,实现对ZrB2‑MoSi2‑SiC涂层致密性及与碳基体结合强度的调控。与传统无压类烧结制备涂层的方法相比,本发明得到的抗氧化涂层组分及厚度可控、致密度高、制备时间短、工艺简单,实用价值高。

Description

一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法
技术领域
本发明涉及一种高温陶瓷抗氧化涂层的制备方法,特别是一种碳材料表面ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法。
背景技术
碳结构材料(石墨或碳碳复合材料)有着良好的耐高温性能,在无氧条件下碳结构材料可以承受3000℃以上的高温,同时具有高导电性、高导热性,密度低,高比模量、比强度高,震动衰减率小等性能。由于其以上诸多优点,其在日常生活以及航天航空领域均有着广泛的应用。但碳结构材料的局限性在于其抗氧化性差,在400℃以上的空气中便会与氧气发生化学反应,使碳结构材料制品失效。因此,碳材料在应用中的关键点是防氧化。目前,在碳材料的表面制备抗氧化涂层是碳材料防氧化的有效途径。抗氧化涂层不仅需要有效地隔绝碳材料和氧气,还需要拥有良好的耐高温、抗氧化、高致密度等性能。而且,随着碳材料应用的日趋广泛,碳材料制品必须具备宽温域抗氧化的能力。
在诸多抗氧化涂层中,超高温陶瓷硼化物ZrB2与SiC组成的复合涂层在氧化时可以生成具有不同熔点和防护温区范围的多组分氧化产物,并形成一层可以自愈合密封缺陷且致密稳定的复合玻璃相,呈现了极大的宽温域氧化防御潜力。Kircher等在“Engineeringlimitations of MoSi2 coatings”中报道了MoSi2在作为高温氧化防护涂层时,可以在宽温域下充分保护基体。由于MoSi2相具有优异高温抗氧化能力,其作为改性相可以有效提升ZrB2-SiC涂层在超高温下的防氧化效果,因此本发明通过在ZrB2-SiC涂层中加入MoSi2相,通过多组分涂层组元在防氧化过程中的协同效应,增强涂层在宽温域下的稳定性。
目前,在碳材料表面制备ZrB2-MoSi2-SiC涂层的方法主要为包埋法、原位反应法和等离子喷涂法等。传统反应法虽然具有成本较低、简单易行、合成相均匀分布等优点,但因其涂层中ZrB2-MoSi2-SiC的含量以及涂层的厚度难以控制、涂层疏松易脱落等缺点,得不到较好的抗氧化性能。而放电等离子烧结法以其低温热压快烧的优点吸引了众多关注。用该种方法制备的涂层解决了传统工艺无法解决的问题,制备出的内层结合紧密、不易脱落,且制备周期短、使用寿命长、对基体的伤害小,最大程度保护了基体的力学性能、提高了碳材料的抗氧化性,实用性强。
发明内容
本发明提供一种于较低烧结温度下在碳基材料表面快速烧结制备ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的方法,制备方法简单,可以实现对ZrB2-MoSi2-SiC涂层组分、厚度、致密性和与碳基体结合强度的调控,增强碳基体的抗氧化能力。
为实现上述目的,本发明采用的技术方案如下:
首先配置不同含量配比的MoSi2、SiC、ZrB2复合粉体,经过均匀混合之后,在石墨磨具中用复合粉体包裹碳基体,再经过放电等离子烧结合成涂层。
具体步骤为:
步骤1:碳基体表面处理:用不同粗糙度的砂纸打磨碳基体表面,打磨之后用酒精清洗,最后干燥;
步骤2:混料:称取一定质量分数的ZrB2、MoSi2、SiC粉体,随后通过球磨使其混合均匀得到ZrB2-MoSi2-SiC复合粉体;
步骤3:装模:用经过步骤2得到的ZrB2-MoSi2-SiC复合粉体在石墨模具内将经过步骤1处理后的碳基体充分包裹;
步骤4:放电等离子烧结:将完成上述步骤的石墨模具放入放电等离子烧结炉中烧结,烧结温度为1200-1900℃,保温时间5-300min,压力为5-50MPa,升温速率为5-200℃/min,烧结之后即可在碳基体表面得到所设计的组分和厚度可控的ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层。
有益效果及优点:
1.利用放电等离子烧结法在碳基材料表面制备的HfB2-MoSi2-SiC抗氧化涂层与碳材料基体的结合强度高,不容易剥落,抗氧化性能好。
2.利用放电等离子烧结法在碳基材料表面制备的HfB2-MoSi2-SiC抗氧化涂层致密性良好,组织细小,各相分布和涂层厚度均匀。
3.利用放电等离子烧结法在碳基材料表面制备的HfB2-MoSi2-SiC抗氧化涂层,烧结温度低、制备时间短,可以有效抑制晶粒长大,大大降低了杂质产生的几率。
4.本发明所用方法简单实用,使得碳基体的抗氧化性能大幅提高,且涂层综合性能优异,具有广阔的发展前景。
附图说明
为了更清晰地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍。
图1为本发明实施例1在石墨基体表面制备的60%ZrB2-10%MoSi2-30%SiC抗氧化涂层表面的XRD图谱。
图2为本发明实施例1在石墨基体表面制备的60%ZrB2-10%MoSi2-30%SiC抗氧化涂层表面的SEM照片。
图3为本发明实施例2在石墨基体表面制备的60%ZrB2-20%MoSi2-20%SiC抗氧化涂层表面的XRD图谱。
图4为本发明实施例2在石墨基体表面制备的60%ZrB2-20%MoSi2-20%SiC抗氧化涂层表面的SEM照片。
图5为本发明实施例3在石墨基体表面制备的60%ZrB2-30%MoSi2-10%SiC抗氧化涂层表面的XRD图谱。
图6为本发明实施例3在石墨基体表面制备的60%ZrB2-30%MoSi2-10%SiC抗氧化涂层表面的SEM照片。
图7为本发明实施例4在石墨基体表面制备的60%ZrB2-40%MoSi2抗氧化涂层表面的XRD图谱。
图8为本发明实施例4在石墨基体表面制备的60%ZrB2-40%MoSi2抗氧化涂层表面的SEM照片。
其中:1- ZrB2,2-MoSi2,3-SiC。
具体实施方式
首先配置不同含量配比的MoSi2、SiC、ZrB2复合粉体,经过均匀混合之后,在石墨磨具中用复合粉体包裹碳基体,再经过放电等离子烧结合成涂层。
具体步骤为:
步骤1:碳基体表面处理:用不同粗糙度的砂纸打磨碳基体表面,打磨之后用酒精清洗,最后干燥;
步骤2:混料:称取一定质量分数的ZrB2、MoSi2、SiC粉体,随后通过球磨使其混合均匀得到ZrB2-MoSi2-SiC复合粉体;
步骤3:装模:用经过步骤2得到的ZrB2-MoSi2-SiC复合粉体在石墨模具内将经过步骤1处理后的碳基体充分包裹;
步骤4:放电等离子烧结:将完成上述步骤的石墨模具放入放电等离子烧结炉中烧结,烧结温度为1200-1900℃,保温时间5-300min,压力为5-50MPa,升温速率为5-200℃/min,烧结之后即可在碳基体表面得到所设计的组分和厚度可控的ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层。
下面结合附图和实施例对本发明做进一步的详细描述。
实施例1:
步骤1:碳基体表面处理:用不同粗糙度的砂纸打磨石墨基体表面,打磨之后用酒精清洗,最后干燥;
步骤2:混料:分别称取质量分数的60%ZrB2、10%MoSi2、30%SiC粉体,其粒度≤50μm,纯度≥99.0%,随后以100r/min的转速球磨5h均匀混合,最后得到60%ZrB2-10%MoSi2-30%SiC复合粉体;
步骤3:装模:用经过步骤2得到的60%ZrB2-10%MoSi2-30%SiC复合粉体在石墨模具内将经过步骤1处理后的石墨基体充分包裹;
步骤4:放电等离子烧结:将完成上述步骤的石墨模具放入放电等离子烧结炉中烧结,烧结参数为:在575℃烧结1s,迅速升温至600℃后保温2min,在5min内升温至1500℃后保温5min,升温速率为180℃/min ,压力为30MPa,烧结时间为12min。烧结之后即可在石墨基体表面得到60%ZrB2-10%MoSi2-30%SiC超高温陶瓷抗氧化涂层。
其物相分析如图1所示,其表面形貌如图2所示。
实施例2:
步骤1:碳基体表面处理:用不同粗糙度的砂纸打磨石墨基体表面,打磨之后用酒精清洗,最后干燥;
步骤2:混料:分别称取质量分数的60%ZrB2、20%MoSi2、20%SiC粉体,其粒度≤50μm,纯度≥99.0%,随后以200r/min的转速球磨2.5h均匀混合,最后得到60%ZrB2-20%MoSi2-20%SiC复合粉体;
步骤3:装模:用经过步骤2得到的60%ZrB2-20%MoSi2-20%SiC复合粉体在石墨模具内将经过步骤1处理后的石墨基体充分包裹;
步骤4:放电等离子烧结:将完成上述步骤的石墨模具放入放电等离子烧结炉中烧结,烧结参数为:在575℃烧结1s,迅速升温至700℃后保温1min,在6min内升温至1600℃后保温6min,升温速率为200℃/min ,压力为40MPa,烧结时间为13min。烧结之后即可在石墨基体表面得到60%ZrB2-20%MoSi2-20%SiC超高温陶瓷抗氧化涂层。
其物相分析如图3所示,其表面形貌如图4所示。
实施例3:
步骤1:碳基体表面处理:用不同粗糙度的砂纸打磨石墨基体表面,打磨之后用酒精清洗,最后干燥;
步骤2:混料:分别称取质量分数的60%ZrB2、30%MoSi2、10%SiC粉体,其粒度≤50μm,纯度≥99.0%,随后以1000r/min的转速球磨1h均匀混合,最后得到60%ZrB2-30%MoSi2-10%SiC复合粉体;
步骤3:装模:用经过步骤2得到的60%ZrB2-30%MoSi2-10%SiC复合粉体在石墨模具内将经过步骤1处理后的石墨基体充分包裹;
步骤4:放电等离子烧结:将完成上述步骤的石墨模具放入放电等离子烧结炉中烧结,烧结参数为:在575℃烧结1s,迅速升温至1000℃后保温3min,在8min内升温至1800℃后保温10min,升温速率为100℃/min ,压力为50MPa,烧结时间为21min。烧结之后即可在石墨基体表面得到60%ZrB2-30%MoSi2-10%SiC超高温陶瓷抗氧化涂层。
其物相分析如图5所示,其表面形貌如图6所示。
实施例4:
步骤1:碳基体表面处理:用不同粗糙度的砂纸打磨石墨基体表面,打磨之后用酒精清洗,最后干燥;
步骤2:混料:分别称取质量分数的60%ZrB2、40%MoSi2粉体,其粒度≤50μm,纯度≥99.0%,随后以500r/min的转速球磨5h均匀混合,最后得到60%ZrB2-40%MoSi2复合粉体;
步骤3:装模:用经过步骤2得到的60%ZrB2-40%MoSi2复合粉体在石墨模具内将经过步骤1处理后的石墨基体充分包裹;
步骤4:放电等离子烧结:将完成上述步骤的石墨模具放入放电等离子烧结炉中烧结,烧结参数为:在575℃烧结1s,迅速升温至650℃后保温2min,在5min内升温至1650℃后保温7min,升温速率为200℃/min ,压力为45MPa,烧结时间为14min。烧结之后即可在石墨基体表面得到60%ZrB2-40%MoSi2超高温陶瓷抗氧化涂层。
其物相分析如图7所示,其表面形貌如图8所示。
以上所述,仅为本发明的较好实施例,因此本发明实施的范围不能依据以上实施例进行限定,依据本发明专利范围和说明书内容进行的等效修饰与变化,依然为本发明涵盖的范围。

Claims (6)

1.一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法,其特征在于:首先配置不同含量配比的ZrB2-MoSi2-SiC复合粉体,经过均匀混合之后,在石墨模具中用复合粉体包裹碳基体,经过放电等离子烧结合成超高温陶瓷抗氧化涂层。
2.根据权利要求1所述的ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法,其特征在于具体步骤为:
步骤1:碳基体表面处理:用不同粗糙度的砂纸打磨碳基体表面,打磨之后用酒精清洗,最后干燥;
步骤2:混料:称取一定质量分数的ZrB2、MoSi2、SiC粉体,随后通过球磨使其混合均匀得到ZrB2-MoSi2-SiC复合粉体;
步骤3:装模:用经过步骤2得到的ZrB2-MoSi2-SiC复合粉体在石墨模具内将经过步骤1处理后的碳基体充分包裹;
步骤4:放电等离子烧结:将完成上述步骤的石墨模具放入放电等离子烧结炉中烧结,烧结温度为1300-1900℃,保温时间2-300min,压力为2-50MPa,升温速率为10-200℃/min,烧结之后即可在碳基体表面得到所设计的组分和厚度可控的ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层。
3.根据权利要求2所述的ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法,其特征在于:所述的碳基体为碳碳复合材料或石墨。
4.根据权利要求2所述的ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法,其特征在于:在上述步骤2中,ZrB2-MoSi2-SiC复合粉体中ZrB2的质量分数为5%-95%,MoSi2的质量分数为5%-95%,SiC的质量分数为5%-95%,球磨机转速为50-1000r/min,球磨时间为0.5-10h。
5.根据权利要求2所述的ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法,其特征在于:在上述步骤2所述ZrB2、MoSi2、SiC粉体的粒度≤60μm,纯度≥99.0%。
6.根据权利要求2所述的ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法,其特征在于:在上述步骤4中,碳基体表面得到的ZrB2-MoSi2-SiC涂层的厚度为10μm~3mm。
CN201911191872.XA 2019-11-28 2019-11-28 一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法 Active CN110790587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911191872.XA CN110790587B (zh) 2019-11-28 2019-11-28 一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911191872.XA CN110790587B (zh) 2019-11-28 2019-11-28 一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法

Publications (2)

Publication Number Publication Date
CN110790587A true CN110790587A (zh) 2020-02-14
CN110790587B CN110790587B (zh) 2022-03-25

Family

ID=69446771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911191872.XA Active CN110790587B (zh) 2019-11-28 2019-11-28 一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法

Country Status (1)

Country Link
CN (1) CN110790587B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848220A (zh) * 2020-07-30 2020-10-30 中国人民解放军火箭军工程大学 Mb2基超高温陶瓷涂层及其制备方法
CN112851358A (zh) * 2021-01-05 2021-05-28 北京动力机械研究所 一种ZrB2-SiC-Mo(Six,Al1-x)2零烧蚀涂层及其热压制备方法
CN113087530A (zh) * 2021-04-19 2021-07-09 中国矿业大学 一种基于ZrB2非平衡态合金化修饰的高阻氧涂层及制备方法
CN115404431A (zh) * 2022-08-31 2022-11-29 华能国际电力股份有限公司 一种可提高热障涂层高温性能的热处理方法
CN116253569A (zh) * 2023-01-04 2023-06-13 河南省科学院碳基复合材料研究院 一种利用自蔓延辅助固溶体掺杂技术制备(Hf,Ta)B2-MoSi2阻氧涂层的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006828A2 (en) * 1999-07-22 2001-02-01 Lockheed Martin Corporation Oxidation resistant insulating sandwich tiles
CN101104561A (zh) * 2007-03-16 2008-01-16 中国科学院上海硅酸盐研究所 二硼化锆基复相陶瓷的原位反应制备方法
CN102417375A (zh) * 2011-08-18 2012-04-18 西北工业大学 炭/炭复合材料SiC/ZrB2-SiC/SiC涂层及其制备方法
CN102659412A (zh) * 2012-05-29 2012-09-12 苏州大学 一种ZrB2基超高温陶瓷纳米复合材料及其制备方法
CN104045377A (zh) * 2014-06-09 2014-09-17 广东省工业技术研究院(广州有色金属研究院) 一种用于碳/碳复合材料涂层的粉末制备方法
CN104945013A (zh) * 2015-06-17 2015-09-30 河北建材职业技术学院 一种c/c复合材料及其表面抗氧化复合涂层的制备方法
CN107021787A (zh) * 2017-05-26 2017-08-08 广东省新材料研究所 一种抗烧蚀涂层的制备方法
CN107814591A (zh) * 2017-11-10 2018-03-20 中国矿业大学 一种碳材料表面硼化物改性硅基抗氧化涂层的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006828A2 (en) * 1999-07-22 2001-02-01 Lockheed Martin Corporation Oxidation resistant insulating sandwich tiles
CN101104561A (zh) * 2007-03-16 2008-01-16 中国科学院上海硅酸盐研究所 二硼化锆基复相陶瓷的原位反应制备方法
CN102417375A (zh) * 2011-08-18 2012-04-18 西北工业大学 炭/炭复合材料SiC/ZrB2-SiC/SiC涂层及其制备方法
CN102659412A (zh) * 2012-05-29 2012-09-12 苏州大学 一种ZrB2基超高温陶瓷纳米复合材料及其制备方法
CN104045377A (zh) * 2014-06-09 2014-09-17 广东省工业技术研究院(广州有色金属研究院) 一种用于碳/碳复合材料涂层的粉末制备方法
CN104945013A (zh) * 2015-06-17 2015-09-30 河北建材职业技术学院 一种c/c复合材料及其表面抗氧化复合涂层的制备方法
CN107021787A (zh) * 2017-05-26 2017-08-08 广东省新材料研究所 一种抗烧蚀涂层的制备方法
CN107814591A (zh) * 2017-11-10 2018-03-20 中国矿业大学 一种碳材料表面硼化物改性硅基抗氧化涂层的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PENG CHEN ET AL.: ""Preparation of oxidation protective MoSi2–SiC coating on graphite using recycled waste MoSi2 by one-step spark plasma sintering method"", 《CERAMICS INTERNATIONAL》 *
QIAN-GANG FUN ET AL: ""Design of an inlaid interface structure to improve the oxidation protective ability of SiC–MoSi2–ZrB2 coating for C/C composites", 《CERAMICS INTERNATIONAL》 *
李贺军等: "《中国战略性新兴产业——新材料 碳/碳复合材料》", 31 December 2017, 中国铁道出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848220A (zh) * 2020-07-30 2020-10-30 中国人民解放军火箭军工程大学 Mb2基超高温陶瓷涂层及其制备方法
CN112851358A (zh) * 2021-01-05 2021-05-28 北京动力机械研究所 一种ZrB2-SiC-Mo(Six,Al1-x)2零烧蚀涂层及其热压制备方法
CN113087530A (zh) * 2021-04-19 2021-07-09 中国矿业大学 一种基于ZrB2非平衡态合金化修饰的高阻氧涂层及制备方法
CN115404431A (zh) * 2022-08-31 2022-11-29 华能国际电力股份有限公司 一种可提高热障涂层高温性能的热处理方法
CN116253569A (zh) * 2023-01-04 2023-06-13 河南省科学院碳基复合材料研究院 一种利用自蔓延辅助固溶体掺杂技术制备(Hf,Ta)B2-MoSi2阻氧涂层的方法
CN116253569B (zh) * 2023-01-04 2023-12-01 河南省科学院碳基复合材料研究院 一种利用自蔓延辅助固溶体掺杂技术制备(Hf,Ta)B2-MoSi2阻氧涂层的方法

Also Published As

Publication number Publication date
CN110790587B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN110790587B (zh) 一种ZrB2-MoSi2-SiC超高温陶瓷抗氧化涂层的制备方法
CN110590404B (zh) 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法
US11180419B2 (en) Method for preparation of dense HfC(Si)—HfB2 composite ceramic
CN106478105B (zh) 一种多步反应烧结法制备低残硅的碳化硅陶瓷材料的方法
CN110818426A (zh) 一种碳材料表面HfB2-TaSi2-SiC抗氧化涂层的制备方法
CN111675541A (zh) 一种含碳max相材料的制备方法
CN107082651B (zh) 一种碳化硅涂层及其制备方法
CN102126859B (zh) 一种制备竹节状SiC纳米线增韧HfC陶瓷的方法
CN102093083B (zh) 炭/炭复合材料HfC抗烧蚀涂层的制备方法
CN101468918A (zh) 高纯硼化锆/硼化铪粉体及其超高温陶瓷靶材的制备方法
CN111484331B (zh) 一种细晶粒富硼碳化硼基复合陶瓷材料及其制备方法
CN113773119B (zh) 一种高性能的碳碳坩埚表面涂层及其制备方法
CN112592207A (zh) 一种自愈合ZrB2-SiC-Y2O3涂层及其在SiC包埋碳碳复合材料上的应用
CN105350294B (zh) 一种镀碳化硅层的短切碳纤维及其制备方法
CN110304933B (zh) 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
CN110746202B (zh) 一种石墨材料表面TaB2-SiC超高温陶瓷涂层的制备方法
CN113213936B (zh) 一种陶瓷粉掺杂改性自烧结石墨复合材料的制备方法
CN115724664B (zh) 一种两步烧结快速制备MCMBs/SiC复合材料的方法
CN114835473B (zh) 一种氧化铝陶瓷及其制备方法
CN108892528A (zh) 一种多孔氮化硅陶瓷材料及其制备方法
CN114853474A (zh) 一种发动机主轴支点密封用高强炭石墨材料及其制备方法
CN107200586B (zh) 一种TiB2陶瓷块体的快速制备方法
CN116396090B (zh) 一种碳化硅/碳化硼陶瓷骨架增强碳基复合材料及制备方法和应用
CN116444274B (zh) 一种超细结构各向同性石墨材料的制备方法
CN108585871A (zh) 一种b4c陶瓷块体的快速制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant