CN110732338B - 碳纳米线/g-C3N4复合可见光催化剂及其制备方法 - Google Patents

碳纳米线/g-C3N4复合可见光催化剂及其制备方法 Download PDF

Info

Publication number
CN110732338B
CN110732338B CN201911023775.XA CN201911023775A CN110732338B CN 110732338 B CN110732338 B CN 110732338B CN 201911023775 A CN201911023775 A CN 201911023775A CN 110732338 B CN110732338 B CN 110732338B
Authority
CN
China
Prior art keywords
carbon
photocatalyst
preparation
nanowire
composite visible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911023775.XA
Other languages
English (en)
Other versions
CN110732338A (zh
Inventor
聂龙辉
邓军阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201911023775.XA priority Critical patent/CN110732338B/zh
Publication of CN110732338A publication Critical patent/CN110732338A/zh
Application granted granted Critical
Publication of CN110732338B publication Critical patent/CN110732338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳纳米线/g‑C3N4复合可见光催化剂及其制备方法,解决了现有可见光催化剂存在的催化活性和稳定性有待进一步提高的问题。技术方案包括以下步骤:步骤1)将棉花纤维在N2气氛条件下焙烧、研磨后制得含碳纳米线粉末;步骤2)将尿素置于加盖容器内焙烧、冷却研磨后获得类石墨相氮化碳光催化剂(g‑C3N4);步骤3)将所述碳纳米线粉末与所述类石墨相氮化碳光催化剂同时加到溶剂中,经超声波处理后分离、再水洗和醇洗,最后干燥获得碳纳米线/g‑C3N4复合可见光催化剂。本发明法简单、生产成本低、设备投资低,制备的碳纳米线/g‑C3N4复合可见光催化剂光生载流子分离效率高、氮化碳催化活性高、稳定性好、牢固性好、耐洗脱、使用寿命长。

Description

碳纳米线/g-C3N4复合可见光催化剂及其制备方法
技术领域
本发明涉及可见光催化领域,具体地的说是一种碳纳米线/g-C3N4复合可见光催化剂及其制备方法。
背景技术
能源和环境是当今社会可持续发展所面临的两个重要问题。光催化技术是解决上述两个问题的可行有效方法之一。而光催化技术中核心技术为高效、稳定光催化剂的制备。由于太阳光中可见光占大部分,因此可见光催化剂的制备及应用为今年来热点课题。
石墨相氮化炭(g-C3N4)具有制备原料来源广泛、制备简单、适当带隙(2.4-2.8 eV之间)和良好的光、热稳定性等优点而得到研究者门的广泛关注。目前,已被广泛用来光催化降解污染物、产氢和CO2还原。g-C3N4虽然具有上述特点,但由于光生电子-空穴容易复合以及电子传输速度较慢,光催化效率及稳定性受到限制。因此,提高g-C3N4光生载流子的分离效率就成为其应用的热点课题。通过对其表面进行各种改性是提高其光催化效率的有效途径。
各种碳材料(如石墨烯、碳纳米管、活性碳、碳纳米线等)具有良好的传输电子能力,同时它们具有较大的比表面积和孔体积,因而常用来做催化剂的载体或者助催化剂,碳材料与g-C3N4复合,能有效提高光生电子-空穴的分离效率,从而提高类石墨相氮化碳的催化活性与稳定性。如中国专利CN201810527845.4 和中国专利CN201710866475.2采用碳点对氮化碳进行表面修饰来提高氮化碳的催化效果。中国专利CN201710659399.8采用三维石墨烯与g-C3N4复合,并将其应用到超级电容器中。中国专利CN201811364305.5公开了一种以三聚氰胺和活性炭为原料制备多孔富碳g-C3N4光催化剂的方法,复合后能有效提高电子与空穴的分离效率。中国专利CN201811363188公开了一种以三聚氰胺和聚丙烯腈(PAN) 为前驱体通过静电纺丝法制备g-C3N4与碳纤维复合催化材料的方法等。但现有技术中存在要么制备工艺复杂(如C量子点的制备或静电纺丝过程),要么对设备要求高(如静电纺丝设备),要么碳材料大小、结构不规则(如活性炭)导致对光生载流子分离效率受到限制,或者碳材料本身制备成本高(如石墨烯)等问题。同时现有与氮化碳的碳材料还存在单一碳元素,因而对氮化碳催化活性和稳定性促进作用有限的问题。
发明内容
本发明的目的是为了解决上述技术问题,提供一种方法简单、生产成本低、设备投资低、光生载流子分离效率高、氮化碳催化活性高、稳定性好、牢固性好、耐洗脱、使用寿命长的碳纳米线/g-C3N4复合可见光催化剂。
本发明还提供一种上述光催化剂的制备方法。
技术方案包括以下步骤:
步骤1)将棉花纤维在N2气氛条件下焙烧、研磨后制得含碳纳米线粉末;
步骤2)将尿素置于加盖容器内焙烧、冷却研磨后获得类石墨相氮化碳光催化剂(g-C3N4);
步骤3)将所述碳纳米线粉末与所述类石墨相氮化碳光催化剂同时加到溶剂中,经超声波处理后分离、再水洗和醇洗,最后干燥获得碳纳米线/g-C3N4复合可见光催化剂。
所述步骤1)中,控制焙烧温度600-900℃,时间为1-4h。
所述步骤1)中,使棉花纤维以1-10℃/min升温速率升温至600-900℃。
所述步骤1)中,所述棉花纤维为天然棉花纤维或脱脂棉花纤维
所述步骤2)中,控制焙烧温度550-600℃,时间为0.5-4h。
所述步骤2)中,使尿素以5-10℃/分的升温速率升温至550-600℃。
所述步骤3)中,含碳纳米线粉末的添加量为所述类石墨相氮化碳光催化剂质量的0.5-5%。
所述步骤3)中,所述溶剂为水和/或乙醇。
所述步骤3)中,所述超声处理时间为1-4小时,超声功率为100W。
本发明碳纳米线/g-C3N4复合可见光催化剂,由上述制备方法制得。
针对背景技术中存在的问题,发明人作出如下改进:
发明人发现以棉花纤维为原料经焙烧、研磨制备的碳纳米线粉末,除了主要化学构成为碳元素外,同时还含有少量Si和O等其他元素,该残留微量元素有助于光催化过程中对反应物(如污染物)的吸附作用,活性物种将直接与这些反应物反应,从而有助于光催化活性的提高,这是其它碳原料如单一碳材料的活性碳等所不具有的特点。棉花纤维高温焙烧后得到的碳纳米线大小均一、直径在 10-50nm间,结构较规则,有利于光生电子的传输,促进光生载流子的分离。
进一步的,棉花纤维可以为天然棉花纤维或脱脂棉花纤维。其焙烧温度优选控制在600-900℃,更为优选为700-800℃,过高会使碳烧结,比表面积和孔隙率下降,过低会使棉花纤维焙烧不完全,除碳以外其它有机成分残留过多,导电性能下降;升温度速率优选控制在1-10℃/min,更为优选为5℃/min,这样有助于有机成分充分碳化,过快会造成内部有机成分氧化不充分,过慢则时间过长,效率下降。
以尿素为原料经焙烧、研磨后获得类石墨相氮化碳光催化剂,不使用石墨烯,降低了生产成本外,控制其置于加盖容器内烧焙,有利于有利于尿素充分聚合生成g-C3N4;控制焙烧温度550-600℃,过高会把尿素完全烧掉,过低会石墨相氮化碳聚合不完全。
采用超声波处理的方法复合碳纳米线和g-C3N4催化剂上,这里超声波处理的有二:一方面超声波能够提供能量和充分接触机会,提高碳纳米线与g-C3N4催化剂的复合效率;另一方面,超声过程能够打断过长的碳纳米线,使其保持在 100~1000nm间,避免过长的碳纳米线部分游离,导致两者间复合不牢固,催化剂脱洗再生碳纳米纳的发生脱离,影响催化剂的使用寿命。因此,超声处理的时间优选为1-4h,过长会碳纳米线过短及能量消耗增加,过短会碳纳米线过长难以达到理想长度,超声处理的功率优选为100W,以保证足够能量使碳纳米线与 g-C3N4催化剂的良好复合。
采用上述方法制备的碳纳米线/g-C3N4复合可见光催化剂具有g-C3N4与碳纳米线间结合紧密、碳纳米线在g-C3N4表面分散均匀、化学和热稳定性好、比表面积大、碳纳米线为直径在10-50nm间、长度为主要在100~1000nm间等特点,而合适直径和长度的碳纳米线相比较于颗粒状纳米碳材料更有利于光生电子的传输,从而更有利于促进光生载流子的分离,进而更有利于提高g-C3N4的光催化活性与稳定性。
有益效果:
1.本发明采用原料分别焙烧,再用超声波处理复合的方法制备碳纳米线 /g-C3N4复合可见光催化剂。原理来源广泛且廉价,工艺方法简单、易于操作,设备投资和生产成本低、适合于大规模工业化生产。
2.制备的碳纳米线/g-C3N4复合催化剂结合紧密、表面积大,碳纳米线在g-C3N4表面分散均匀、碳纳米线直径在10-50nm间、长度为在100~1000nm间,具有催化活性高、稳定性好,使用寿命长的优点,可应用于污染物降解、产氢和CO2还原等光催化领域。
附图说明
图1为实施例2制备的碳纳米线/g-C3N4复合催化剂透射电镜照片。
图2为实施例2制备的碳纳米线/g-C3N4复合催化剂、单纯C3N4及对比例7制备的活性炭/g-C3N4复合催化剂的活性对照图。
图3为实施例2与对比例8制备的碳纳米线/g-C3N4复合催化剂的活性对照图。
具体实施方式
实施例1:
将天然棉花纤维在N2气氛条件下,以1℃/min升温速率升温至600℃焙烧处理4h,获得的样品经研磨,制得含碳纳米线粉末。将尿素置于加盖容器内,以 1℃/min升温速率升温至600℃焙烧4h,冷却研磨后获得g-C3N4光催化剂。再将g-C3N4与含碳纳米线粉末(含碳纳米线粉末与g-C3N4二者质量比为0.5%)同时加到去离子水中,经超声波处理1小时后,分离,再水洗和醇洗各3次,最后干燥获得碳纳米线/g-C3N4复合可见光催化剂。
实施例2:
将脱脂棉花纤维在N2气氛条件下,以5℃/min升温速率升温至700℃焙烧处理2h,获得的样品经研磨,制得含碳纳米线粉末。将尿素置于加盖容器内,以 5℃/min升温速率升温至550℃焙烧2h,冷却研磨后获得g-C3N4光催化剂。再将g-C3N4与含碳纳米线粉末(含碳纳米线粉末与g-C3N4二者质量比为1%)同时加到去离子水中,经超声波处理2小时后,分离,再水洗和醇洗各3次,最后干燥获得碳纳米线/g-C3N4复合可见光催化剂。
图1为本实施例中制备的碳纳米线/g-C3N4复合催化剂透视电镜照片。图中可见,g-C3N4与碳纳米线间结合紧密、碳纳米线在g-C3N4表面分散均匀,其中碳纳米线直径在10-30nm之间、长度为主要在50~200nm间。图2为本实施例中制备的碳纳米线/g-C3N4复合催化剂与单纯C3N4及对比例7制备的活性炭/g-C3N4复合催化剂的催化活性对照图。图中显示碳纳米线/g-C3N4复合催化剂比单纯C3N4的催化活性有显著提升,也明显优于活性炭/g-C3N4复合催化剂(实施例7)的催化性能。同时,活性稳定性也得到极大提高。同时对本实施例制备样品的催化活性进行稳定性实验,通过对实验过的样品进行回收重复使用进行光催化实验,经 4次循环实验,第4次的催化活性与第1次相比未观测到明显的下降,表明本催化剂的光催化稳定性良好。图3为实施例2与对比例8制备的碳纳米线/g-C3N4复合催化剂的活性对照图,图中显示碳纳米线与g-C3N4复合方式对催化性能的影响,由图可知,超声方式制备的样品的催化活性更高。
实施例3:
将脱脂棉花纤维在N2气氛条件下,以10℃/min升温速率升温至800℃焙烧处理1h,获得的样品经研磨,制得含碳纳米线粉末。将尿素置于加盖容器内,以10℃升温速率升温至580℃焙烧1h,冷却研磨后获得g-C3N4光催化剂。再将g-C3N4与含碳纳米线粉末(含碳纳米线粉末与g-C3N4二者质量比为2%)同时加到乙醇中,经超声波处理4小时后,分离,再水洗和醇洗各3次,最后干燥获得碳纳米线/g-C3N4复合可见光催化剂。
实施例4:
将天然棉花纤维在N2气氛条件下,以5℃/min升温速率升温至700℃焙烧处理2h,获得的样品经研磨,制得含碳纳米线粉末。将尿素置于加盖容器内,以 5℃升温速率升温至550℃焙烧4h,冷却研磨后获得g-C3N4光催化剂。再将g-C3N4与含碳纳米线粉末(含碳纳米线粉末与g-C3N4二者质量比为5%)同时加到等体积乙醇和去离子水的混合溶液中,经超声波处理2小时后,分离,再水洗和醇洗各3次,最后干燥获得碳纳米线/g-C3N4复合可见光催化剂。
实施例5:
将脱脂棉花纤维在N2气氛条件下,以5℃/min升温速率升温至700℃焙烧处理2h,获得的样品经研磨,制得含碳纳米线粉末。将尿素置于加盖容器内,以 5℃升温速率升温至550℃焙烧2h,冷却研磨后获得g-C3N4光催化剂。再将g-C3N4与含碳纳米线粉末(含碳纳米线粉末与g-C3N4二者质量比为5%)同时加到去离子水中,经超声波处理2小时后,分离,再水洗和醇洗各3次,最后干燥获得碳纳米线/g-C3N4复合可见光催化剂。
实施例6:
将脱脂棉花纤维在N2气氛条件下,以5℃/min升温速率升温至900℃焙烧处理1h,获得的样品经研磨,制得含碳纳米线粉末。将尿素置于加盖容器内,以 5℃升温速率升温至550℃焙烧2h,冷却研磨后获得g-C3N4光催化剂。再将g-C3N4与含碳纳米线粉末(含碳纳米线粉末与g-C3N4二者质量比为1%)同时加到去离子水中,经超声波处理2小时后,分离,再水洗和醇洗各3次,最后干燥获得碳纳米线/g-C3N4复合可见光催化剂。
对比例7:
g-C3N4制备条件与实施例2完全相同。将活性炭代替实施例2中的含碳纳米线粉末再与所制备的g-C3N4复合,其他条件与实施例2完全相同,制备出活性炭 /g-C3N4复合光催化剂。
对比例8:
除将超声波处理改为研磨机械混合外,其余同实施例2,得到对比碳纳米线 /g-C3N4复合可见光催化剂,对比实验结果见图3。

Claims (7)

1.一种碳纳米线/g-C3N4复合可见光催化剂的制备方法,其特征在于,包括以下步骤:
步骤1)将棉花纤维在N2气氛条件下焙烧、使棉花纤维以1-10 oC/min升温速率升温至600-900 oC,研磨后制得含碳纳米线粉末;
步骤2)将尿素置于加盖容器内焙烧、冷却研磨后获得类石墨相氮化碳光催化剂(g-C3N4);
步骤3)将所述碳纳米线粉末与所述类石墨相氮化碳光催化剂同时加到溶剂中,经超声波处理后分离、再水洗和醇洗,最后干燥获得碳纳米线/g-C3N4复合可见光催化剂;所述超声处理时间为1-4小时,超声功率为100 W。
2.如权利要求1所述的碳纳米线/g-C3N4复合可见光催化剂的制备方法,其特征在于,所述步骤1)中,所述棉花纤维为天然棉花纤维或脱脂棉花纤维。
3.如权利要求1所述的碳纳米线/g-C3N4复合可见光催化剂的制备方法,其特征在于,所述步骤2)中,控制焙烧温度550-600 oC,时间为0.5-4 h。
4.如权利要求2所述的碳纳米线/g-C3N4复合可见光催化剂的制备方法,其特征在于,所述步骤2)中,使尿素以5-10 oC/min的升温速度升温至550-600 oC。
5.如权利要求1-4任一项所述的碳纳米线/g-C3N4复合可见光催化剂的制备方法,其特征在于,所述步骤3)中,含碳纳米线粉末的添加量为所述类石墨相氮化碳光催化剂质量的0.5-5%。
6.如权利要求1-4任一项所述的碳纳米线/g-C3N4复合可见光催化剂的制备方法,其特征在于,所述步骤3)中,所述溶剂为水和/或乙醇。
7.一种碳纳米线/g-C3N4复合可见光催化剂,其特征在于,由权利要求1-6任一项制备方法制得。
CN201911023775.XA 2019-10-25 2019-10-25 碳纳米线/g-C3N4复合可见光催化剂及其制备方法 Active CN110732338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911023775.XA CN110732338B (zh) 2019-10-25 2019-10-25 碳纳米线/g-C3N4复合可见光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911023775.XA CN110732338B (zh) 2019-10-25 2019-10-25 碳纳米线/g-C3N4复合可见光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110732338A CN110732338A (zh) 2020-01-31
CN110732338B true CN110732338B (zh) 2022-08-09

Family

ID=69271433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911023775.XA Active CN110732338B (zh) 2019-10-25 2019-10-25 碳纳米线/g-C3N4复合可见光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110732338B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112452352B (zh) * 2021-01-08 2022-09-16 河南工程学院 石墨化金刚石/石墨相氮化碳复合光催化剂及制备方法
CN114452998B (zh) * 2022-01-26 2023-05-09 大连理工大学 一种多壁碳纳米管和石墨化氮化碳复合材料的制备方法及应用
CN114950520B (zh) * 2022-04-11 2023-10-03 湖北工业大学 一种CeO2/Na,K掺杂g-C3N4类Fenton催化材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552083A (zh) * 2017-10-11 2018-01-09 肇庆市华师大光电产业研究院 一种FeP/C3N4复合光催化剂及其制备方法和应用
CN109277097A (zh) * 2018-11-29 2019-01-29 盐城工学院 一种TiO2/棉花基炭纤维光催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107552083A (zh) * 2017-10-11 2018-01-09 肇庆市华师大光电产业研究院 一种FeP/C3N4复合光催化剂及其制备方法和应用
CN109277097A (zh) * 2018-11-29 2019-01-29 盐城工学院 一种TiO2/棉花基炭纤维光催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Enhanced visible light photocatalytic H2 production activity of g-C3N4 via carbon fiber;Jingtao Zhang等;《Applied Surface Science》;20150812;第358卷;第287-295页 *

Also Published As

Publication number Publication date
CN110732338A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
CN110732338B (zh) 碳纳米线/g-C3N4复合可见光催化剂及其制备方法
CN101613100B (zh) 生物质基的石墨化碳及碳-碳复合材料的微波制备方法
CN103058172A (zh) 一种碳纳米管-石墨烯复合材料的制备方法
CN112345611A (zh) 基于丝瓜络生物质炭复合材料的电化学传感器的制备方法及该复合材料的制备方法
CN107658474A (zh) 一种氮硫共掺杂多孔碳微球及制备方法、用途和氧还原电极
CN109794245B (zh) 一种蜂窝状铁基加氢催化剂(Fe3O4@C)/C及其制备方法和应用
CN112844476A (zh) 一种生物质基碳材料负载纳米镍催化剂及其制备方法和应用
CN109126846B (zh) 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用
CN101746759A (zh) 一种利用植物纤维合成碳化硅纳米线的方法
CN107376888B (zh) 一种柔性氧化钛/氧化硅/碳复合纳米纤维膜及其制备方法
CN112156756A (zh) 一种玉米秸秆炭基纳米吸附剂及其制备方法
Gao et al. 3D heterogeneous CTF@ TiO 2/Bi 2 WO 6/Au hybrid supported by hollow carbon tubes and its efficient photocatalytic performance in the UV-vis range
CN111285368B (zh) 一种氮硼双掺杂多孔中空碳纳米胶囊材料的制备方法
CN110743534B (zh) 一种氧化钨核壳结构复合光催化剂及其制备方法和应用
CN113089015A (zh) 一种氮掺杂的碳量子点及其制备方法,以及还原氧化石墨烯及其制备方法和应用
CN102120568B (zh) 一种先驱体转化法制备氮化硼纳米棒的方法
CN111939957A (zh) 一种光催化固氮材料多孔氮化碳纳米纤维/石墨烯的制备方法
WO2024011905A1 (zh) 一种金属负载型镍锰尖晶石纳米球气凝胶及其制备方法及应用
CN112121857A (zh) 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用
CN109513454B (zh) 一种通过库仑作用制备MoS2/C3N4复合光催化剂的方法
CN113981481B (zh) 负载铜纳米颗粒的一维碳基纳米材料的制备方法及应用
CN113600225B (zh) 一种异质结复合材料及其应用
CN111807336B (zh) 一种兼具光催化和光热转换性能的非晶氧化钼纳米点/二维氮化碳纳米片及其制备方法
CN111013622B (zh) Z型石墨化氮化碳/碳/硫掺杂的石墨化氮化碳复合材料及其制法
CN109225297B (zh) 一种复合催化剂QDs-SISCN及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant