CN109225297B - 一种复合催化剂QDs-SISCN及其制备方法和应用 - Google Patents

一种复合催化剂QDs-SISCN及其制备方法和应用 Download PDF

Info

Publication number
CN109225297B
CN109225297B CN201811147810.4A CN201811147810A CN109225297B CN 109225297 B CN109225297 B CN 109225297B CN 201811147810 A CN201811147810 A CN 201811147810A CN 109225297 B CN109225297 B CN 109225297B
Authority
CN
China
Prior art keywords
snin
qds
homojunction
composite catalyst
siscn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811147810.4A
Other languages
English (en)
Other versions
CN109225297A (zh
Inventor
陈伟
黄国波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN201811147810.4A priority Critical patent/CN109225297B/zh
Publication of CN109225297A publication Critical patent/CN109225297A/zh
Application granted granted Critical
Publication of CN109225297B publication Critical patent/CN109225297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种复合催化剂QDs‑SISCN及其制备方法和应用,即一种量子点自装饰的SnIn4S8同质结/g‑C3N4复合催化剂,其是在混合溶剂热反应条件下,通过在介孔石墨碳氮(CN)纳米片表面上原位锚定量子点(QDs)自装饰SnIn4S8(SIS)纳米片的方法合成了量子点自装饰SnIn4S8/g‑C3N4(QDs‑SISCN)纳米复合材料。在该复合材料中,通过CN纳米片与QDs装饰的SIS同质结相复合可以整合同质结和异质结的优点。该复合材料在可见光照射(λ>400)下表现出优异的对硝基苯胺(4‑NA)还原效率,且4‑NA还原的再循环实验表明QDs‑SISCN纳米复合材料具有高稳定性。

Description

一种复合催化剂QDs-SISCN及其制备方法和应用
技术领域
本发明属于催化剂材料制备技术领域,涉及一种复合材料及其制备方法,尤其涉及一种复合催化剂QDs-SISCN(即量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂)及其制备方法和应用。
背景技术
由于环境的严重污染和全球能源日益短缺,光催化这种在开路电压下的光电化学反应,作为一种新型绿色高效催化技术受到越来越多的关注。它主要通过光催化半导体材料将取之不尽的太阳能转化为可储存的化学能,从而实现有机污染物在环境污染中的催化降解、氢能的制备和有机官能团的转化。目前,研究人员对光催化应用的关注主要集中于污染物消除和分解水制氢,但采用催化技术进行绿色有机合成的研究相对较少。实际上,由于具备反应条件温和,反应步骤简单,副产物少,选择性好,原子利用率高等优点,光催化选择性氧化或选择性还原有机物这种绿色化学概念已被广泛认可。在光催化有机合成中,价带上的光生空穴(VB)可直接参与选择性催化氧化反应或通过氧化牺牲剂形成还原物质间接参与催化过程,而导带(CB)上的光生电子可直接选择性地还原官能团以实现官能团转化。目前光催化还原反应的研究仍处于初始阶段,关于光还原的报道至今还很少。事实上,由于官能团的选择性,光催化还原更适合有机合成。
4-苯二胺(4-PDA)作为含苯环的芳香族化合物之一,是药物和精细化学品合成的重要中间体,广泛应用于橡胶抗老化剂,塑料抗氧化剂和化学分析等领域。4-PDA的主要合成方法包括催化加氢,氨解和霍夫曼降解。这些传统的合成策略产生大量废物,并且无法控制催化产物的种类。因此,通过光催化还原4-硝基苯胺(4-NA)合成4-PDA是有机光化学合成中较为有前景的手段。其中光催化还原反应在温和条件下进行且不涉及贵金属、过渡金属离子和强还原剂,如硼氢化钠和氢等,仅需要提供光辐射能量作为还原反应的驱动力。因此,设计和制备用于光催化还原4-NA的高效可见光驱动的光催化剂对于对苯二胺的光催化合成具有极其重大的意义。
由于无毒,低成本,合成简便,具有合适的带隙和带隙边缘,以及酸和碱环境下的耐化学性,无金属石墨相氮化碳(CN)已被广泛用于构建高效的CN基异质结,以提高光催化性能和增强在可见光照射下的光催化稳定性。由于在热缩聚过程中形成的晶界导致电荷载体的高复合率,所以合成具有块状结构的CN,通常具有差的光催化效率,因此限制了光催化的实际应用。块体CN催化效率低下的另一个原因是由于缺乏表面活性位点和低比表面积。幸运的是,多孔CN超薄纳米片的设计和合成可以很好地解决瓶颈问题,预计该瓶颈问题具有更多表面活性位点的特性,归因于更多的暴露表面和更少的内部缺陷。通过总结以往的研究,我们发现通常需要模板策略来构建多孔CN。而制备薄CN纳米片通常涉及超声剥离,质子化反应和热氧化蚀刻。但是,鱼与熊掌两者不可兼得。总之,制备具有薄层特性的多孔CN或表面具有多孔结构的CN纳米片是一个非常困难的问题。受上述研究的启发,如果可以利用合适的策略制备兼具多孔和薄片结构的CN纳米层,则可以大大推进CN在光催化实际生活生产中的应用。
SnIn4S8作为窄带隙双金属硫化物,具有强烈的可见光吸收能力,是典型的三元硫属元素化物,具有立方尖晶石结构和空间对称组Fd3m,在光催化领域具有广泛的应用,如重金属还原,有机污染物降解和制药废水处理。然而,很少关注SnIn4S8光催化还原反应。到目前为止,还没有关于使用SnIn4S8对4-NA水溶液中的光催化还原反应的研究。考虑到SnIn4S8的有限的活性和光不稳定性,通过装饰SnIn4S8基体来增强光催化稳定性是绝对必要的。在以往的研究中,SnIn4S8的大部分改性是通过异质结构实现的,主要采用非均相耦合以促进光生载流子的分离,提高复合催化剂的光稳定性,如AgInS2/SnIn4S8,SnIn4S8/TiO2和CdS/SnIn4S8。相比之下,通过QDs自装饰策略构建SnIn4S8同质结可能是更有效的替代方案,因为QDS可以通过使用单个光子来充分利用热电子或诱导多个电荷载流子以提高转换效率。
本发明设计了一种简便易行的方法,在混合溶剂热环境下通过将原位装饰量子点(QDs)的SnIn4S8(SIS)纳米片与介孔石墨碳氮(CN)纳米片复合制备合成量子点自装饰SnIn4S8/g-C3N4(QDs-SISCN)纳米复合材料。在可见光照射下,所制备的QDs-SISCN具有高效的光催化还原活性和优异的光稳定性。
发明内容
本发明的目的在于针对现有技术的不足,提供一种量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂及其制备方法。
本发明采用的技术方案如下:
一种量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂的制备方法,包括如下步骤:
将介孔CN纳米片分散到去离子水和无水乙醇的混合溶剂中,超声分散均匀,然后,将SnCl4·5H2O、InCl3和L-半胱氨酸Cys加入上述分散液中,剧烈搅拌至少30分钟后,将溶液转移到聚四氟乙烯衬里的不锈钢高压釜中,在180℃反应12小时,自然冷却后离心收集所得产物,乙醇洗涤,在烘箱中60℃下干燥,制得量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂QDs-SISCN。
上述技术方案中,所述的介孔CN纳米片采用如下方法制备:
将二氰胺置于瓷舟中放置在管式气氛炉中部加热至350℃,稳定10min后,再升温至550℃,反应4h;降至室温后研磨得到块状g-C3N4粉末,将上述制得的块体g-C3N4粉末分散于60-90℃热水中超声,充分吸胀后,分离收集吸胀的g-C3N4,并进行冷冻处理,随后再520-550℃热处理4h,得到介孔CN超薄纳米片。
所述的冷冻处理是指置于-20~0℃的低温环境中。该处理会使吸附在氮化碳的层间的水分子形成固体,从充当扩展氮化碳层间距的作用;当大量的水分子吸附在层间距时,不仅会起到扩展层间距的作用,还会撑破氮化碳纳米层起到构建孔结构的作用。另外后续的热处理过程中固体水分子的挥发也可能在一定程度上充当刻蚀形成孔结构的动力。
所述的去离子水和无水乙醇的体积比为1:2。
所述的SnCl4·5H2O、InCl3和L-半胱氨酸Cys的摩尔比为1:4:8。
本发明方法获得的材料为量子点自装饰的SnIn4S8同质结与介孔g-C3N4纳米片的复合物,其中介孔g-C3N4纳米片的质量占比为30%。
该复合材料可以作为催化剂用于可见光下催化还原4-硝基苯胺合成4-苯二胺。
本发明的有益效果是:
与常规的模板法不同,本发明采用冷冻膨胀和热处理协同的方法无模板地合成了介孔g-C3N4纳米片,并在混合溶剂热反应条件下,通过在介孔石墨碳氮(CN)纳米片表面上原位锚定量子点(QDs)自装饰SnIn4S8(SIS)纳米片的方法合成了量子点自装饰SnIn4S8/g-C3N4(QDs-SISCN)纳米复合材料。在该复合材料中,通过CN纳米片与QDs自修饰的SIS同质结相复合可以整合同质结和异质结的优点,该复合材料在可见光照射(λ>400)下表现出优异的4-NA还原效率,且4-NA还原的再循环实验表明QDs-SISCN纳米复合材料具有较高的稳定性。
附图说明
图1是QDs-SIS同质结样品,介孔CN纳米片、不同CN添加量的QDs-SISCN纳米复合材料的XRD图谱;
图2是QDs-SIS同质结、介孔CN纳米片以及QDs-SISCN纳米复合材料的FT-IR光谱;
图3 QDs-SISCN-30纳米复合材料的(a,b)TEM图像,(c)HRTEM图像,(d)HAADF-STEM图像和EDS元素映射:(e)C-K;(f)N-K;(g)Sn-K;(h)In-K和(i)S-K;
图4(a)不同区域中获得的样品的XPS测量和精细扫描XPS光谱:(b)C1s,(c)N1s,(d)Sn3d,(e)在3d和(f)中S2p;
图5(a)使用QDs-SISCN-30纳米复合材料作为催化剂随时间变化的吸收过程,(b)在可见光照射下使用不同QDs-SISCN纳米复合材料对4-NA还原的光催化性能;(c)使用QDs-SISCN-30样品再循环用于4-NA转化的光催化反应;(d)反应前后QDs-SISCN-30样品的XRD图谱;
图6(a)瞬态光电流响应和(b)纯QDs-SIS同质结,CN纳米片和QDs-SISCN-30纳米复合材料的阻抗谱图(EIS)。
具体实施方式
实施例
将二氰胺置于瓷舟中放置在管式气氛炉中部加热至350℃,稳定10min后,再升温至550℃,反应4h;降至室温后研磨得到块状g-C3N4粉末,将上述制得的块体g-C3N4粉末分散于90℃热水中超声,充分吸胀后,分离收集吸胀的g-C3N4,并转移至-20℃冷冻,随后再550℃热处理4h,得到介孔CN超薄纳米片。
通过超声波将制得的中孔CN纳米片均匀分散到由20mL去离子水和40mL无水乙醇组成的混合溶剂中。然后,将SnCl4·5H2O(1mmol,0.350g),InCl3(4mmol,0.885g)和Cys(8mmol,0.970g)引入上述悬浮液中。剧烈搅拌30分钟后,将悬浮液转移到的聚四氟乙烯衬里的不锈钢高压釜中,并将反应温度保持在180℃反应12小时。通过离心收集所得产物,用乙醇洗涤两次,并在自然冷却后在烘箱中60℃下干燥。
根据添加的中孔CN超薄纳米片的重量,将所得产物标记为QDs-SISCN-x纳米复合物,其中x表示加入该纳米复合物中的CN的重量占比。此外,还使用相同的制备方法(不添加CN纳米层)制备了量子点自修饰SnIn4S8(即QDs-SIS同质结)样品。采用低温共沉淀法制备了纯SIS(即无量子点修饰的SnIn4S8)样品。
对获得的QDs-SIS同质结,介孔CN纳米片和不同CN添加的QDs-SISCN纳米复合材料各样品进行表征和测试,结合其XRD图谱、FT-IR光谱、TEM测试、XPS测试,可以看出采用本发明方法成功制得QDs-SISCN复合材料,即量子点自修饰SnIn4S8与介孔CN纳米片复合形成异质结。
使用配备有400nm滤波片的300W氙灯作为可见光源。在可见光照射下,以4-NA作为底物,在自制反应器中通过光催化选择性氧化还原反应制备4-苯二胺(4-PDA),以此来评估样品的光催化活性。在光催化反应中,将50mL浓度为10mg/L的4-NA水溶液放入含有100mg光催化剂和300mg甲酸铵的反应器中。在反应之前,将悬浮液在黑暗中保持搅拌120分钟以实现吸附-解吸平衡。在光还原反应期间,通过氮气鼓泡保持反应体系的惰性气氛,其中氮气流速为100mL·min-1。待反应特定时间后取出3mL光反应溶液。离心和过滤后收集的上清液在紫外可见吸收光谱仪(UV-1801)上分析。在可见光照射下评估QDs-SIS,CN及QDs-SISCN纳米复合材料对4-NA产生的光催化活性。结果如图5所示,可以看出以QDs-SISCN纳米复合材料作为催化剂可以成功地实现从4-NA到4-PDA的光还原反应,成功地将官能团从硝基转化为氨基,而对照实验显示在没有催化剂和光照射的情况下几乎没有观察到活性,与纯QDs-SIS同质结和CN纳米片相比,所有QDs-SISCN纳米复合材料都显示出光催化活性的显著改善。QDs-SISCN纳米复合材料中不同的CN含量导致不同的光催化活性,CN纳米片含量对4-NA还原的光催化反应的影响如图5b所示,QDs-SISCN-30样品性能最佳。
此外,本发明还进行了4-NA光氧化还原反应的再循环实验:将100mg催化剂和300mg甲酸铵加入50mL 4-NA液中,然后在可见光下照射120分钟。在第一次反应后,将悬浮液以8,000rpm速度离心10分钟以回收悬浮的催化剂。上清液用于分析从4-NA到4-PDA的转化,收集的催化剂用于第二次氧化还原反应。以这种方式,实验重复4次。连续反应4次后,QDs-SISCN-30样品的4-NA还原的光催化能力没有明显的损失(图5d),表明所制备的QDs-SISCN-30样品的高结构稳定性在实际应用中具有很大的潜力。
如图6所示,与QDs-SIS同质结和CN纳米片相比,QDs-SISCN-30纳米复合材料光电流明显增强,QDs-SISCN-30改善的光电流表明,与原始QDs-SIS同质结和单个CN纳米片相比,光激发的空穴和电子能够通过异质界面有效地分离;阻抗图上QDs-SISCN-30的圆弧半径小于QDs-SIS同质结和CN纳米片的圆弧半径,表明QDs-SISCN纳米复合材料能有效的分离电荷和快速的转移界面电荷。

Claims (5)

1.一种量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂的制备方法,其特征在于,所述催化剂为量子点自装饰的SnIn4S8同质结与介孔g-C3N4纳米片复合而成,其中介孔g-C3N4纳米片的质量占比为30%;所述方法包括如下步骤:
将介孔g- C3N4纳米片分散到去离子水和无水乙醇的混合溶剂中,超声分散均匀,然后,将SnCl4·5H2O、InCl3和L-半胱氨酸Cys加入上述分散液中,搅拌至少30分钟后,将溶液转移到聚四氟乙烯衬里的不锈钢高压釜中,在180℃反应12小时,自然冷却后离心收集所得产物,乙醇洗涤,在烘箱中60℃下干燥,制得量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂QDs-SISCN;所述的介孔g-C3N4纳米片采用如下方法制备:
将二氰胺置于瓷舟中放置在管式气氛炉中部加热至350 ℃,稳定10 min后,再升温至550℃,反应4 h;降至室温后研磨得到块状g-C3N4粉末,将上述制得的块体g-C3N4粉末分散于60-90 ℃热水中超声,充分吸胀后,分离收集吸胀的g-C3N4,并进行冷冻处理,随后再520-550 ℃热处理4 h,得到介孔g-C3N4纳米片。
2.根据权利要求1所述的量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂的制备方法,其特征在于,所述的冷冻处理是指置于-20~0℃的低温环境中。
3.根据权利要求1所述的量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂的制备方法,其特征在于,所述的去离子水和无水乙醇的体积比为1:2。
4.根据权利要求1所述的量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂的制备方法,其特征在于,SnCl4·5H2O、InCl3和L-半胱氨酸Cys的摩尔比为1:4:8。
5.如权利要求1-4任一项所述方法制得的量子点自装饰的SnIn4S8同质结/g-C3N4复合催化剂的用途,其特征在于,该复合催化剂用于可见光下光催化还原4-硝基苯胺合成4-苯二胺。
CN201811147810.4A 2018-09-29 2018-09-29 一种复合催化剂QDs-SISCN及其制备方法和应用 Active CN109225297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811147810.4A CN109225297B (zh) 2018-09-29 2018-09-29 一种复合催化剂QDs-SISCN及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811147810.4A CN109225297B (zh) 2018-09-29 2018-09-29 一种复合催化剂QDs-SISCN及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109225297A CN109225297A (zh) 2019-01-18
CN109225297B true CN109225297B (zh) 2021-08-17

Family

ID=65054685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811147810.4A Active CN109225297B (zh) 2018-09-29 2018-09-29 一种复合催化剂QDs-SISCN及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109225297B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116078433A (zh) * 2022-12-15 2023-05-09 盐城工学院 一种Ni-MOFs/Ni2P边缘异质结构纳米材料的制备方法及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479839B2 (en) * 1997-11-18 2002-11-12 Technologies & Devices International, Inc. III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
CN200959338Y (zh) * 2006-09-26 2007-10-10 浙江大学 ZnO基量子点发光二极管
CN202633358U (zh) * 2011-12-22 2012-12-26 安徽康蓝光电股份有限公司 量子点结构紫外-可见光电探测器
CN104667950A (zh) * 2015-02-07 2015-06-03 南昌航空大学 共沉淀法低温制备石墨烯-SnIn4S8纳米复合光催化剂的方法
CN105597807B (zh) * 2015-09-21 2019-05-07 江苏视科新材料股份有限公司 片状结构上嵌碳纳米粒子的氮化碳光催化剂的制备方法
CN108404959B (zh) * 2018-03-09 2021-01-12 台州职业技术学院 一种棒状g-C3N4@SnIn4S8复合光催化剂及其制备方法
CN108404994A (zh) * 2018-03-16 2018-08-17 常州大学 一种硝基钴酞菁敏化硫化铟锡复合可见光催化剂的制备方法
CN108554437B (zh) * 2018-05-28 2021-01-15 台州学院 一种异质光催化剂的制备及其在降解甲醛方面的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Cd_(1-x)Zn_xS基纳米异质结光催化剂的合成及其制氢性能研究";杜虹;《中国博士学位论文全文数据库工程科技Ⅰ辑》;20160915(第09期);全文 *
"Fabrication of metal-free two dimensional/two dimensional homojunction photocatalyst using various carbon nitride nanosheets as building blocks";Boyong Ye et al;《Journal of Colloid and Interface Science》;20170802;第507卷;第209-216 *

Also Published As

Publication number Publication date
CN109225297A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
Wei et al. Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Shehzad et al. Fabrication of highly efficient and stable indirect Z-scheme assembly of AgBr/TiO2 via graphene as a solid-state electron mediator for visible light induced enhanced photocatalytic H2 production
Li et al. One-step synthesis of Mo and S co-doped porous g-C3N4 nanosheets for efficient visible-light photocatalytic hydrogen evolution
Chen et al. Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity
Qi et al. Constructing CeO 2/nitrogen-doped carbon quantum dot/gC 3 N 4 heterojunction photocatalysts for highly efficient visible light photocatalysis
CN110773213B (zh) 一维硫化镉/二维碳化钛复合光催化剂及其制备方法与应用
CN108927178B (zh) 一种金属有机框架材料原位硫化法制备NiS/CdS复合催化剂的方法及应用
CN102671683B (zh) 一种纳米片自组装C掺杂(BiO)2CO3微球可见光催化剂的制备方法
CN109908959B (zh) 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
Wu et al. Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
Li et al. MoC quantum dots modified by CeO2 dispersed in ultra-thin carbon films for efficient photocatalytic hydrogen evolution
Luo et al. Efficient NiSx cocatalyst to promote visible light photocatalytic H2 production over g-C3N4: A novel solvothermal synthesis method
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
Yang et al. Synthesis, growth mechanism and photocatalytic H 2 evolution of CdS/CuS composite via hydrothermal method
JP2004059507A (ja) 光触媒を用いた二酸化炭素還元方法
Chen et al. Microwave-assisted synthesis of organic–inorganic hybrid porous g-C3N4/CdS–diethylenetriamine S-scheme heterojunctions with enhanced visible light hydrogen production
Xu et al. Non-noble-metal CuSe promotes charge separation and photocatalytic CO2 reduction on porous g-C3N4 nanosheets
Xue et al. C3N4 nanosheets loaded with the CuWO4 activated NiS co-catalyst: A stable noble metal-free photocatalyst with dramatic photocatalytic activity for H2 generation and high salinity tolerant
CN108927197B (zh) 一种高催化性能的g-C3N4的制备方法和用途
CN113680366B (zh) 一种石墨相氮化碳基复合光催化剂及其制备方法和应用
CN109395759B (zh) 一种具有核壳结构的Fe3C纳米粒子及其制备方法和应用
Meng et al. Recent developments and perspectives of MXene-Based heterostructures in photocatalysis
CN114054066A (zh) 一种掺杂g-C3N4纳米管光催化剂及制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant