CN110690829B - 一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统 - Google Patents

一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统 Download PDF

Info

Publication number
CN110690829B
CN110690829B CN201911178067.3A CN201911178067A CN110690829B CN 110690829 B CN110690829 B CN 110690829B CN 201911178067 A CN201911178067 A CN 201911178067A CN 110690829 B CN110690829 B CN 110690829B
Authority
CN
China
Prior art keywords
current
output
switching
switch
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911178067.3A
Other languages
English (en)
Other versions
CN110690829A (zh
Inventor
周衍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN110690829A publication Critical patent/CN110690829A/zh
Application granted granted Critical
Publication of CN110690829B publication Critical patent/CN110690829B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,包括多相逆变驱动系统,每相逆变驱动系统为独立系统,且均包括以下部分:反馈控制单元、比较控制单元和功率开关电路。本发明在通过功率开关器件与电感电容输出电路的组合,使功率开关电路工作于近似于边界传到模式BCM的状态,在输出端保持低频正弦电压电流输出的同时,使电感电流在每个高频开关周期内由反向的切换电流增长到峰值电流再降低到反向的切换电流。从原理上提供低高次谐波成分的正弦电压电路输出,同时由于电感在每个开关周期的开始和结束时电感电流与电感电流的平均值相反,通过此电流可实现功率开关器件的ZVS开关,从而实现了低开关损耗和低输出端高频电磁干扰。

Description

一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统
技术领域
本发明涉及变频器的技术领域,具体的说是涉及一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统。
背景技术
在常规变频器驱动系统中,由于变频器通过高频开关调制输出,开关过程在输出端产生极高的du/dt,其会通过电缆线、电机绕组的对地寄生电容产生较大的共模干扰。因此在较长距离和对电磁干扰敏感的应用环境中需要使用正弦滤波器或带屏蔽层的动力电缆。在相同输出功率的情况下,当使用较低的开关频率时滤波器尺寸将大幅增大,当使用较高的开关频率时功率开关器件产生的开关损耗也将同时增大。同时不仅增加了系统重量和成本,也产生了诸如附加的无功功率和导线屏蔽层接地电阻等问题。
本发明在通过功率开关器件与电感电容输出电路的组合,使功率开关电路工作于近似于边界传到模式BCM(Boundary Conduction Mode)的状态,在输出端保持低频正弦电压电流输出的同时,使电感电流在每个高频开关周期内由反向的切换电流增长到峰值电流再降低到反向的切换电流。从原理上提供低高次谐波成分的正弦电压电路输出,同时由于电感在每个开关周期的开始和结束时电感电流与电感电流的平均值相反,通过此电流可实现功率开关器件的零电压开关(ZeroVoltage Switching,缩写ZVS),从而实现极低开关损耗,从而降低功率开关器件在高频开关时的发热。
发明内容
为解决上述背景技术中提出的问题,本发明的目的在于提供一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统。
为实现上述目的,本发明采取的技术方案为:
本发明提供了一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,包括三相驱动系统,每相逆变驱动系统为独立系统,每相逆变驱动系统的输出端为所需输出的交流波形,每相逆变驱动系统均包括以下部分:反馈控制单元、比较控制单元和功率开关电路;
每个所述反馈控制单元,通过输入信号:外部输入信号usin(t)、输出端电压信号uout(t)、输出端电流信号iout(t)来计算出该相所需的输出设置电流iset(t),并将该相所需输出的输出设置电流iset(t)输出到该相逆变驱动系统的比较控制单元;
每个所述比较控制单元,其输入信号包括该相逆变驱动系统的反馈控制单元输出的输出设置电流iset(t)和实时测量的电感电流iL(t);通过由反馈控制单元输出的输出设置电流iset(t)与功率开关电路的结构特性计算出开关状态切换时所需的电感峰值电流Ipeak(t)和中间比较电流Icomp(t),设置一个用于零电压开关的切换电流Iconst,并与实时测量的电感电流iL(t)进行比较,通过逻辑计算确定出功率开关电路中开关器件相应的开关状态,并将开关状态信号输出到该相逆变驱动系统的功率开关电路;
每个所述功率开关电路,其输入信号为该相逆变驱动系统的比较控制单元输出的开关状态信号;其输出信号为输出端电压信号uout(t)、输出端电流信号iout(t)和电感电流实时测量信号iL(t);所述电感电流实时测量信号iL(t)反馈到该相逆变驱动系统的比较控制单元,所述输出端电压信号uout(t)和输出端电流信号iout(t)反馈到该相逆变驱动系统的反馈控制单元。
在一些实施例中,根据应用需求,所述功率开关电路为半桥功率开关电路或全桥功率开关电路。
在一些实施例中,所述功率开关电路为半桥功率开关电路,每个所述半桥功率开关电路包含高边开关器件SW1、低边开关器件SW2、分别与高边开关器件SW1、低边开关器件SW2并联的辅助开关电容C1和C2、电感线圈L1以及输出电容C3和C4;每个所述半桥功率开关电路的直流电源输入端的正负端+Uin和-Uin分别与直流电源的正负极相连,高边开关器件SW1与低边开关器件SW2串联于直流电源输入端的正负端之间形成半桥开关电路,电感线圈L1连接于半桥开关电路输出端与输出电容C3和C4之间,输出电容C3与C4串联于直流电源输入端的正负端之间;
高边开关器件SW1和低边开关器件SW2均由零电压开关(ZVS)门极驱动器控制。
在一些实施例中,每个所述比较控制单元,其输入信号还包括输出端电压信号uout(t);
每个所述半桥功率开关电路还包含若干个中间直流电源输入端,所述中间直流电源输入端与若干个中间直流电源相连;中间直流电源输入端的输入电压位于+Uin和-Uin之间,每个所述半桥功率开关电路还包含若干个双向截止型开关器件SWM与对应的辅助开关电容CM,每个中间直流电源输入端通过一个双向截止型开关器件SWM与高边开关器件SW1、低边开关器件SW2和电感线圈L1的一端相连,且每一个双向截止型开关器件SWM与一个辅助开关电容CM并联;双向截止型开关器件SWM由零电压开关(ZVS)门极驱动器控制。
在一些实施例中,所述功率开关电路为全桥功率开关电路,每个所述全桥功率开关电路包含开关器件SW1、SW2、SW3、SW4、SW5,分别与开关器件SW1、SW2、SW3、SW4、SW5并联的辅助开关电容C1、C2、C3、C4、C5,电感线圈L1,以及输出电容C6、C7;开关器件SW1、SW2串联于直流电源输入端的正负端之间,以及开关器件SW3、SW4串联于直流电源输入端的正负端之间分别形成全桥开关电路中的左、右两侧半桥;全桥功率开关电路的直流电源输入端的正负端+Uin和-Uin分别与直流电源的正负极相连,电感线圈L1连接于全桥开关电路中的两侧半桥输出端之间;输出端的开关器件SW5连接于输出电容C6、C7与全桥开关电路中右侧半桥输出端之间;输出电容C6与C7串联于直流电源输入端的正负端之间;
开关器件SW1、SW2、SW3、SW4、SW5均由零电压开关(ZVS)门极驱动器控制。
在一些实施例中,当全桥功率开关电路无需支持升压输出时,所述开关器件SW5为双向截止型功率开关器件,所述开关器件SW1、SW2、SW3、和SW4均为单向截止型功率开关器件;当全桥功率开关电路支持升压输出时,所述开关器件SW3、SW4和SW5均为双向截止型功率开关器件,所述开关器件SW1和SW2均为单向截止型功率开关器件。
在一些实施例中,每个所述比较控制单元,其输入信号还包括输出端电压信号uout(t);
每个所述全桥功率开关电路还包含若干个中间直流电源输入端,所述中间直流电源输入端与若干个中间直流电源相连;中间直流电源输入端的输入电压位于+Uin和-Uin之间,每个所述全桥功率开关电路还包含若干个双向截止型开关器件SWM与对应的辅助开关电容CM,每个中间直流电源输入端通过一个双向截止型开关器件SWM与开关器件SW1、SW2和电感线圈L1的一端相连,且每一个双向截止型开关器件SWM与一个辅助开关电容CM并联;双向截止型开关器件SWM由零电压开关(ZVS)门极驱动器控制。
在一些实施例中,每个所述功率开关电路的功率输入端为:直流电源输入端的正负端(+Uin和-Uin),每个所述功率开关电路的输出端电压uout(t),即每相逆变驱动系统的输出端电压uout(t)为;
Figure BDA0002290499700000051
其中,UA的参考电位为直流电源输入端电压的中间点电位,即输入直流电源电压的一半。
在一些实施例中,每个所述反馈控制单元通过外部输入信号usin(t)、输出端电压信号uout(t)、输出端电流信号iout(t)建立反馈控制网络,从而计算出该相所需的输出设置电流iset(t),即:
iset(t)=G(usin(t),uout(t),iout(t))
其中,输出电压与电流可表达为:
Figure BDA0002290499700000052
Figure BDA0002290499700000053
其中Cout为输出电容的容量。
在一些实施例中,反馈控制单元包括PID控制器;其建立反馈控制网络的具体工作流程为:
(1)通过对外部输入信号usin(t)与输出电压信号uout(t)进行比较得出电压差值信号,并输入至PID控制器;
(2)通过计算外部输入信号usin(t)对时间的导数并与输出电容容量相乘得出输出电容Cout充放电电流;
(3)由(1)中PID控制器输出的电压差反馈增量电流与(2)中所得的输出电容充放电电流与当前输出端电流iout(t)相加,其结果为输出设置电流iset(t),并输入至比较控制单元。
与现有技术相比,本发明的有益效果是:
本发明中,功率开关器件(SW1和SW2,或者SW1、SW2、SW3、SW4和SW5)通过电感L和输出电容Cout与输出端相连,其作用类似于低通滤波器,通过滤除高频开关成分,得到所需的低频输出电压;使得输出端只存在非常低的高频成分,实现超低输出端电磁干扰;降低了对连接电缆与电机的屏蔽要求。
由于电感与输出端接有输出电容Cout,使得在每个开关周期中电感电流iL(t)与输出电流iout(t)并无直接关系;在原理上通过输出电容Cout上的电压在开关周期内向电感提供实现反向电感电流的能量,从而通过并联于功率开关器件上的辅助开关电容实现零电压开关(ZVS)。从而实现功率开关器件的超低开关损耗和超低输出端高频电磁干扰的特性。
附图说明
图1a-图1b为本发明的电路原理框图;
图2为本发明中反馈控制单元的电路原理图;
图3为第一实施例中的半桥功率开关电路的电路原理图;
图4a-图4b为第一实施例中的电感电流与开关状态和开关端电压;
图5为第二实施例中的全桥功率开关电路的电路原理图;
图6a-图6b为第二实施例中无需支持升压输出情况下的电感电流与开关状态;
图7为第二实施例中支持升压输出情况下的各相逆变驱动系统输出端的输出电压曲线;
图8为第二实施例中的电感电流曲线;
图9a-图9d为第二实施例中支持升压输出情况下的电感电流与开关状态;
图10为第三实施例中的半桥功率开关电路的电路原理图;
图11a-图11d为第三实施例中的电感电流与开关状态;
图12为第四实施例中的半桥功率开关电路的电路原理图;
图13a-图13b为第四实施例中的电感电流与开关状态;
图14为第五实施例中的全桥功率开关电路的电路原理图;
图15a-图15d为第五实施例中无需支持升压输出情况下的电感电流与开关状态;
图16为第六实施例中的全桥功率开关电路的电路原理图;
图17a-图17b为第六实施例中无需支持升压输出情况下的电感电流与开关状态;
图18a和图18b分别为单向截止型开关器件与双向截止型开关器件的示意图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合附图和具体实施方式,进一步阐述本发明是如何实施的。
如图1a所示,本发明提供了一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,包括多相逆变驱动系统,例如三相逆变驱动系统;每相逆变驱动系统为独立系统,每相逆变驱动系统的输出端为所需输出的交流波形,如正弦交流,输出端与外部负载连接,负载例如可为电机;每相逆变驱动系统均包括以下部分:反馈控制单元、比较控制单元和功率开关电路;
每个所述反馈控制单元,通过输入信号:外部输入信号(可为正弦电压信号)usin(t)、输出端电压信号uout(t)和输出端电流信号iout(t)来计算出该相所需的输出设置电流iset(t),并将该相所需输出的输出设置电流iset(t)输出到该相逆变驱动系统的比较控制单元;
每个所述比较控制单元,其输入信号包括该相逆变驱动系统的反馈控制单元输出的输出设置电流iset(t)和实时测量的电感电流iL(t);通过由反馈控制单元输出的输出设置电流iset(t)与功率开关电路的结构特性计算出开关状态切换时所需的电感峰值电流Ipeak(t)、中间比较电流Icomp(t),并设置一个用于零电压开关的切换电流Iconst,此切换电流的方向与电感峰值电流方向相反,并与实时测量的电感电流iL(t)进行比较,通过逻辑计算确定出功率开关器件所应的开关状态,并将开关状态信号输出到该相逆变驱动系统的功率开关电路;
每个所述功率开关电路,其输入信号为该相逆变驱动系统的比较控制单元输出的开关状态信号;其输出信号为输出端电压信号uout(t)、输出端电流信号iout(t)和电感电流实时测量信号iL(t)。工作时,功率开关电路中电感电流测量电路将实时测量得到的电感电流iL(t)反馈到该相逆变驱动系统的比较控制单元,功率开关电路中输出端电压和电流测量电路将由测量得到的输出端电压uout(t)和输出端电流iout(t)反馈到该相逆变驱动系统的反馈控制单元。
具体地,所述功率开关电路的功率输入端为:直流电源输入端的正负端(+Uin、-Uin),每个所述功率开关电路的功率输出端为正弦电压输出,即为每相逆变驱动系统输出端电压uout(t)。即:
Figure BDA0002290499700000091
其中,ω为角速度,t为实际时间,UA的参考电位为直流电源输入端电压的中间点电位,即输入直流电源电压的一半;例如,支持升压输出的全桥电路中各相驱动系统输出端的输出电压曲线(见图7),为各相驱动系统输出端的输出电压与直流输入电压在时间上的变化。
本发明中,反馈控制单元输入的输出端电压信号uout(t)是对于输出给负载的输出端电压uout(t)的一个传感器采集上的数字量化处理。
本发明中,功率开关电路中包含开关器件、辅助开关电容、电感线圈和输出电容,其辅助开关电容的容量远小于输出电容的容量;其中开关器件的门极驱动模块通过获取开关状态信号和开关器件两端的实时电压实现开关器件的零电压开关(ZVS)。
如图2所示,所述反馈控制单元内建反馈控制系统,通过外部的正弦电压输入信号usin(t)、输出端电压信号uout(t)、输出端电流信号iout(t)建立反馈控制网络,从而计算出该相所需的输出设置电流iset(t),即:
iset(t)=G(usin(t),uout(t),iout(t))
其中,输出电压与电流可表达为:
Figure BDA0002290499700000092
Figure BDA0002290499700000093
其中Cout为输出电容的容量;
反馈控制系统包括PID控制器;其具体工作流程为:
(1)通过对正弦电压输入信号usin(t)与输出电压信号uout(t)进行比较得出电压差值信号,并输入至PID控制器;
(2)通过计算正弦电压输入信号usin(t)对时间的导数并与输出电容容量相乘得出输出电容Cout充放电电流;
(3)由(1)中PID控制器输出的电压差反馈增量电流与(2)中所得的输出电容充放电电流与当前输出端电流iout(t)相加,其结果为输出设置电流iset(t),并输入至比较控制单元。
本发明中,反馈控制单元结构为一种基本结构,其PID控制器为标准反馈控制器,其参数根据具体电路设计时的参数进行匹配设置;随着控制系统技术的发展和高级控制系统及自适应控制系统的应用,此反馈控制单元可随之升级与优化。但其在整个系统中的作用依旧与上述所述反馈控制单元在整个系统中的作用相同,即:
通过输入信号——正弦电压输入信号usin(t)、输出端电压信号uout(t)、输出端电流信号iout(t);计算出输出信号——输出设置电流iset(t);并将其输入至比较控制单元。从而使整个系统稳定工作,并输出与正弦电压输入信号usin(t)对应的输出端电压信号uout(t)。
本发明中,根据应用需求,功率开关电路分为半桥功率开关电路(简称半桥电路)和全桥功率开关电路(简称全桥电路)。例如,图8为全桥功率开关电路中,实时测量得到的电感电流iL(t)曲线。以下描述本发明提供的逆变驱动系统在功率开关电路不同情况下的几个具体实施例。
第一实施例中,功率开关电路为半桥功率开关电路。
其整体的原理框图如图1a所示,功率开关电路原理如图3所示,每个所述半桥功率开关电路包含高边开关器件SW1、低边开关器件SW2、分别与高边开关器件SW1、低边开关器件SW2并联的辅助开关电容C1和C2、电感线圈L1以及输出电容C3和C4;半桥功率开关电路的直流电源输入端与直流电源相连,高边开关器件SW1与低边开关器件SW2串联于直流电源输入端的正负端之间形成半桥开关电路,电感线圈L1连接于半桥开关电路输出端与输出电容C3和C4之间,输出电容C3与C4串联于直流电源输入端的正负端之间;高边开关器件SW1和低边开关器件SW2均由零电压开关(ZVS)门极驱动器控制。
每个所述比较控制单元内建比较器、逻辑计算单元,并设置一个用于零电压开关的切换电流Iconst;通过由反馈控制单元输出的输出设置电流iset(t)与功率开关电路的结构特性计算出开关状态切换时所需的电感峰值电流Ipeak(t)、中间比较电流Icomp(t)和切换电流Iconst,并与实时测量得到的电感电流iL(t)进行比较,根据半桥功率开关电路的结构确定对应的开关状态到功率开关电路;
以输出设置电流iset(t)为正电流(iset(t)>0A)为例(如图4a所示),由于辅助开关电容的容量非常小,其零电压开关(ZVS)的时间与过程中的电感电流的变化可忽略不计。整个开关过程可简化为以下两部分:
Figure BDA0002290499700000111
Figure BDA0002290499700000112
在第一实施例中的每个半桥功率开关电路中,电感峰值电流Ipeak(t)与输出设置电流iset(t)的计算关系如表1所示:
表1电感峰值电流Ipeak(t)与输出设置电流iset(t)关系表
电感峰值电流 电感反向切换电流
i<sub>set</sub>(t)>0A I<sub>peak</sub>(t)=2·i<sub>set</sub>(t)+I<sub>const</sub> -I<sub>const</sub>
i<sub>set</sub>(t)=0A I<sub>peak</sub>(t)=I<sub>const</sub> -I<sub>const</sub>
i<sub>set</sub>(t)&lt;0A I<sub>peak</sub>(t)=2·i<sub>set</sub>(t)-I<sub>const</sub> I<sub>const</sub>
对应的开关状态如图4a、图4b所示,具体情况统计见表2所示:[状态0为关断,1为导通]
表2由第一实施例中的半桥电路的结构确定对应的开关状态
Figure BDA0002290499700000121
其在一个开关周期内的工作时序如表3所示:[状态0为关断,1为导通]
表3第一实施例中的半桥电路一个开关周期内的工作时序与零电压开关(ZVS)过程
Figure BDA0002290499700000122
第二实施例中,功率开关电路为全桥功率开关电路。
其整体的原理框图如图1a所示,功率开关电路原理如图5所示,每个所述全桥功率开关电路包含开关器件SW1、SW2、SW3、SW4、SW5,分别与开关器件SW1、SW2、SW3、SW4、SW5并联的辅助开关电容C1、C2、C3、C4、C5,电感线圈L1,以及输出电容C6、C7;开关器件SW1、SW2串联于直流电源输入端的正负端之间,以及开关器件SW3、SW4串联于直流电源输入端的正负端之间分别形成全桥开关电路中的左、右两侧半桥;全桥功率开关电路的直流电源输入端与直流电源相连,电感线圈L1连接于全桥开关电路中的两侧半桥输出端之间;输出端的开关器件SW5连接于输出电容C6、C7与全桥开关电路中右侧半桥输出端之间;输出电容C6与C7串联于直流电源输入端的正负端之间。
第二实施例又分为两个子实施例:当全桥功率开关电路无需支持升压输出时,所述开关器件SW5为双向截止型开关器件,所述开关器件SW1、SW2、SW3、和SW4均为单向截止型开关器件;例如,开关器件SW1、SW2、SW3、和SW4均为MOSFET或IGBT配合续流二极管,开关器件SW5为两个相向串联的MOSFET或IGBT分别配合续流二极管,每个MOSFET或IGBT分别并联一个辅助开关电容。本发明中所述的单向截止型开关器件和双向截止型开关器件的结构分别如图18a和图18b所示。
当全桥功率开关电路支持升压输出时,所述开关器件SW3、SW4和SW5均为双向截止型功率开关器件,所述开关器件SW1和SW2均为单向截止型功率开关器件;例如,开关器件SW1和SW2均为MOSFET或IGBT配合续流二极管,开关器件SW3、SW4和SW5为两个相向串联的MOSFET或IGBT分别配合续流二极管,每个MOSFET或IGBT分别并联一个辅助开关电容。
本发明中,如图18a和图18b所示,双向截止型功率开关器件其通常为两个相向串联的MOSFET或IGBT配合续流二极管;单向截止型功率开关器件为普通的MOSFET或IGBT配合续流二极管;双向截止型功率开关器件的导通电阻原则上比普通的单向截止型功率开关器件要大,因此如无升压输出需求应尽量使用单向截止型功率开关器件。
开关器件SW1、SW2、SW3、SW4、SW5均由零电压开关(ZVS)门极驱动器控制,通过的开关组合可在开关周期内实现高电感平均电流。
以输出设置电流iset(t)为正电流(iset(t)>0A)为例(如图6a所示),由于辅助开关电容的容量非常小,其零电压开关(ZVS)的时间与过程中的电感电流的变化可忽略不计。整个开关过程可简化为以下四部分:
Figure BDA0002290499700000141
Figure BDA0002290499700000142
Figure BDA0002290499700000143
Figure BDA0002290499700000144
第二实施例中,全桥功率开关电路在较小输出功率的工作状态下可通常开SW3和SW4(关断)同时常闭SW5(导通)达到与半桥功率开关电路相同的工作效果,其状态控制方式与半桥功率开关电路相同。
每个所述比较控制单元内建比较器、逻辑计算单元,并设置一个用于零电压开关的切换电流Iconst;逻辑计算单元根据反馈控制单元输出的输出设置电流iset(t)与全桥功率开关电路的结构特性计算出开关状态切换时所需的电感峰值电流Ipeak(t)和中间比较电流Icomp(t),并与实时测量得到的电感电流iL(t)通过比较器进行比较,根据全桥功率开关电路的结构确定对应的开关状态到功率开关电路,具体为:
在每个全桥功率开关电路中,通过对电感施加直流输入电压Uin使电感电流iL(t)在很短的时间内从与输出设置电流iset(t)方向相反的切换电流Iconst增长到正向的中间比较电流Icomp(t),从而通过较低的电感峰值电流Ipeak(t)在开关周期内实现较高的电感平均电流;其中,中间比较电流Icomp(t)大小位于切换电流Iconst与Ipeak(t)之间,方向与电感峰值电流Ipeak(t)的方向相同。
由于电感电流由反向的切换电流-Iconst增长到正向的中间比较电流Icomp(t)的时间非常短,此过程中对整个开关周期内的电感平均电流的影响可被忽略,电感峰值电流Ipeak(t)与输出设置电流iset(t)的计算关系如表4所示:
表4电感峰值电流Ipeak(t)与输出设置电流iset(t)关系表
电感峰值电流 电感反向电流
i<sub>set</sub>(t)>0A I<sub>peak</sub>(t)≈2·i<sub>set</sub>(t)-I<sub>comp</sub>(t) -I<sub>const</sub>
i<sub>set</sub>(t)=0A I<sub>peak</sub>(t)=I<sub>const</sub> -I<sub>const</sub>
i<sub>set</sub>(t)&lt;0A I<sub>peak</sub>(t)≈2·i<sub>set</sub>(t)-I<sub>comp</sub>(t) I<sub>const</sub>
第二实施例中,无需支持升压输出的全桥功率开关电路的结构对应的开关状态如图6a、图6b所示,具体情况统计见表5所示:[状态0为关断,1为导通]
表5第二实施例中无需支持升压输出的全桥功率开关电路的结构对应的开关状态
Figure BDA0002290499700000161
其在一个开关周期内的工作时序如表6所示:[状态0为关断,1为导通]
表6第二实施例中无需升压支持输出的全桥功率开关电路中一个开关周期内的工作时序与零电压开关(ZVS)过程
Figure BDA0002290499700000171
第二实施例中,支持升压输出的全桥功率开关电路的结构对应的开关状态如图9a、图9b、图9c和图9d所示,具体情况统计见表7和表8所示:[状态0为关断,1为导通]
表7第二实施例中支持升压输出的全桥功率开关电路的结构对应的开关状态(一)
Figure BDA0002290499700000181
表8第二实施例中支持升压输出的全桥功率开关电路的结构对应的开关状态(二)
Figure BDA0002290499700000191
第三实施例中,功率开关电路为半桥功率开关电路。
其整体的原理框图如图1b所示,图1b与图1a的区别在于,每个所述比较控制单元,其输入信号还包括输出端电压信号uout(t)。
其功率开关电路原理如图10所示,与第一实施例中的半桥功率开关电路的区别在于,每个半桥功率开关电路还包含若干个中间直流电源输入端,所述中间直流电源输入端与若干个中间直流电源相连,本实施例中,中间直流电源输入端为一个,用UinM1表示;中间直流电源输入端的输入电压UinM1位于+Uin和-Uin之间,每个半桥功率开关电路还包含一个双向截止型开关器件SWM1与对应的辅助开关电容CM1,每个中间直流电源输入端通过一个双向截止型开关器件SWM1与高边开关器件SW1、低边开关器件SW2和电感线圈L1的一端相连,且每一个双向截止型开关器件SWM1与一个辅助开关电容CM1并联;双向截止型开关器件SWM1由零电压开关(ZVS)门极驱动器控制。
其工作原理与第一实施例类似,但因为加入了中间直流电源UinM1,在实时比较电感电流iL(t)与电感峰值电流Ipeak(t)、中间比较电流Icomp(t)和与切换电流Iconst的大小时,还需结合输出端电压uout(t)所处的电压范围。
具体地,其在一个开关周期内的开关状态为:
当iset(t)>0A和uout(t)>UinM1,此时Ipeak(t)>0A、Icomp(t)>0A、切换电流为-Iconst,如图11a和表9所示:
表9第三实施例中的半桥功率开关电路的结构对应的开关状态(一)
时间区间 比较触发条件 电感电流范围 SW1 SWM1 SW2
(0,t<sub>0</sub>] i<sub>L</sub>(t)≤-I<sub>const</sub> -I<sub>const</sub>&lt;i<sub>L</sub>(t)≤I<sub>peak</sub>(t) 1 0 0
(t<sub>0</sub>,t<sub>1</sub>] i<sub>L</sub>(t)≥I<sub>peak</sub>(t) I<sub>comp</sub>t≤i<sub>L</sub>(t)&lt;I<sub>peak</sub>(t) 0 1 0
(t<sub>1</sub>,T] i<sub>L</sub>(t)≤I<sub>comp</sub>(t) -I<sub>const</sub>≤i<sub>L</sub>(t)&lt;I<sub>comp</sub>(t) 0 0 1
当iset(t)<0A和uout(t)>UinM1,此时Ipeak(t)<0A、Icomp(t)<0A、切换电流为Iconst,如图11b和表10所示:
表10第三实施例中的半桥功率开关电路的结构对应的开关状态(二)
时间区间 比较触发条件 电感电流范围 SW1 SWM1 SW2
(0,t<sub>0</sub>] i<sub>L</sub>(t)≥I<sub>const</sub> I<sub>comp</sub>(t)≤i<sub>L</sub>(t)&lt;I<sub>const</sub> 0 0 1
(t<sub>0</sub>,t<sub>1</sub>] i<sub>L</sub>(t)≤I<sub>comp</sub>(t) I<sub>peak</sub>(t)≤i<sub>L</sub>(t)&lt;I<sub>comp</sub>(t) 0 1 0
(t<sub>1</sub>,T] i<sub>L</sub>(t)≤I<sub>peak</sub>(t) I<sub>peak</sub>(t)&lt;i<sub>L</sub>(t)≤I<sub>const</sub> 1 0 0
当iset(t)>0A和uout(t)<UinM1,此时Ipeak(t)>0A、Icomp(t)>0A、切换电流为-Iconst,如图11c和表11所示:
表11第三实施例中的半桥功率开关电路的结构对应的开关状态(三)
时间区间 比较触发条件 电感电流范围 SW1 SWM1 SW2
(0,t<sub>0</sub>] i<sub>L</sub>(t)≤-I<sub>const</sub> -I<sub>const</sub>&lt;i<sub>L</sub>(t)≤I<sub>comp</sub>(t) 1 0 0
(t<sub>0</sub>,t<sub>1</sub>] i<sub>L</sub>(t)≥I<sub>comp</sub>(t) I<sub>comp</sub>(t)&lt;i<sub>L</sub>(t)≤I<sub>peak</sub>(t) 0 1 0
(t<sub>1</sub>,T] i<sub>L</sub>(t)≥I<sub>peak</sub>(t) -I<sub>const</sub>≤i<sub>L</sub>(t)&lt;I<sub>peak</sub>(t) 0 0 1
当iset(t)<0A和uout(t)<UinM1,此时Ipeak(t)<0A、Icomp(t)<0A、切换电流为Iconst,如图11d和表12所示:
表12第三实施例中的半桥功率开关电路的结构对应的开关状态(四)
时间区间 比较触发条件 电感电流范围 SW1 SWM1 SW2
(0,t<sub>0</sub>] i<sub>L</sub>(t)≥I<sub>const</sub> I<sub>peak</sub>(t)≤i<sub>L</sub>(t)&lt;I<sub>const</sub> 0 0 1
(t<sub>0</sub>,t<sub>1</sub>] i<sub>L</sub>(t)≤I<sub>peak</sub>(t) I<sub>peak</sub>t&lt;i<sub>L</sub>(t)≤I<sub>comp</sub>(t) 0 1 0
(t<sub>1</sub>,T] i<sub>L</sub>(t)≥I<sub>comp</sub>(t) I<sub>comp</sub>(t)&lt;i<sub>L</sub>(t)≤I<sub>const</sub> 1 0 0
第四实施例中,功率开关电路为半桥功率开关电路。
其整体的原理框图如图1b所示,功率开关电路原理如图12所示,与第三实施例的区别在于,每个半桥功率开关电路包含两个中间直流电源输入端UinM1和UinM2,并分别与两个中间直流电源相连,其输入电压UinM1和UinM2均位于+Uin和-Uin之间,且UinM1>UinM2,每个半桥功率开关电路包含两个双向截止型开关器件SWM1、SWM2与对应的两个辅助开关电容CM1、CM2,两个中间直流电源输入端分别通过一个双向截止型开关器件与高边开关器件SW1、低边开关器件SW2和电感线圈L1的一端相连,且每一个双向截止型开关器件与一个辅助开关电容并联;双向截止型开关器件SWM1、SWM2由零电压开关(ZVS)门极驱动器控制。
可以理解的是,其他实施例中,中间直流电源输入端也可以为大于2的其它个数,如n个,则电路结构也相应的变化,双向截止型开关器件与辅助开关电容的个数也为n个;只要满足n个中间直流电源输入端的输入电压均位于+Uin和-Uin之间即可。
第四实施例中,当输出端电压uout(t)大于或小于各中间直流电源输入端电压时,选择与输出端电压值相邻的中间直流电源作为中间直流电源,此时功率开关电路的控制方式与上述第三实施例中拥有单个中间直流电源输入端的功率开关电路相同。
其他情况下,在一个开关周期内的开关状态为:
当iset(t)>0A和UinM2<uout(t)<UinM1,此时Ipeak(t)>0A、Icomp(t)>0A、切换电流为-Iconst,如图13a和表13所示:
表13第四实施例中的半桥功率开关电路的结构对应的开关状态(一)
时间区间 比较触发条件 电感电流范围 SW1 SWM1 SWM2 SW2
(0,t<sub>0</sub>] i<sub>L</sub>(t)≤-I<sub>const</sub> -I<sub>const</sub>&lt;i<sub>L</sub>(t)≤I<sub>comp</sub>(t) 1 0 0 0
(t<sub>0</sub>,t<sub>1</sub>] i<sub>L</sub>(t)≥I<sub>comp</sub>(t) I<sub>comp</sub>(t)&lt;i<sub>L</sub>(t)≤I<sub>peak</sub>(t) 0 1 0 0
(t<sub>1</sub>,t<sub>2</sub>] i<sub>L</sub>(t)≥I<sub>peak</sub>(t) I<sub>comp</sub>(t)≤i<sub>L</sub>(t)&lt;I<sub>peak</sub>(t) 0 0 1 0
(t<sub>2</sub>,T] i<sub>L</sub>(t)≤I<sub>comp</sub>(t) -I<sub>const</sub>≤i<sub>L</sub>(t)&lt;I<sub>comp</sub>(t) 0 0 0 1
当iset(t)<0A和UinM2<uout(t)<UinM1,此时Ipeak(t)<0A、Icomp(t)<0A、切换电流为Iconst,如图13b和表14所示:
表14第四实施例中的半桥功率开关电路的结构对应的开关状态(二)
时间区间 比较触发条件 电感电流范围 SW1 SWM1 SWM2 SW2
(0,t<sub>0</sub>] i<sub>L</sub>(t)≥I<sub>const</sub> I<sub>comp</sub>(t)≤i<sub>L</sub>(t)&lt;I<sub>const</sub> 0 0 0 1
(t<sub>0</sub>,t<sub>1</sub>] i<sub>L</sub>(t)≤I<sub>comp</sub>(t) I<sub>peak</sub>(t)≤i<sub>L</sub>(t)&lt;I<sub>comp</sub>(t) 0 0 1 0
(t<sub>1</sub>,t<sub>2</sub>] i<sub>L</sub>(t)≤I<sub>peak</sub>(t) I<sub>peak</sub>(t)&lt;i<sub>L</sub>(t)≤I<sub>comp</sub>(t) 0 1 0 0
(t<sub>2</sub>,T] i<sub>L</sub>(t)≥I<sub>comp</sub>(t) I<sub>comp</sub>(t)&lt;i<sub>L</sub>(t)≤I<sub>const</sub> 1 0 0 0
上述各端点电势均以直流电源输入端的中间点电位为参考点,其电压uout(t)、UinM1、UinM2均为各端到直流电源输入端的正负端间的中间点的电压,其电压高低关系为-Uin/2<UinM2<UinM1<+Uin/2。
第五实施例中,功率开关电路为全桥功率开关电路。
其整体的原理框图如图1b所示,功率开关电路原理如图14所示,与第二实施例的区别在于,每个全桥功率开关电路还包含若干个中间直流电源输入端,所述中间直流电源输入端与若干个中间直流电源相连,本实施例中,中间直流电源输入端为一个,用UinM1表示;中间直流电源输入端的输入电压UinM1位于+Uin和-Uin之间,每个全桥功率开关电路还包含一个双向截止型开关器件SWM1与对应的辅助开关电容CM1,中间直流电源输入端通过双向截止型开关器件SWM1与开关器件SW1、SW2和电感线圈L1的一端相连,且双向截止型开关器件SWM1与辅助开关电容CM1并联;双向截止型开关器件SWM1由零电压开关(ZVS)门极驱动器控制。且该实施例中,全桥功率开关电路无需支持升压输出。
其工作原理与第二实施例类似,但因为加入了中间直流电源UinM1,在实时比较电感电流iL(t)与电感峰值电流Ipeak(t)、中间比较电流Icomp(t)和与切换电流Iconst的大小时,还需结合输出端电压uout(t)所处的电压范围。
具体地,其在一个开关周期内的开关状态为:
当iset(t)>0A和uout(t)>UinM1,此时Ipeak(t)>0A、Icomp(t)>0A、切换电流为-Iconst,如图15a与表15所示:
表15第五实施例中的全桥功率开关电路的结构对应的开关状态(一)
Figure BDA0002290499700000231
当iset(t)<0A和uout(t)>UinM1,此时Ipeak(t)<0A、Icomp(t)<0A、切换电流为Iconst,如图15b与表16所示:
表16第五实施例中的全桥功率开关电路的结构对应的开关状态(二)
Figure BDA0002290499700000241
当iset(t)>0A和uout(t)<UinM1,此时Ipeak(t)>0A、Icomp(t)>0A、切换电流为-Iconst,如图15c与表17所示:
表17第五实施例中的全桥功率开关电路的结构对应的开关状态(三)
Figure BDA0002290499700000242
当iset(t)<0A和uout(t)<UinM1,此时Ipeak(t)<0A、Icomp(t)<0A、切换电流为Iconst,如图15d与表18所示:
表18第五实施例中的全桥功率开关电路的结构对应的开关状态(四)
Figure BDA0002290499700000251
第六实施例中,功率开关电路为全桥功率开关电路。
其整体的原理框图如图1b所示,功率开关电路原理如图16所示,与第五实施例的区别在于,每个全桥功率开关电路包含两个中间直流电源输入端UinM1和UinM2,并分别与两个中间直流电源相连,其输入电压UinM1和UinM2均位于+Uin和-Uin之间,且UinM1>UinM2,每个全桥功率开关电路包含两个双向截止型开关器件SWM1、SWM2与对应的两个辅助开关电容CM1、CM2,两个中间直流电源输入端分别通过一个双向截止型开关器件与开关器件SW1、SW2和电感线圈L1的一端相连,且每一个双向截止型开关器件与一个辅助开关电容并联;双向截止型开关器件SWM1、SWM2由零电压开关(ZVS)门极驱动器控制。且该实施例中,全桥功率开关电路无需支持升压输出。
可以理解的是,其他实施例中,中间直流电源输入端也可以为大于2的其它个数,如n个,则电路结构也相应的变化,双向截止型开关器件与辅助开关电容的个数也为n个;只要满足n个中间直流电源输入端的输入电压均位于+Uin和-Uin之间即可。
第六实施例中,当输出端电压uout(t)大于或小于各中间直流电源输入端电压时,选择与输出端电压值相邻的中间直流电源作为中间直流电源,此时功率开关电路的控制方式与上述第五实施例中拥有单个中间直流电源输入端的功率开关电路相同。
其他情况下,在一个开关周期内的开关状态为:
当iset(t)>0A和UinM2<uout(t)<UinM1,此时Ipeak(t)>0A、Icomp(t)>0A、切换电流为-Iconst,如图17a与表19所示:
表19第六实施例中的全桥功率开关电路的结构对应的开关状态(一)
Figure BDA0002290499700000261
当iset(t)<0A和UinM2<uout(t)<UinM1,此时Ipeak(t)<0A、Icomp(t)<0A、切换电流为Iconst,如图17b与表20所示:
表20第六实施例中的全桥功率开关电路的结构对应的开关状态(二)
Figure BDA0002290499700000262
上述各端点电势均以直流电源输入端的中间点电位为参考点,其电压uout(t)、UinM1、UinM2均为各端到直流电源输入端的正负端间的中间点的电压,其电压高低关系为-Uin/2<UinM2<UinM1<+Uin/2。
综上,本发明通过将功率开关器件与电感的组合看作可控电流源,以高频开关的方式对输出电容和输出负载提供所需电流,输出端电压由电感所供给的电流和由负载流出的电流的差值对时间的积分在电容上获得。
通过电容对输出电压变化率的牵制,以及电感瞬时电流与输出电流的解耦,使功率开关电路在边界传到模式BCM(Boundary Conduction Mode)下工作,从原理上同时实现了低开关损耗和低输出端高频电磁干扰的特性。对于有较大寄生电容的功率开关器件(例如Superjunction-MOSFET)有着良好的兼容性,对于未来更快速的功率开关器件(例如SiC-MOSEFT和GaN-FET)的广泛应用起到辅助作用。
并且,上述的第三至第六实施例中,均在电路中加入了中间直流电源输入及对应的双向截止型开关器件与对应的辅助开关电容,在这样的结构下,通过对电感两端电压的切换,使得能够以较低的电感峰值电流实现较高的电感平均电流,从而降低系统的导通损耗。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围中。

Claims (7)

1.一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,其特征在于,包括多相逆变驱动系统,每相逆变驱动系统为独立系统,每相逆变驱动系统的输出端为所需输出的交流波形,每相逆变驱动系统均包括以下部分:反馈控制单元、比较控制单元和功率开关电路;
每个所述反馈控制单元,通过输入信号:外部输入信号
Figure 177850DEST_PATH_IMAGE001
、输出端电压信号
Figure 650420DEST_PATH_IMAGE002
、输出端电流信号
Figure 826187DEST_PATH_IMAGE003
来计算出该相逆变驱动系统所需的输出设置电流
Figure 564467DEST_PATH_IMAGE004
,并将该相逆变驱动系统所需输出的输出设置电流
Figure 788774DEST_PATH_IMAGE004
输出到该相逆变驱动系统的比较控制单元;
每个所述比较控制单元,其输入信号包括该相逆变驱动系统的反馈控制单元输出的输出设置电流
Figure 912588DEST_PATH_IMAGE004
和电感电流实时测量信号
Figure 196939DEST_PATH_IMAGE005
;通过由反馈控制单元输出的输出设置电流
Figure 422515DEST_PATH_IMAGE004
与功率开关电路的结构特性计算出开关状态切换时所需的电感峰值电流
Figure 450514DEST_PATH_IMAGE006
和中间比较电流
Figure 694414DEST_PATH_IMAGE007
,设置一个用于零电压开关的切换电流
Figure 884086DEST_PATH_IMAGE008
,并与电感电流实时测量信号
Figure 596959DEST_PATH_IMAGE005
进行比较,通过逻辑计算确定出功率开关电路中开关器件相应的开关状态,并将开关状态信号输出到该相逆变驱动系统的功率开关电路;
每个所述功率开关电路,其输入信号为该相逆变驱动系统的比较控制单元输出的开关状态信号;其输出信号为输出端电压信号
Figure 163069DEST_PATH_IMAGE002
、输出端电流信号
Figure 464738DEST_PATH_IMAGE003
和电感电流实时测量信号
Figure 887629DEST_PATH_IMAGE005
;所述电感电流实时测量信号
Figure 274748DEST_PATH_IMAGE005
反馈到该相逆变驱动系统的比较控制单元,所述输出端电压信号
Figure 457598DEST_PATH_IMAGE002
和输出端电流信号
Figure 348194DEST_PATH_IMAGE003
反馈到该相逆变驱动系统的反馈控制单元;
其中,所述功率开关电路为半桥功率开关电路,每个所述半桥功率开关电路包含高边开关器件SW1、低边开关器件SW2、分别与高边开关器件SW1、低边开关器件SW2并联的辅助开关电容C1和C2,电感线圈L1以及输出电容C3和C4;每个所述半桥功率开关电路的直流电源输入端的正负端
Figure 207566DEST_PATH_IMAGE009
Figure 816402DEST_PATH_IMAGE010
分别与直流电源的正负极相连,高边开关器件SW1与低边开关器件SW2串联于直流电源输入端的正负端之间形成半桥开关电路,电感线圈L1连接于半桥开关电路输出端与输出电容C3和C4之间,输出电容C3与C4串联于直流电源输入端的正负端之间;
高边开关器件SW1和低边开关器件SW2均由零电压开关ZVS门极驱动器控制;
或者,所述功率开关电路为全桥功率开关电路,每个所述全桥功率开关电路包含开关器件SW1、SW2、SW3、SW4、SW5,分别与开关器件SW1、SW2、SW3、SW4、SW5并联的辅助开关电容C1、C2、C3、C4、C5,电感线圈L1,以及输出电容C6、C7;开关器件SW1、SW2串联于直流电源输入端的正负端之间,以及开关器件SW3、SW4串联于直流电源输入端的正负端之间分别形成全桥功率开关电路中的左、右两侧半桥;全桥功率开关电路的直流电源输入端的正负端
Figure 802943DEST_PATH_IMAGE009
Figure 813625DEST_PATH_IMAGE010
分别与直流电源的正负极相连,电感线圈L1连接于全桥功率开关电路中的两侧半桥输出端之间;输出端的开关器件SW5连接于输出电容C6、C7与全桥功率开关电路中右侧半桥输出端之间;输出电容C6与C7串联于直流电源输入端的正负端之间;
开关器件SW1、SW2、SW3、SW4、SW5均由零电压开关ZVS门极驱动器控制。
2.根据权利要求1所述的一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,其特征在于,当所述功率开关电路为半桥功率开关电路,每个所述比较控制单元,其输入信号还包括输出端电压信号
Figure 781581DEST_PATH_IMAGE002
每个所述半桥功率开关电路还包含若干个中间直流电源输入端,所述中间直流电源输入端与若干个中间直流电源相连;中间直流电源输入端的输入电压位于
Figure 940029DEST_PATH_IMAGE009
Figure 651634DEST_PATH_IMAGE010
之间,每个所述半桥功率开关电路还包含若干个双向截止型开关器件SWM与对应的辅助开关电容CM,每个中间直流电源输入端通过一个双向截止型开关器件SWM与高边开关器件SW1、低边开关器件SW2和电感线圈L1的一端相连,且每一个双向截止型开关器件SWM与一个辅助开关电容CM并联;双向截止型开关器件SWM由零电压开关ZVS门极驱动器控制。
3.根据权利要求1所述的一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,其特征在于,当所述功率开关电路为全桥功率开关电路,当全桥功率开关电路无需支持升压输出时,所述开关器件SW5为双向截止型功率开关器件,所述开关器件SW1、SW2、SW3和SW4均为单向截止型功率开关器件;当全桥功率开关电路支持升压输出时,所述开关器件SW3、SW4和SW5均为双向截止型功率开关器件,所述开关器件SW1和SW2均为单向截止型功率开关器件。
4.根据权利要求1所述的一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,其特征在于,当所述功率开关电路为全桥功率开关电路,每个所述比较控制单元,其输入信号还包括输出端电压信号
Figure 329871DEST_PATH_IMAGE011
每个所述全桥功率开关电路还包含若干个中间直流电源输入端,所述中间直流电源输入端与若干个中间直流电源相连;中间直流电源输入端的输入电压位于
Figure 468728DEST_PATH_IMAGE012
Figure 114473DEST_PATH_IMAGE013
之间,每个所述全桥功率开关电路还包含若干个双向截止型开关器件SWM与对应的辅助开关电容CM,每个中间直流电源输入端通过一个双向截止型开关器件SWM与开关器件SW1、SW2和电感线圈L1的一端相连,且每一个双向截止型开关器件SWM与一个辅助开关电容CM并联;双向截止型开关器件SWM由零电压开关ZVS门极驱动器控制。
5.根据权利要求1所述的一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,其特征在于,每个所述功率开关电路的功率输入端为:直流电源输入端的正负端
Figure 364189DEST_PATH_IMAGE009
Figure 162512DEST_PATH_IMAGE010
,每个所述功率开关电路的输出端电压信号
Figure 472270DEST_PATH_IMAGE002
,即每相逆变驱动系统的输出端电压信号
Figure 542994DEST_PATH_IMAGE002
为;
Figure 658718DEST_PATH_IMAGE014
其中,
Figure 498498DEST_PATH_IMAGE015
的电势参考点为直流电源输入端电压的中间点电位,即输入直流电源电压
Figure 792207DEST_PATH_IMAGE016
的一半,ω为角速度,t为实际时间,n和k决定输出端电压的初相。
6.根据权利要求1所述的一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,其特征在于,每个所述反馈控制单元通过外部输入信号
Figure 84648DEST_PATH_IMAGE001
、输出端电压信号
Figure 941746DEST_PATH_IMAGE002
、输出端电流信号
Figure 698349DEST_PATH_IMAGE003
建立反馈控制网络,从而计算出该相逆变驱动系统所需的输出设置电流
Figure 162960DEST_PATH_IMAGE004
,即:
Figure 208276DEST_PATH_IMAGE017
其中,输出电压与电流可表达为:
Figure 603485DEST_PATH_IMAGE018
Figure 214595DEST_PATH_IMAGE019
其中
Figure 302637DEST_PATH_IMAGE020
为输出电容的容量。
7.根据权利要求6所述的一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统,其特征在于,反馈控制单元包括PID控制器;其建立反馈控制网络的具体工作流程为:
(1)通过对外部输入信号
Figure 382720DEST_PATH_IMAGE001
与输出端电压信号
Figure 581620DEST_PATH_IMAGE002
进行比较得出电压差值信号,并输入至PID控制器;
(2)通过计算外部输入信号
Figure 47236DEST_PATH_IMAGE001
对时间的导数并与输出电容容量相乘得出输出电容
Figure 306179DEST_PATH_IMAGE020
充放电电流;
(3)由(1)中PID控制器输出的电压差值信号的反馈增量电流与(2)中所得的输出电容充放电电流与当前输出端电流
Figure 60509DEST_PATH_IMAGE021
相加,其结果为输出设置电流
Figure 610570DEST_PATH_IMAGE022
,并输入至比较控制单元。
CN201911178067.3A 2019-04-30 2019-11-27 一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统 Active CN110690829B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910361312.8A CN110224621A (zh) 2019-04-30 2019-04-30 一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统
CN2019103613128 2019-04-30

Publications (2)

Publication Number Publication Date
CN110690829A CN110690829A (zh) 2020-01-14
CN110690829B true CN110690829B (zh) 2020-10-30

Family

ID=67820409

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910361312.8A Pending CN110224621A (zh) 2019-04-30 2019-04-30 一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统
CN201911178067.3A Active CN110690829B (zh) 2019-04-30 2019-11-27 一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910361312.8A Pending CN110224621A (zh) 2019-04-30 2019-04-30 一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统

Country Status (2)

Country Link
CN (2) CN110224621A (zh)
WO (2) WO2020220538A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224621A (zh) * 2019-04-30 2019-09-10 周衍 一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324853A (ja) * 1999-04-30 2000-11-24 Texas Instr Inc <Ti> 電源インバータにおけるdcバス・リップル作用を減少させるモディファイド空間ベクトル・パルス幅変調方法及び装置
CN1356762A (zh) * 2001-12-25 2002-07-03 深圳安圣电气有限公司 并联逆变器系统
CN101425756A (zh) * 2008-07-30 2009-05-06 东元总合科技(杭州)有限公司 一种直流侧电压可控型四象限变频器及其方法
CN201699602U (zh) * 2010-06-12 2011-01-05 成都熊谷加世电器有限公司 一种大功率单回路逆变软开关弧焊电源
CN102801346A (zh) * 2012-08-21 2012-11-28 深圳市通业科技发展有限公司 无信号互联线并联的三相逆变器及其控制方法
CN105564263A (zh) * 2016-02-04 2016-05-11 周衍 多直流输入的pwm逆变驱动装置及其方法
CN107733268A (zh) * 2017-11-15 2018-02-23 哈尔滨理工大学 一种快速响应的软开关隔离逆变器与方法
CN109586597A (zh) * 2018-12-15 2019-04-05 华南理工大学 一种基于移相全桥软开关和同步整流的高频氧化电源模组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939035B2 (ja) * 2012-05-25 2016-06-22 ダイキン工業株式会社 電力変換装置
CN103259434B (zh) * 2013-04-23 2015-04-29 盐城工学院 原边单相桥-副边三相桥高频链逆变器及其数字控制系统和方法
US9484840B2 (en) * 2013-08-28 2016-11-01 University Of Central Florida Research Foundation, Inc. Hybrid zero-voltage switching (ZVS) control for power inverters
CN107517019B (zh) * 2016-08-24 2020-02-21 汪洪亮 多电平逆变器混合调制策略
CN108880304B (zh) * 2018-06-21 2020-06-23 西安理工大学 一种基于输出电流前馈的逆变电源电压质量控制方法
CN109638889B (zh) * 2019-01-15 2023-09-05 广东志成冠军集团有限公司 海岛柴储混合供电系统的直流侧惯性增强控制方法
CN110224621A (zh) * 2019-04-30 2019-09-10 周衍 一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324853A (ja) * 1999-04-30 2000-11-24 Texas Instr Inc <Ti> 電源インバータにおけるdcバス・リップル作用を減少させるモディファイド空間ベクトル・パルス幅変調方法及び装置
CN1356762A (zh) * 2001-12-25 2002-07-03 深圳安圣电气有限公司 并联逆变器系统
CN101425756A (zh) * 2008-07-30 2009-05-06 东元总合科技(杭州)有限公司 一种直流侧电压可控型四象限变频器及其方法
CN201699602U (zh) * 2010-06-12 2011-01-05 成都熊谷加世电器有限公司 一种大功率单回路逆变软开关弧焊电源
CN102801346A (zh) * 2012-08-21 2012-11-28 深圳市通业科技发展有限公司 无信号互联线并联的三相逆变器及其控制方法
CN105564263A (zh) * 2016-02-04 2016-05-11 周衍 多直流输入的pwm逆变驱动装置及其方法
CN107733268A (zh) * 2017-11-15 2018-02-23 哈尔滨理工大学 一种快速响应的软开关隔离逆变器与方法
CN109586597A (zh) * 2018-12-15 2019-04-05 华南理工大学 一种基于移相全桥软开关和同步整流的高频氧化电源模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三相空间矢量PWM仿真及其基于FPGA的硬件实现;赖联有等;《电子与封装》;20050131;第5卷(第1期);第27-30页 *

Also Published As

Publication number Publication date
CN110690829A (zh) 2020-01-14
WO2020220870A1 (zh) 2020-11-05
WO2020220538A1 (zh) 2020-11-05
CN110224621A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
Nguyen et al. A modified single-phase quasi-Z-source AC–AC converter
Florescu et al. The advantages, limitations and disadvantages of Z-source inverter
US20100259955A1 (en) Soft switching power converter
EP3404820B1 (en) Power conversion system and power conversion device
CN1685598A (zh) 带有dv/dt控制和emi/切换损耗降低的全局闭环控制系统
US20130264984A1 (en) Power Converting Apparatus
CN105493388A (zh) 电力变换装置
JP6702209B2 (ja) 電力変換装置
US20090001410A1 (en) Driver Circuit and Electrical Power Conversion Device
CN103683919A (zh) 高功率因数低谐波失真恒流电路及装置
CN103457506A (zh) 一种宽输入单级双向升降压逆变器
EP3111544A1 (en) Power conversion electronics
WO2008005442A2 (en) Power converter with segmented power module
US11316423B2 (en) Half-bridge having power semiconductors
WO2008036391A1 (en) Multiple output multiple topology voltage converter
US11632057B2 (en) Three-phase converter and control method thereof
CN110690829B (zh) 一种超低开关功耗、超低输出端电磁干扰的逆变驱动系统
CN213661257U (zh) 充电装置和车辆
CN110729899B (zh) 宽输入宽输出三相高增益直流变换器及控制方法
CN103427619A (zh) 可灵活升压的pfc控制电路及其控制方法
CN116191859A (zh) 一种开关电源及计算设备
CN115296537A (zh) 基于耦合电感的三相交错并联升压变换器及其控制方法
WO2022165814A1 (zh) 功率变换器的控制方法、装置及存储介质
CN115149807A (zh) 多电平直流变换器和飞跨电容的电压控制方法、控制装置
CN203590035U (zh) 高功率因数低谐波失真恒流电路及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant