CN112121857A - 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用 - Google Patents

石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用 Download PDF

Info

Publication number
CN112121857A
CN112121857A CN202011094042.8A CN202011094042A CN112121857A CN 112121857 A CN112121857 A CN 112121857A CN 202011094042 A CN202011094042 A CN 202011094042A CN 112121857 A CN112121857 A CN 112121857A
Authority
CN
China
Prior art keywords
biocooh
graphene
modified
preparation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011094042.8A
Other languages
English (en)
Inventor
周慧
沈明
陈丽萍
杜彬
姜晔
王斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Polytechnic Institute
Original Assignee
Yangzhou Polytechnic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Polytechnic Institute filed Critical Yangzhou Polytechnic Institute
Priority to CN202011094042.8A priority Critical patent/CN112121857A/zh
Publication of CN112121857A publication Critical patent/CN112121857A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本案涉及一种石墨烯和I复合改性的BiOCOOH材料及其制备方法,首先将Bi(NO3)3·5H2O溶于HNO3水溶液中,制备Bi3+溶液,之后再与甲酰胺和改性石墨烯(GO)混合,通过水热法制得GO/BiOCOOH,随后再通过离子交换法将异质离子I掺杂到GO/BiOCOOH晶体中制备得到复合改性光催化剂材料。本发明中制备的BiOCOOH为花状分等级微纳结构,具有优异的光催化性能;采用简便的离子交换法,成功地将异质离子I掺杂到GO/BiOCOOH晶体中,进一步提高了BiOCOOH材料的光催化活性;对染料罗丹明B和甲基橙具有较高的光催化降解活性,经循环光催化反应后仍具有较高的降解率。

Description

石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用
技术领域
本发明涉及光催化技术领域,具体地,涉及一种石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用。
背景技术
铋基半导体由于其良好光催化活性而受到人们的广泛关注。如Bi2O3、BiO、BiOCOOH、BiVO4和Bi2WO6等,Bi的氧化物具有[Bi2O2]2+层状结构,使得其能自组装形成不同的形貌,这些催化材料对降解废水中的有机污染物都有一定的效果。其中,BiOCOOH是由[Bi2O2]2+层和双HCOO-层交错而成,这种交错的层状结构有利于光生载流子的分离和转移。但由于BiOCOOH的带隙能较大,使其只能被紫外光激发,严重制约其实际应用,因此,为了提高BiOCOOH的可见光催化活性,需要对它进行改性。常用的改性方法包括:碳基材料负载、金属纳米粒子沉积、与窄带隙半导体复合、离子掺杂。
碘离子(I-)作为异质离子被广泛用于对Bi基半导体材料,特别是对具有层状结构的Bi基半导体材料进行掺杂。目前由I-掺杂的Bi基半导体材料,其光催化活性得到了一定的提升,但形貌较为单一,而半导体光催化剂的形貌是导致半导体材料表面的光催化反应活性位点差异性的重要因素之一。在众多形貌中,分等级常会赋予光催化剂较高的比表面积、较强的光吸收能力和较多的有利于反应物分子扩散和运输的孔道,所以具有分等级的光催化剂往往具有优异的光催化性能。因此,制备分等级的I-掺杂BiOCOOH具有现实意义。
发明内容
针对现有技术中的不足之处,本发明旨在采用石墨烯和I-来复合改性BiOCOOH,以期提高其光催化活性和使用寿命。
为实现上述目的,本发明提供一种石墨烯和I-复合改性的BiOCOOH材料的制备方法,包括如下步骤:
1)将Bi3+溶液与甲酰胺溶剂混合,加入改性石墨烯(GO),搅拌均匀,随后加入去离子水,继续搅拌10min,将澄清混合溶液装入聚四氟乙烯内衬的不锈钢高压釜中,密封后置于恒温鼓风干燥箱120℃水热反应12h,反应结束冷却至室温,得到的产物用去离子水和无水乙醇各洗涤数次,最后真空干燥得到GO/BiOCOOH前驱体;
2)称取所述GO/BiOCOOH前驱体于烧杯中,加水超声分散,随后加入现配的KI溶液,搅拌6h后离心分离,用去离子水和乙醇多次洗涤,收集产物,真空干燥得到GO和I-复合改性的BiOCOOH材料。
进一步地,所述Bi3+溶液为使用时现配,具体步骤为将Bi(NO3)3·5H2O溶于1.0mol/ml的HNO3水溶液中,制备得到0.2mol/L的Bi3+溶液。
进一步地,所述步骤1)中,所述Bi3+溶液与甲酰胺溶剂的体积比为1:4,加入去离子水使得总体积达到80ml。
进一步地,所述改性石墨烯为纳米小尺寸羟基化多层石墨烯,用量为0.001-0.005g。
进一步地,所述步骤2)中,加水使得总体积达到40ml。
进一步地,所述步骤2)中,所述现配的KI溶液的浓度为0.075mmol/L。
本发明提供一种采用如上任一项所述的制备方法制得的石墨烯和I-复合改性的BiOCOOH材料。
本发明进一步提供了一种如上所述的石墨烯和I-复合改性的BiOCOOH材料的应用,优选地,用于光催化降解染料废水,具体为将GO和I-复合改性的BiOCOOH材料和染料废水避光环境下混合,混合均匀后在模拟太阳光下进行光催化反应。
进一步地,所述染料选自罗丹明B(RhB)、甲基橙(MO)和亚甲基蓝中的一种或多种。
石墨烯或氧化石墨烯(GO)通常具有非常高的比表面积、高电导率、超电子迁移率和良好的电子捕获能力。最近,它们常被用作结构导向剂、光生电子转移通道、光吸收敏化剂和光催化中的反应物吸附剂。因此,可以采用石墨烯或氧化石墨烯作为一种改进界面接触的理想支撑材料来增强BiOCOOH对有机染料的光催化降解性能。
本发明在制备BiOCOOH时,首先将Bi(NO3)3·5H2O溶于HNO3水溶液中,制备Bi3+溶液,之后再与甲酰胺混合,并添加了石墨烯,通过水热法制得的GO/BiOCOOH样品,其中BiOCOOH形貌呈现为花状分等级微纳结构,并且反应时间大大缩短,GO负载后可提高材料的稳定性并提高对可见光的吸收。离子交换过程中,I-掺杂到BiOCOOH晶体中,能够更有效吸附染料废水中的污染物,更进一步提高对可见光的吸收。
与现有技术相比,本发明的有益效果是:本发明制备的BiOCOOH为花状分等级微纳结构,其具有较大的比表面积和丰富的利于反应物分子传输和扩散的孔道结构,因而具有优异的光催化性能;采用石墨烯负载提高BiOCOOH提高材料的稳定性和对可见光的吸收性能。并采用简便的离子交换法,在保持晶体原有的花状分等级结构的同时,成功地将异质离子I-掺杂到BiOCOOH晶体中,进一步提高了BiOCOOH材料的光催化活性;本发明制备的光催化剂样品在可见光(λ>420nm)的循环试验下对染料罗丹明B和甲基橙具有较高的光催化降解活性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是GO/BiOCOOH样品的SEM图。
图2是I-/GO/BiOCOOH样品的SEM图。
图3是I-/GO/BiOCOOH样品的XRD图。
图4是以I-/GO/BiOCOOH样品为光催化剂对染料RhB降解得到的上层清液的紫外吸收光谱图。
图5是以I-/GO/BiOCOOH样品为光催化剂对染料MO降解得到的上层清液的紫外吸收光谱图。
图6是以I-/GO/BiOCOOH样品为光催化剂降解染料RhB的5次循环实验降解效率曲线图。
图7是以I-/GO/BiOCOOH、BiOCOOH、I-/BiOCOOH和GO/BiOCOOH样品为光催化剂对RhB溶液降解效率曲线图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1:前驱体石墨烯改性BiOCOOH的制备
将4ml Bi3+溶液(0.2mol/L)与16ml的甲酰胺混合,搅拌均匀得到澄清溶液,随后加入一定量去离子水,保持总体积在80ml,搅拌10min,再加入改性石墨烯0.002g(纳米小尺寸羟基化多层石墨烯)超声10min,将混合溶液装入带100ml聚四氟乙烯内衬的不锈钢高压釜中,密封后置于恒温鼓风干燥箱中120℃水热反应12h,然后自然冷却至室温,得到的产物用去离子水和无水乙醇各洗涤数次,最后在60℃真空干燥24h得到前驱体石墨烯改性BiOCOOH(GO/BiOCOOH)。
采用SEM对GO/BiOCOOH样品的形貌和微观结构进行表征。如图1所示,产品中的BiOCOOH呈现出大小和形状较均一的花状微球结构,平均直径约为1.5μm,而GO片附着在BiOCOOH花状结构的表面上,GO和BiOCOOH花球在水热过程中可以实现良好的界面接触,从而有利于高效的光生电荷载流子在界面上的转移。图1证实了本案制得的GO/BiOCOOH为花状分等级结构。
实施例2:石墨烯和I-复合改性的BiOCOOH材料的制备
称取0.4050g BiOCOOH前驱体于100ml烧杯中,加入38ml的去离子水,超声分散后加入2ml现配的0.075mmol/L KI溶液,磁力搅拌6h后,离心分离、去离子水和乙醇多次洗涤,收集产物,在60℃下真空干燥24h,得到石墨烯和I-复合改性的BiOCOOH材料(I-/GO/BiOCOOH)。
采用SEM对I-/GO/BiOCOOH样品的形貌进行表征,如图2所示。对比图1,从图2中可以看出样品经过I-掺杂后得到的产品在形貌上并未发生明显的改变,其中BiOCOOH仍然保持了由无数纳米片紧密堆积的花状结构,说明BiOCOOH与KI反应后,前驱体的形貌并未被破坏。同时采用XRD(图3)对所制备样品的物相进行分析,由图3可观察到,I-/GO/BiOCOOH样品的衍射峰与标准衍射谱(JCPDS 35-0939)一致,并没有检测到其它相或杂质的峰,说明在这种制备条件下,I-成功掺杂到GO/BiOCOOH样品中。
实施例3:I-/GO/BiOCOOH样品的光催化性能
称取100mg光催化剂加入浓度为10mg/L的100ml RhB或10mg/L的100ml MO溶液中,将配置好的溶液置于暗处搅拌分散30min使其达到吸附平衡,之后分别在可见光照射下进行光催化反应。
图4和图5是以I-/GO/BiOCOOH样品为光催化剂分别对RhB和MO进行光催化降解后的UV-Vis吸收光谱随时间变化曲线图。由图4可见,随着可见光照射时间的增加,RhB在553nm处的吸收峰强度逐渐降低,经光照14min后,RhB溶液的最大吸收峰几乎完全消失,表明大部分RhB已被降解。由图5可知,随着可见光照射时间的增加,MO在462nm处的吸收峰强度逐渐降低,经光照24min后,MO溶液的最大吸收峰几乎完全消失,表明大部分MO已被降解。即本发明制得的光催化剂样品在可见光(λ>420nm)的试验下对染料RhB和MO具有较高的光催化降解活性。
从图6可观察到,经过5次循环光催化反应后,I-/GO/BiOCOOH样品复合材料仅表现出较小的活性损失,对RhB光降解率仍可维持在95.1%。
对比例:步骤同上述实施例
对比例1:区别在于制备样品时,未添加改性石墨烯且未进行I-掺杂,其余步骤均同上述实施例一致,得到纯BiOCOOH材料。
对比例2:区别在于制备样品时,仅添加改性石墨烯,未进行I-掺杂,其余步骤均同上述实施例一致,得到GO/BiOCOOH材料。
对比例3:区别在于制备样品时,未添加改性石墨烯,仅以I-掺杂BiOCOOH样品,其余步骤均同上述实施例一致,得到I-/BiOCOOH材料。
对上述对比例得到的样品进行RhB的光催化降解实验,从图7可观察到,对于纯BiOCOOH(对比例1),在14min可见光照射后,对RhB降解效率只有14.3%;同时,GO/BiOCOOH(对比例2)的光催化性能也较差,14min可见光照射后降解47.9%的RhB;而以I-/BiOCOOH(对比例3)为光催化剂时,降解率有一定的提升,可达88.7%。在相同条件下本发明制得的I-/GO/BiOCOOH样品对RhB降解效率高达99.7%。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (9)

1.一种石墨烯和I-复合改性的BiOCOOH材料的制备方法,其特征在于,包括如下步骤:
1)将Bi3+溶液与甲酰胺溶剂混合,搅拌均匀,加入改性石墨烯和去离子水,继续搅拌10min,随后转入不锈钢高压釜中,密封后120℃水热反应12h,反应结束冷却至室温,得到的产物用去离子水和无水乙醇各洗涤数次,最后真空干燥得到石墨烯改性BiOCOOH前驱体;
2)称取所述石墨烯改性BiOCOOH前驱体于烧杯中,加水超声分散,随后加入现配的KI溶液,搅拌6h后离心分离,用去离子水和乙醇多次洗涤,收集产物,真空干燥得到石墨烯和I-复合改性的BiOCOOH材料。
2.如权利要求1所述的一种石墨烯和I-复合改性的BiOCOOH材料的制备方法,其特征在于,所述Bi3+溶液为使用时现配,具体步骤为将Bi(NO3)3·5H2O溶于1.0mol/ml的HNO3水溶液中,制备得到0.2mol/L的Bi3+溶液。
3.如权利要求1所述的石墨烯和I-复合改性的BiOCOOH材料的制备方法,其特征在于,所述步骤1)中,所述Bi3+溶液与甲酰胺溶剂的体积比为1:4,加入去离子水使得总体积达到80ml。
4.如权利要求1所述的石墨烯和I-复合改性的BiOCOOH材料的制备方法,其特征在于,所述改性石墨烯为纳米小尺寸羟基化多层石墨烯,用量为0.001-0.005g。
5.如权利要求1所述的石墨烯和I-复合改性的BiOCOOH材料的制备方法,其特征在于,所述步骤2)中,加水使得总体积达到40ml。
6.如权利要求1所述的石墨烯和I-复合改性的BiOCOOH材料的制备方法,其特征在于,所述步骤2)中,所述现配的KI溶液的浓度为0.075mmol/L。
7.一种采用权利要求1-6任一项所述的制备方法制得的石墨烯和I-复合改性的BiOCOOH材料。
8.一种如权利要求7所述的石墨烯和I-复合改性的BiOCOOH材料的应用,其特征在于,用于光催化降解染料废水,具体为将石墨烯和I-复合改性的BiOCOOH材料和染料废水避光环境下混合,混合均匀后在模拟太阳光下进行光催化反应。
9.如权利要求8所述的光催化降解染料废水的应用,其特征在于,所述染料选自罗丹明B、甲基橙和亚甲基蓝中的一种或多种。
CN202011094042.8A 2020-10-14 2020-10-14 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用 Pending CN112121857A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011094042.8A CN112121857A (zh) 2020-10-14 2020-10-14 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011094042.8A CN112121857A (zh) 2020-10-14 2020-10-14 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用

Publications (1)

Publication Number Publication Date
CN112121857A true CN112121857A (zh) 2020-12-25

Family

ID=73854136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011094042.8A Pending CN112121857A (zh) 2020-10-14 2020-10-14 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN112121857A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185906A (zh) * 2021-05-18 2021-07-30 扬州工业职业技术学院 一种水性防腐涂料
CN113277504A (zh) * 2021-05-18 2021-08-20 扬州工业职业技术学院 一种含石墨烯纳米材料的多功能助剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116181A1 (ja) * 2008-03-21 2009-09-24 住友金属工業株式会社 可視光応答型光触媒とその製造方法
CN106345466A (zh) * 2016-07-31 2017-01-25 上田环境修复股份有限公司 羟基化氧化石墨烯‑钛酸镁/钼酸银复合材料的制备方法
CN110586181A (zh) * 2018-06-13 2019-12-20 南京理工大学 室温固相研磨法制备的HCOOBiO光催化剂及其方法
CN110773142A (zh) * 2019-11-14 2020-02-11 嘉兴烯成新材料有限公司 一种还原羟基化石墨烯复合半导体催化剂的制备及应用
CN111330567A (zh) * 2020-03-25 2020-06-26 陕西科技大学 一步溶剂热法制备玫瑰花结构Bi2O3/BiVO4/GO纳米复合光催化材料及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116181A1 (ja) * 2008-03-21 2009-09-24 住友金属工業株式会社 可視光応答型光触媒とその製造方法
CN106345466A (zh) * 2016-07-31 2017-01-25 上田环境修复股份有限公司 羟基化氧化石墨烯‑钛酸镁/钼酸银复合材料的制备方法
CN110586181A (zh) * 2018-06-13 2019-12-20 南京理工大学 室温固相研磨法制备的HCOOBiO光催化剂及其方法
CN110773142A (zh) * 2019-11-14 2020-02-11 嘉兴烯成新材料有限公司 一种还原羟基化石墨烯复合半导体催化剂的制备及应用
CN111330567A (zh) * 2020-03-25 2020-06-26 陕西科技大学 一步溶剂热法制备玫瑰花结构Bi2O3/BiVO4/GO纳米复合光催化材料及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHAN-HUI XIA ET AL.: ""Reduced grapheme oxide modified flower-like BiOCOOH architectures with enhanced photocatalytic activity"", 《MATERIALS LETTERS》 *
XIN FENG ET AL.: ""An ion-exchange strategy for I-doped BiOCOOH nanoplates with enhanced visible light photocatalytic NOx removal"", 《PURE APPL. CHEM.》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185906A (zh) * 2021-05-18 2021-07-30 扬州工业职业技术学院 一种水性防腐涂料
CN113277504A (zh) * 2021-05-18 2021-08-20 扬州工业职业技术学院 一种含石墨烯纳米材料的多功能助剂及其制备方法
CN113185906B (zh) * 2021-05-18 2021-11-30 扬州工业职业技术学院 一种水性防腐涂料
CN113277504B (zh) * 2021-05-18 2022-03-04 扬州工业职业技术学院 一种含石墨烯纳米材料的多功能助剂及其制备方法

Similar Documents

Publication Publication Date Title
Gong et al. Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution
CN110180548B (zh) 一维氧化铟中空纳米管/二维铁酸锌纳米片异质结复合材料及其在去除水体污染物中的应用
Liu et al. Facile synthesis of C-doped hollow spherical g-C3N4 from supramolecular self-assembly for enhanced photoredox water splitting
Chen et al. Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity
CN107456991B (zh) 一种g-C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN102886270B (zh) SiC纳米晶/石墨烯异质结及制备方法和应用
Xin et al. Synthesis of ZnS@ CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method
Xu et al. MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2
Yang et al. NiCo LDH in situ derived NiCoP 3D nanoflowers coupled with a Cu 3 P p–n heterojunction for efficient hydrogen evolution
Wang et al. Pn heterostructured TiO2/NiO double-shelled hollow spheres for the photocatalytic degradation of papermaking wastewater
Wu et al. A facile one-step strategy to construct 0D/2D SnO2/g-C3N4 heterojunction photocatalyst for high-efficiency hydrogen production performance from water splitting
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
Li et al. Hollow cadmium sulfide tubes with novel morphologies for enhanced stability of the photocatalytic hydrogen evolution
Cheng et al. Lollipop-shaped Co9S8/CdS nanocomposite derived from zeolitic imidazolate framework-67 for the photocatalytic hydrogen production
CN112121857A (zh) 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用
Zheng et al. A visible-light active pn heterojunction ZnO/Co3O4 composites supported on Ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue
Xing et al. Catalytic conversion of seawater to fuels: Eliminating N vacancies in g-C3N4 to promote photocatalytic hydrogen production
CN113559835A (zh) 一种具有微孔结构的Ti3C2/TiO2光催化材料及其制备方法
Liu et al. Template-free synthesis of tetragonal graphitic carbon nitride microtubes doped by sodium chloride for enhanced photocatalytic H2 performance under visible light irradiation
Yang et al. Oxygen-doped and nitrogen vacancy co-modified carbon nitride for the efficient visible light photocatalytic hydrogen evolution
CN108579775B (zh) 一种磷酸银/银/二氧化钛纳米花复合材料及其制备方法与应用
Cao et al. Special sea urchin-like CdS/g-C3N4 photocatalyst with high specific surface area and efficient charge separation
CN109513454B (zh) 一种通过库仑作用制备MoS2/C3N4复合光催化剂的方法
Liu et al. Efficient visible light driven 2, 4, 6-triaminopyrimidine modified graphitic carbon nitride for hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201225

RJ01 Rejection of invention patent application after publication