CN110767746A - 一种在位生长介质层作为帽层的hemt结构及其制作方法 - Google Patents

一种在位生长介质层作为帽层的hemt结构及其制作方法 Download PDF

Info

Publication number
CN110767746A
CN110767746A CN201911031483.0A CN201911031483A CN110767746A CN 110767746 A CN110767746 A CN 110767746A CN 201911031483 A CN201911031483 A CN 201911031483A CN 110767746 A CN110767746 A CN 110767746A
Authority
CN
China
Prior art keywords
layer
thickness
dielectric layer
hemt structure
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911031483.0A
Other languages
English (en)
Inventor
王晓亮
李百泉
肖红领
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Huajinchuangwei Electronics Co ltd
Institute of Semiconductors of CAS
Original Assignee
Beijing Huajinchuangwei Electronics Co ltd
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Huajinchuangwei Electronics Co ltd, Institute of Semiconductors of CAS filed Critical Beijing Huajinchuangwei Electronics Co ltd
Priority to CN201911031483.0A priority Critical patent/CN110767746A/zh
Publication of CN110767746A publication Critical patent/CN110767746A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种在位生长介质层作为帽层的HEMT结构,该HEMT结构从下至上依次包括:SiC衬底、成核层、缓冲层、沟道层、插入层、势垒层、盖帽层和介质层;其中,所述介质层为SiN层,其厚度不超过300μm;本发明还公开了该HEMT结构的制作方法。本发明则采用在位生长的方式制作SiN介质层,在高真空度的MOCVD腔室内,直接在HEMT结构材料的表面生长介质层,可以有效地避免因为分布沉积介质层所引入的颗粒玷污。

Description

一种在位生长介质层作为帽层的HEMT结构及其制作方法
技术领域
本发明属于半导体技术领域,具体涉及一种在位生长介质层作为帽层的HEMT结构及其制作方法。
背景技术
氮化镓作为第三代宽禁带半导体的典型代表,具有优良的物理和化学特性,非常适于研制高频、高压、高功率的器件和电路,采用氮化镓研制的高电子迁移率晶体管(HEMT),电流密度大,功率密度高,噪声低,频率特性好,在军用和民用的微波功率领域有广泛的应用前景。
在GaN基HEMT的制作工艺过程中,为了降低器件漏电,改善栅特性,一般采用SiN材料作为钝化层和栅下介质层材料,目前SiN介质层主要采用PECVD或LPCVD的方法来制作,将外延材料清洗后放入PECVD或LPCVD腔室中进行生长,清洗过程以及暴露在空气的过程中,有可能使器件受到颗粒的玷污,从而影响器件的性能。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种在位生长介质层作为帽层的HEMT结构,此结构在传统的HEMT结构表面,直接通过MOCVD在位生长的方式沉积SiN介质层。本发明的另一目的在于提供一种在位生长介质层作为帽层的HEMT结构的制作方法。
为实现上述目的,本发明采用以下技术方案:
一种在位生长介质层作为帽层的HEMT结构,所述HEMT结构从下至上依次包括:SiC衬底、成核层、缓冲层、沟道层、插入层、势垒层、盖帽层和介质层;其中,所述介质层为SiN层,其厚度不超过300μm。
进一步,所述成核层为GaN或AlN或AlGaN,厚度为0.01-0.50μm。
进一步,所述缓冲层为AlxGa1-xN,其中0≤x≤0.1,厚度为100nm-3000nm。
进一步,所述沟道层为GaN,厚度为10nm-100nm。
进一步,所述插入层为AlN,厚度为1nm-10nm。
进一步,所述势垒层为AlxGa1-xN,其中0≤x≤0.3,厚度为5nm-30nm。
进一步,所述盖帽层为GaN,厚度为1nm-10nm。
进一步,所述SiN层直接通过MOCVD在位生长的方式沉积而成。
一种制作在位生长介质层作为帽层的HEMT结构的方法,所述方法包括如下步骤:
步骤1:选择一衬底,该衬底材料为SiC材料;
步骤2:在所述衬底上生长一层成核层,该成核层为GaN或AlN或AlGaN,厚度为0.01-0.50μm;
步骤3:在所述成核层上生长缓冲层,材料为AlxGa1-xN,0≤x≤0.20,厚度为100nm-3000nm,生长温度为950℃-1150℃,生长压力为5.33 kPa -26.67kPa;
步骤4:在所述缓冲层上生长沟道层,该沟道层为GaN,厚度为10nm-100nm;
步骤5:在所述沟道层上生长插入层,该插入层生长厚度为1nm-10nm;
步骤6:在所述插入层上生长势垒层,该势垒层材料为AlxGa1-xN, 其中0≤x≤0.3,厚度为5nm-30nm;
步骤7:在所述势垒层上生长盖帽层,该盖帽层为GaN,厚度为1nm-10nm;
步骤8:在所述盖帽层上生长介质层,该介质层为SiN,厚度不超过300μm。
进一步,在所述衬底上生长各层的方法包括但不局限于金属有机物化学气相沉积法、分子束外延、气相外延和等离子体增强化学气相沉积法。
本发明具有以下有益技术效果:
本发明则采用在位生长的方式制作SiN介质层,在高真空度的MOCVD腔室内,直接在HEMT结构材料的表面生长介质层,可以有效地避免因为分布沉积介质层所引入的颗粒玷污。
附图说明
图1为本发明在位生长介质层作为帽层的HEMT结构的结构示意图;
图2为本发明在位生长介质层作为帽层的HEMT结构的制作方法的流程图。
具体实施方式
下面,参考附图,对本发明进行更全面的说明,附图中示出了本发明的示例性实施例。然而,本发明可以体现为多种不同形式,并不应理解为局限于这里叙述的示例性实施例。而是,提供这些实施例,从而使本发明全面和完整,并将本发明的范围完全地传达给本领域的普通技术人员。
如图1所示,本发明提供了一种在位生长介质层作为帽层的HEMT结构,该 HEMT结构从下至上依次包括:SiC衬底、成核层、缓冲层、沟道层、插入层、势垒层、盖帽层和介质层;其中,介质层为SiN层,其厚度不超过300μm。
本申请的成核层为GaN或AlN或AlGaN,厚度为0.01-0.50μm;缓冲层为AlxGa1-xN,其中0≤x≤0.1,厚度为100nm-3000nm;沟道层为GaN,厚度为10nm-100nm;插入层为AlN,厚度为1nm-10nm;势垒层为AlxGa1-xN,其中0≤x≤0.3,厚度为5nm-30nm;盖帽层为GaN,厚度为1nm-10nm;SiN层直接通过MOCVD在位生长的方式沉积而成。
如图2所示,本发明提供了一种在位生长介质层作为帽层的HEMT结构的制作方法,该方法包括如下步骤:
步骤1:选择一衬底,该衬底材料为SiC材料;
步骤2:在衬底上生长一层成核层,该成核层为GaN或AlN或AlGaN,厚度为0.01-0.50μm;
步骤3:在成核层上生长缓冲层,材料为AlxGa1-xN,0≤x≤0.20,厚度为100nm-3000nm,生长温度为950℃-1150℃,生长压力为5.33 kPa -26.67kPa;
步骤4:在缓冲层上生长沟道层,该沟道层为GaN,厚度为10nm-100nm;
步骤5:在沟道层上生长插入层,该插入层生长厚度为1nm-10nm;
步骤6:在插入层上生长势垒层,该势垒层材料为AlxGa1-xN, 其中0≤x≤0.3,厚度为5nm-30nm;
步骤7:在势垒层上生长盖帽层,该盖帽层为GaN,厚度为1nm-10nm;
步骤8:在盖帽层上生长介质层,该介质层为SiN,厚度不超过300μm。
在衬底上生长各层的方法包括但不局限于金属有机物化学气相沉积法、分子束外延、气相外延和等离子体增强化学气相沉积法;优先采用金属有机物化学气相沉积法。
上面所述只是为了说明本发明,应该理解为本发明并不局限于以上实施例,符合本发明思想的各种变通形式均在本发明的保护范围之内。

Claims (10)

1.一种在位生长介质层作为帽层的HEMT结构,其特征在于,所述HEMT结构从下至上依次包括:SiC衬底、成核层、缓冲层、沟道层、插入层、势垒层、盖帽层和介质层;其中,所述介质层为SiN层,其厚度不超过300μm。
2.根据权利要求1所述的在位生长介质层作为帽层的HEMT结构,其特征在于,所述成核层为GaN或AlN或AlGaN,厚度为0.01-0.50μm。
3.根据权利要求1所述的在位生长介质层作为帽层的HEMT结构,其特征在于,所述缓冲层为AlxGa1-xN,其中0≤x≤0.1,厚度为100nm-3000nm。
4.根据权利要求1所述的在位生长介质层作为帽层的HEMT结构,其特征在于,所述沟道层为GaN,厚度为10nm-100nm。
5.根据权利要求1所述的在位生长介质层作为帽层的HEMT结构,其特征在于,所述插入层为AlN,厚度为1nm-10nm。
6.根据权利要求1所述的在位生长介质层作为帽层的HEMT结构,其特征在于,所述势垒层为AlxGa1-xN,其中0≤x≤0.3,厚度为5nm-30nm。
7.根据权利要求1所述的在位生长介质层作为帽层的HEMT结构,其特征在于,所述盖帽层为GaN,厚度为1nm-10nm。
8.根据权利要求1所述的在位生长介质层作为帽层的HEMT结构,其特征在于,所述SiN层直接通过MOCVD在位生长的方式沉积而成。
9.一种制作权利要求1-8任一所述的在位生长介质层作为帽层的HEMT结构的方法,其特征在于,所述方法包括如下步骤:
步骤1:选择一衬底,该衬底材料为SiC材料;
步骤2:在所述衬底上生长一层成核层,该成核层为GaN或AlN或AlGaN,厚度为0.01-0.50μm;
步骤3:在所述成核层上生长缓冲层,材料为AlxGa1-xN,0≤x≤0.20,厚度为100nm-3000nm,生长温度为950℃-1150℃,生长压力为5.33 kPa -26.67kPa;
步骤4:在所述缓冲层上生长沟道层,该沟道层为GaN,厚度为10nm-100nm;
步骤5:在所述沟道层上生长插入层,该插入层生长厚度为1nm-10nm;
步骤6:在所述插入层上生长势垒层,该势垒层材料为AlxGa1-xN, 其中0≤x≤0.3,厚度为5nm-30nm;
步骤7:在所述势垒层上生长盖帽层,该盖帽层为GaN,厚度为1nm-10nm;
步骤8:在所述盖帽层上生长介质层,该介质层为SiN,厚度不超过300μm。
10.根据权利要求9所述的在位生长介质层作为帽层的HEMT结构的制作方法,其特征在于,在所述衬底上生长各层的方法包括但不局限于金属有机物化学气相沉积法、分子束外延、气相外延和等离子体增强化学气相沉积法。
CN201911031483.0A 2019-10-28 2019-10-28 一种在位生长介质层作为帽层的hemt结构及其制作方法 Pending CN110767746A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911031483.0A CN110767746A (zh) 2019-10-28 2019-10-28 一种在位生长介质层作为帽层的hemt结构及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911031483.0A CN110767746A (zh) 2019-10-28 2019-10-28 一种在位生长介质层作为帽层的hemt结构及其制作方法

Publications (1)

Publication Number Publication Date
CN110767746A true CN110767746A (zh) 2020-02-07

Family

ID=69333087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911031483.0A Pending CN110767746A (zh) 2019-10-28 2019-10-28 一种在位生长介质层作为帽层的hemt结构及其制作方法

Country Status (1)

Country Link
CN (1) CN110767746A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635551A (zh) * 2020-12-18 2021-04-09 西安电子科技大学 一种GaN异质结材料及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399284A (zh) * 2007-09-26 2009-04-01 中国科学院半导体研究所 氮化镓基高电子迁移率晶体管结构
CN102130160A (zh) * 2011-01-06 2011-07-20 西安电子科技大学 槽形沟道AlGaN/GaN增强型HEMT器件及制作方法
CN102810564A (zh) * 2012-06-12 2012-12-05 程凯 一种射频器件及其制作方法
CN105789047A (zh) * 2016-05-13 2016-07-20 中国科学院半导体研究所 一种增强型AlGaN/GaN高电子迁移率晶体管的制备方法
CN106229345A (zh) * 2016-09-08 2016-12-14 西安电子科技大学 叠层栅介质GaN基绝缘栅高电子迁移率晶体管及制作方法
CN106328701A (zh) * 2016-11-24 2017-01-11 苏州能屋电子科技有限公司 基于双层盖帽层结构的ⅲ族氮化物hemt器件及其制作方法
CN107240605A (zh) * 2017-06-23 2017-10-10 北京华进创威电子有限公司 一种GaN MIS沟道HEMT器件及制备方法
CN108666216A (zh) * 2018-05-15 2018-10-16 西安电子科技大学 基于叠层钝化结构的hemt器件及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399284A (zh) * 2007-09-26 2009-04-01 中国科学院半导体研究所 氮化镓基高电子迁移率晶体管结构
CN102130160A (zh) * 2011-01-06 2011-07-20 西安电子科技大学 槽形沟道AlGaN/GaN增强型HEMT器件及制作方法
CN102810564A (zh) * 2012-06-12 2012-12-05 程凯 一种射频器件及其制作方法
CN105789047A (zh) * 2016-05-13 2016-07-20 中国科学院半导体研究所 一种增强型AlGaN/GaN高电子迁移率晶体管的制备方法
CN106229345A (zh) * 2016-09-08 2016-12-14 西安电子科技大学 叠层栅介质GaN基绝缘栅高电子迁移率晶体管及制作方法
CN106328701A (zh) * 2016-11-24 2017-01-11 苏州能屋电子科技有限公司 基于双层盖帽层结构的ⅲ族氮化物hemt器件及其制作方法
CN107240605A (zh) * 2017-06-23 2017-10-10 北京华进创威电子有限公司 一种GaN MIS沟道HEMT器件及制备方法
CN108666216A (zh) * 2018-05-15 2018-10-16 西安电子科技大学 基于叠层钝化结构的hemt器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635551A (zh) * 2020-12-18 2021-04-09 西安电子科技大学 一种GaN异质结材料及其制作方法

Similar Documents

Publication Publication Date Title
US8569800B2 (en) Field effect transistor
CN101252088B (zh) 一种增强型A1GaN/GaN HEMT器件的实现方法
CN101399284B (zh) 氮化镓基高电子迁移率晶体管结构
US20090045439A1 (en) Heterojunction field effect transistor and manufacturing method thereof
JP2007165431A (ja) 電界効果型トランジスタおよびその製造方法
JP6896063B2 (ja) イオン注入を用いた高抵抗窒化物バッファ層の半導体材料成長
JP6882503B2 (ja) 高ブレークダウン電圧の窒化ガリウム系高電子移動度トランジスタおよびその形成方法
KR20150085724A (ko) 질화물 반도체 소자 및 그 제조 방법
KR20150091706A (ko) 질화물 반도체 소자 및 그 제조 방법
AU2018391121B2 (en) N-polar plane high-frequency GaN rectifier epitaxial structure on silicon substrate and manufacturing method therefor
CN109728087B (zh) 基于纳米球掩模的低欧姆接触GaN基HEMT制备方法
KR20150091705A (ko) 질화물 반도체 소자 및 그 제조 방법
CN113555431B (zh) 基于P型GaN漏电隔离层的同质外延氮化镓高电子迁移率晶体管及制作方法
CN113314597B (zh) 一种氮极性面氮化镓高电子迁移率晶体管及其制作方法
CN111009468A (zh) 一种半导体异质结构制备方法及其用途
CN109300976A (zh) 半导体器件及其制作方法
JP6811476B2 (ja) Iii族窒化物半導体装置の製造方法および半導体ウエハの製造方法
KR102111459B1 (ko) 질화물 반도체 소자 및 그 제조 방법
CN110767746A (zh) 一种在位生长介质层作为帽层的hemt结构及其制作方法
CN110838514B (zh) 一种半导体器件的外延结构及其制备方法、半导体器件
JP6811472B2 (ja) Iii族窒化物半導体素子の製造方法
CN111009579A (zh) 半导体异质结构及半导体器件
CN212542443U (zh) 一种氮化镓晶体管结构及氮化镓基外延结构
CN109904227B (zh) 低功函数导电栅极的金刚石基场效应晶体管及其制备方法
CN110739207A (zh) 一种在导电SiC衬底上生长GaN外延材料的方法及器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200207

WD01 Invention patent application deemed withdrawn after publication