CN110690290A - 一种非对称栅氧结构的纳米片环栅场效应晶体管 - Google Patents

一种非对称栅氧结构的纳米片环栅场效应晶体管 Download PDF

Info

Publication number
CN110690290A
CN110690290A CN201910880148.1A CN201910880148A CN110690290A CN 110690290 A CN110690290 A CN 110690290A CN 201910880148 A CN201910880148 A CN 201910880148A CN 110690290 A CN110690290 A CN 110690290A
Authority
CN
China
Prior art keywords
gate oxide
dielectric
constant
drain
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910880148.1A
Other languages
English (en)
Other versions
CN110690290B (zh
Inventor
王萌
王昌峰
田明
孙亚宾
石艳玲
李小进
廖端泉
曹永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
East China Normal University
Original Assignee
Shanghai Huali Microelectronics Corp
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp, East China Normal University filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201910880148.1A priority Critical patent/CN110690290B/zh
Publication of CN110690290A publication Critical patent/CN110690290A/zh
Application granted granted Critical
Publication of CN110690290B publication Critical patent/CN110690290B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种非对称栅氧结构的纳米片环栅场效应晶体管,包括垂直堆叠的纳米片沟道,包裹在沟道外的双层栅极氧化物,设于沟道两端的源和漏,设置双层边墙,设置在底部的衬底。特征是栅极氧化物由低介电常数材料与高介电常数材料堆叠而成,以沟道长度的二分之一处为界分为靠近漏和源两部分,两部分栅氧物理总厚度一致,但靠近漏的双层栅极氧化物中,低介电常数栅极氧化物较薄,高介电常数栅极氧化物较厚,构成非对称栅氧结构的纳米片环栅场效应晶体管。本发明与现有对称型技术相比,漏端电场更低,能够有效抑制器件热载流子效应;具有更加理想的开态、关态电流和较大的电流开关比;漏端电势更稳定,抑制漏致势垒降低效应,改善短沟道特性。

Description

一种非对称栅氧结构的纳米片环栅场效应晶体管
技术领域
本发明属于半导体器件中的场效应晶体管领域,具体涉及一种非对称栅氧结构的纳米片环栅场效应晶体管。
背景技术
集成电路技术不断发展,器件特征尺寸按摩尔定律不断缩小,已逼近物理极限,短沟道效应、热载流子效应、漏致势垒降低效应对器件产生严重影响,器件性能的退化不容忽视。为改善器件的短沟道特性,许多新型器件结构相继出现,纳米片环栅器件凭借极强的栅控能力而备受关注。通过垂直堆叠纳米片沟道,能够在一定的面积上获得更大的饱和电流,提升器件性能。同时,随着器件特征尺寸减小,栅极氧化层二氧化硅也在不断减薄以维持晶体管性能,但过薄的二氧化硅会导致栅极漏电的增加,为此改用High-K材料二氧化铪与二氧化硅堆叠作为栅极氧化物,便能够有效控制漏电。
然而,由于栅极将引入垂直方向的强电场,沟道中载流子容易获得很大的动能,成为热载流子并注入栅氧化层,造成氧化层损伤和器件性能退化甚至失效,即热载流子效应。载流子效应是器件和集成电路失效的重要原因,而减小漏端电场能够减少热载流子注入,从而提高器件可靠性。针对热载流子效应,人们也已提出了许多器件结构及技术,如轻掺杂漏工艺(LDD)能够降低漏端电场,异质栅结构能够改变沟道中的电场分布等。
发明内容
本发明的目的是针对现有一般对称型栅氧结构技术的不足,而提出的一种非对称栅氧结构的纳米片环栅场效应晶体管,通过改变漏端双层栅极氧化物厚度之比,降低沟道内部及沟道边界处漏端电场,抑制热载流子效应,并能够增加器件开态电流,减小关态电流,提高器件电流开关比,还能抑制漏致势垒降低效应。
为实现上述目的,本发明采用以下技术方案:
一种非对称栅氧结构的纳米片环栅场效应晶体管,特点是:它包括:
数条垂直堆叠的沟道;
设于数条沟道右端的源及设于源顶部的源极,设于数条沟道左端的漏及设于漏顶部的漏极;
以沟道长度的二分之一处为界,沟道可分为左右两部分,设于包裹在各沟道右半部分外部的低介电常数栅极氧化物、设于包裹在各沟道左半部分外部的低介电常数栅极氧化物;
设于各沟道右半部分、包裹在右半部分低介电常数栅极氧化物外部、但长度略短于低介电常数栅极氧化物的高介电常数栅极氧化物;
设于各沟道左半部分、包裹在左半部分低介电常数栅极氧化物外部、但长度略短于低介电常数栅极氧化物的高介电常数栅极氧化物;
包裹在左半部分的高介电常数栅极氧化物及右半部分的高介电常数栅极氧化物外的栅极;
设于栅极和右半部分高介电常数栅极氧化物右侧的高介电常数源边墙;设于高介电常数源边墙右侧、源左侧的低介电常数源边墙;
设于栅极和左半部分高介电常数栅极氧化物左侧的高介电常数漏边墙;设于高介电常数漏边墙左侧、漏右侧的低介电常数漏边墙;
设于最底层栅极底部的高介电常数介质隔离层;设于高介电常数介质隔离层底部的低介电常数介质隔离层;
设于上述结构底部的衬底。
所述沟道为硅纳米片、锗纳米片、锗硅纳米片、砷化镓纳米片或氧化锌纳米片;
所述源和漏为硅或锗硅;
所述低介电常数栅极氧化物为二氧化硅;
所述高介电常数栅极氧化物为二氧化铪、氧化钛、氮化硅、氧化铝、五氧化二钽或二氧化锆;
所述源极、漏极和栅极为钨、氮化钛、铝或多晶硅;
所述高介电常数源边墙和高介电常数漏边墙为二氧化铪、氧化钛、五氧化二钽或二氧化锆;
所述低介电常数源边墙与低介电常数漏边墙为二氧化硅、氮化硅或氧化铝;
所述高介电常数介质隔离层为二氧化铪、氧化钛、五氧化二钽或二氧化锆;所述低介电常数介质隔离层为二氧化硅;
所述衬底为绝缘体上硅即SOI、二氧化硅、蓝宝石、硅、锗、砷化镓或氮化镓。
所述右半部分低介电常数栅极氧化物及右半部分的高介电常数栅极氧化物厚度之和与左半部分低介电常数栅极氧化物及左半部分的高介电常数栅极氧化物厚度之和相等;右半部分低介电常数栅极氧化物厚度大于左半部分低介电常数栅极氧化物厚度,右半部分的高介电常数栅极氧化物厚度小于左半部分的高介电常数栅极氧化物厚度。
本发明提出的非对称栅氧结构的纳米片环栅场效应晶体管,相比于一般对称型栅氧结构,具有以下优点:
降低器件沟道漏端电场,抑制了热载流子效应;
提高器件开态电流,减小关态电流,提高电流开关比;
抑制DIBL效应,减小了器件阈值电压漂移;
本发明所有工艺步骤与目前CMOS大规模工艺制程相兼容。
附图说明
图1为本发明结构示意图;
图2为本发明单沟道结构示意图;
图3为本发明和对称型结构垂直沟道方向电场分布图;
图4为本发明和对称型结构沿着沟道方向电场分布图;
图5为本发明和对称型结构沿着沟道方向沟道电子速度分布图;
图6为本发明和对称型结构沿着沟道方向不同漏压下电势之差分布图;
图7为本发明和对称型结构转移特性对比图;
图8为本发明的制备流程图。
具体实施方式
以下结合附图及实施例对本发明进行详细描述。
参阅图1-2,所述非对称栅氧结构的纳米片环栅场效应晶体管的特点是,栅极氧化物由低介电常数材料与高介电常数材料堆叠而成,以沟道长度的二分之一处为界,可分为左右两部分,左半部分靠近漏,右半部分靠近源,两部分栅极氧化物的物理总厚度一致。对于靠近漏的这一部分栅极氧化物,低介电常数栅极氧化物厚度为2nm,高介电常数栅极氧化物厚度为18nm;对于靠近源的这一部分栅极氧化物,低介电常数栅极氧化物厚度为4nm,高介电常数栅极氧化物厚度为16nm。即相比靠近源的栅极氧化物,靠近漏的低介电常数栅极氧化物更薄,高介电常数栅极氧化物更厚,但栅极氧化物总厚度保持一致。
所述非对称栅氧结构的纳米片环栅场效应晶体管,包括数条垂直堆叠的沟道1,设于数条沟道1右端的源6及设于源6顶部的源极7,设于数条沟道1左端的漏8及设于漏8顶部的漏极9;以沟道长度的二分之一处为界,沟道可分为左右两部分,晶体管还包括设于包裹在各条沟道1右半部分外部的低介电常数栅极氧化物2、设于包裹在各条沟道1左半部分外部的的低介电常数栅极氧化物3,设于各条沟道1右半部分、包裹在右半部分低介电常数栅极氧化物2外部、但长度略短的高介电常数栅极氧化物4,设于各条沟道1左半部分、包裹在左半部分低介电常数栅极氧化物3外部、但长度略短的高介电常数栅极氧化物5;还包括包裹在左右两部分高介电常数栅极氧化物外的栅极10,设于栅极和右半部分高介电常数栅极氧化物右侧的高介电常数源边墙11,设于高介电常数源边墙右侧、源左侧的低介电常数源边墙12,设于栅极和左半部分高介电常数栅极氧化物左侧的高介电常数漏边墙13,设于高介电常数漏边墙左侧、漏右侧的低介电常数漏边墙14,设于最下方栅极底部的高介电常数介质隔离层15,设于高介电常数介质隔离层底部的低介电常数介质隔离层16,设于上述结构底部的衬底17。
所述沟道1为硅纳米片、锗纳米片、锗硅纳米片、砷化镓纳米片或氧化锌纳米片;
所述源6和漏8为硅或锗硅;
所述低介电常数栅极氧化物2、3为二氧化硅;
所述高介电常数栅极氧化物4、5为二氧化铪、氧化钛、氮化硅、氧化铝、五氧化二钽或二氧化锆;
所述源极7漏极9和栅极10为钨、氮化钛、铝或多晶硅;
所述高介电常数源边墙11和高介电常数漏边墙13为二氧化铪、氧化钛、五氧化二钽或二氧化锆;
所述低介电常数源边墙12与低介电常数漏边墙14为二氧化硅、氮化硅或氧化铝;
所述高介电常数介质隔离层15为二氧化铪、氧化钛、五氧化二钽或二氧化锆;所述低介电常数介质隔离层16为二氧化硅;
所述衬底17为绝缘体上硅(SOI)、二氧化硅、蓝宝石、硅、锗、砷化镓、氮化镓。
相同外加电场下,低介电常数材料的内部电场更强,进而导致漏端沟道与栅极氧化物界面电场更强,容易引发热载流子注入。本发明采用非对称栅氧结构,漏端一侧相比源端一侧而言,低介电常数栅极氧化物厚度较薄且高介电常数栅极氧化物厚度加厚,在相同外加栅压下,由于漏端低介电常数栅极氧化物占比更低,采用本发明非对称结构会获得比对称结构更小的漏端电场,从而有效抑制热载流子效应。由于非对称结构两端物理厚度保持不变,仍可对漏电流有较好的控制,并且减小了后续栅极淀积工艺的难度;同时漏端有效栅氧厚度减小,栅电极电容提高,对沟道控制能力更强,器件的驱动电流提升,电流开关比有效提高。此外,非对称结构能够获得更加稳定的漏端电势,从而抑制漏致势垒降低效应,减小阈值电压的漂移。
参见图3,沟道1、沟道2和沟道3分别对应图1结构图中自上而下三条纳米片沟道,下同。以沟道2为例,当采用现有技术,即栅极氧化物为对称型结构时,漏端沟道与栅极氧化物上下界面电场分别为322959V/cm和314138V/cm,沟道中心电场最大,为408027V/cm;当采用本发明所述的栅氧结构非对称型结构时,NMOS漏端沟道与栅极氧化物上下界面电场分别为296348V/cm和288816V/cm,沟道中心电场为392843V/cm。参见图4,沿沟道方向,电场强度从源端向漏端逐渐增加,在漏端附近,本发明的电场强度小于对称型结构。由此可见,采用非对称结构可以降低纳米片环栅器件的漏端电场,抑制热载流子注入。
参见图5,沿着沟道方向,沟道电子速度从源端向漏端逐渐增加,在漏端附近,本发明的电子速度小于栅氧对称型结构,减小了载流子击穿栅氧的几率,抑制了热载流子效应。
参阅图6,其中图6(a)分别给出了对称型结构和本发明在漏压为0.65V、0.05V下沟道内部电势之差,图6(b)为漏端电势之差放大图。可以看出本发明漏端电势差更小,漏端电势更稳定,从而抑制了器件漏致势垒降低效应,改善器件的短沟道特性。通过对器件转移特性分析可得,由于漏端势垒引起的阈值电压漂移由对称结构的14mV减小为13mV。
图7给出了本发明和对称型结构的转移特性,当器件采用一般栅极氧化物对称结构时,开态电流为9.712×103μA/μm,关态电流为65.03nA/μm,电流开关比为1.493×105;当器件采用非对称栅氧结构时,开态电流为9.965e3μA/μm,关态电流为59.77nA/μm,电流开关比为1.668×105。采用非对称栅氧结构的NMOS电流开关比提高11.7%。
参阅图8,本发明的制作过程如下:
(1)采用热氧化工艺,在硅单晶晶圆表面生长二氧化硅;
(2)采用分子束外延技术,在硅衬底上依次生长锗硅、硅、锗硅、硅、锗硅、硅堆叠薄膜;
(3)采用反应离子刻蚀技术,将硅锗层刻蚀成鱼鳍状,并进行一次热退火;
(4)采用化学气相沉积技术,淀积α-Si后光刻刻蚀形成虚拟栅;
(5)采用化学气相沉积技术,淀积双层电介质薄膜,形成源漏侧墙;
(6)采用反应离子刻蚀技术,各向异性刻蚀源漏位置双层电介质薄膜及硅-锗硅堆叠层,露出源漏区域;
(7)采用反应离子刻蚀技术,各向异性刻蚀顶层侧墙材料,露出虚拟栅后刻蚀虚拟栅,留下硅-锗硅堆叠层;
(8)刻蚀锗硅材料,释放纳米片;
(9)向纳米片间隙淀积SiO2,并采用各向异性刻蚀进行回蚀,漏端回蚀后SiO2厚度应小于源端;
(10)向纳米片间隙淀积HfO2,并采用各向异性刻蚀进行回蚀,保持栅氧化层物理总厚度一致;
(11)采用原子层沉积技术,沉积栅电极并刻蚀,露出边墙区域,沉积完成后进行一次快速热退火;
(12)采用化学气相沉积技术,在纳米片之间淀积双层介质形成边墙;
(13)采用化学气相沉积技术,淀积高掺杂浓度硅形成源漏;
(14)通过钨插塞将源漏电极引出,并采用化学机械抛光技术将源漏栅三个电极平坦化。

Claims (3)

1.一种非对称栅氧结构的纳米片环栅场效应晶体管,其特征在于,它包括:
数条垂直堆叠的沟道(1);
设于数条沟道(1)右端的源(6)及设于源(6)顶部的源极(7),设于数条沟道(1)左端的漏(8)及设于漏(8)顶部的漏极(9);
以沟道长度的二分之一处为界,沟道分为左右两部分,设于包裹在各沟道(1)右半部分外部的低介电常数栅极氧化物(2)、设于包裹在各沟道(1)左半部分外部的低介电常数栅极氧化物(3);
设于各沟道(1)右半部分、包裹在右半部分低介电常数栅极氧化物(2)外部、但长度略短于低介电常数栅极氧化物(2)的高介电常数栅极氧化物(4);
设于各沟道(1)左半部分、包裹在左半部分低介电常数栅极氧化物(3)外部、但长度略短于低介电常数栅极氧化物(3)的高介电常数栅极氧化物(5);
包裹在左半部分的高介电常数栅极氧化物(5)及右半部分的高介电常数栅极氧化物(4)外的栅极(10);
设于栅极(10)和右半部分高介电常数栅极氧化物(4)右侧的高介电常数源边墙(11);设于高介电常数源边墙(11)右侧、源(6)左侧的低介电常数源边墙(12);
设于栅极(10)和左半部分高介电常数栅极氧化物(5)左侧的高介电常数漏边墙(13);设于高介电常数漏边墙(13)左侧、漏(8)右侧的低介电常数漏边墙(14);
设于最底层栅极底部的高介电常数介质隔离层(15),设于高介电常数介质隔离层(15)底部的低介电常数介质隔离层(16),设于上述结构底部的衬底(17)。
2.根据权利要求1所述的非对称栅氧结构的纳米片环栅场效应晶体管,其特征在于,所述沟道(1)为硅纳米片、锗纳米片、锗硅纳米片、砷化镓纳米片或氧化锌纳米片;
所述源(6)和漏(8)为硅或锗硅;
所述低介电常数栅极氧化物为二氧化硅;
所述高介电常数栅极氧化物为二氧化铪、氧化钛、氮化硅、氧化铝、五氧化二钽或二氧化锆;
所述源极(7)、漏极(9)和栅极(10)为钨、氮化钛、铝或多晶硅;
所述高介电常数源边墙(11)和高介电常数漏边墙(13)为二氧化铪、氧化钛、五氧化二钽或二氧化锆;
所述低介电常数源边墙(12)与低介电常数漏边墙(14)为二氧化硅、氮化硅或氧化铝;
所述高介电常数介质隔离层(15)为二氧化铪、氧化钛、五氧化二钽或二氧化锆;所述低介电常数介质隔离层(16)为二氧化硅;
所述衬底(17)为绝缘体上硅即SOI、二氧化硅、蓝宝石、硅、锗、砷化镓或氮化镓。
3.根据权利要求1所述的非对称栅氧结构的纳米片环栅场效应晶体管,其特征在于,所述右半部分低介电常数栅极氧化物(2)及右半部分的高介电常数栅极氧化物(4)厚度之和与左半部分低介电常数栅极氧化物(3)及左半部分的高介电常数栅极氧化物(5)厚度之和相等;右半部分低介电常数栅极氧化物(2)厚度大于左半部分低介电常数栅极氧化物(3)厚度,右半部分的高介电常数栅极氧化物(4)厚度小于左半部分的高介电常数栅极氧化物(5)厚度。
CN201910880148.1A 2019-09-18 2019-09-18 一种非对称栅氧结构的纳米片环栅场效应晶体管 Active CN110690290B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910880148.1A CN110690290B (zh) 2019-09-18 2019-09-18 一种非对称栅氧结构的纳米片环栅场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910880148.1A CN110690290B (zh) 2019-09-18 2019-09-18 一种非对称栅氧结构的纳米片环栅场效应晶体管

Publications (2)

Publication Number Publication Date
CN110690290A true CN110690290A (zh) 2020-01-14
CN110690290B CN110690290B (zh) 2020-12-22

Family

ID=69109232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910880148.1A Active CN110690290B (zh) 2019-09-18 2019-09-18 一种非对称栅氧结构的纳米片环栅场效应晶体管

Country Status (1)

Country Link
CN (1) CN110690290B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785636A (zh) * 2020-07-17 2020-10-16 上海华力集成电路制造有限公司 并联栅极环绕结构鳍式晶体管及其制造方法
CN111785637A (zh) * 2020-07-17 2020-10-16 上海华力集成电路制造有限公司 栅极环绕结构的鳍式晶体管及其制造方法
CN112349591A (zh) * 2020-10-27 2021-02-09 中国科学院微电子研究所 改善寄生沟道效应的ns-fet及其制备方法
CN113782598A (zh) * 2021-08-23 2021-12-10 华东师范大学 一种非对称双栅结构的纳米管隧穿晶体管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465307B1 (en) * 2001-11-30 2002-10-15 Texas Instruments Incorporated Method for manufacturing an asymmetric I/O transistor
CN102194870A (zh) * 2010-03-17 2011-09-21 中国科学院微电子研究所 一种半导体器件及其制造方法
CN103489916A (zh) * 2013-09-24 2014-01-01 无锡市晶源微电子有限公司 阶梯栅氧化层有源漂移区结构的n型ldmos及其制作方法
CN104051498A (zh) * 2013-03-14 2014-09-17 台湾积体电路制造股份有限公司 具有阶梯氧化物的金属氧化物半导体场效应晶体管
CN104054181A (zh) * 2011-12-30 2014-09-17 英特尔公司 全包围栅晶体管的可变栅极宽度
CN105895694A (zh) * 2015-02-12 2016-08-24 台湾积体电路制造股份有限公司 堆叠的全环栅FinFET及其形成方法
CN106033778A (zh) * 2014-12-27 2016-10-19 中华映管股份有限公司 主动元件及其制作方法
CN109427905A (zh) * 2017-08-30 2019-03-05 台湾积体电路制造股份有限公司 制造半导体器件的方法以及半导体器件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465307B1 (en) * 2001-11-30 2002-10-15 Texas Instruments Incorporated Method for manufacturing an asymmetric I/O transistor
CN102194870A (zh) * 2010-03-17 2011-09-21 中国科学院微电子研究所 一种半导体器件及其制造方法
CN104054181A (zh) * 2011-12-30 2014-09-17 英特尔公司 全包围栅晶体管的可变栅极宽度
CN104051498A (zh) * 2013-03-14 2014-09-17 台湾积体电路制造股份有限公司 具有阶梯氧化物的金属氧化物半导体场效应晶体管
CN103489916A (zh) * 2013-09-24 2014-01-01 无锡市晶源微电子有限公司 阶梯栅氧化层有源漂移区结构的n型ldmos及其制作方法
CN106033778A (zh) * 2014-12-27 2016-10-19 中华映管股份有限公司 主动元件及其制作方法
CN105895694A (zh) * 2015-02-12 2016-08-24 台湾积体电路制造股份有限公司 堆叠的全环栅FinFET及其形成方法
CN109427905A (zh) * 2017-08-30 2019-03-05 台湾积体电路制造股份有限公司 制造半导体器件的方法以及半导体器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAYA MADAN,RISHU CHAUJAR: "Gate drain-overlapped-asymmetric gate dielectric-GAA-TFET: a solution for suppressed ambipolarity and enhanced ON state behavior", 《APPLIED PHYSICS A》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785636A (zh) * 2020-07-17 2020-10-16 上海华力集成电路制造有限公司 并联栅极环绕结构鳍式晶体管及其制造方法
CN111785637A (zh) * 2020-07-17 2020-10-16 上海华力集成电路制造有限公司 栅极环绕结构的鳍式晶体管及其制造方法
CN112349591A (zh) * 2020-10-27 2021-02-09 中国科学院微电子研究所 改善寄生沟道效应的ns-fet及其制备方法
CN113782598A (zh) * 2021-08-23 2021-12-10 华东师范大学 一种非对称双栅结构的纳米管隧穿晶体管
CN113782598B (zh) * 2021-08-23 2023-06-23 华东师范大学 一种非对称双栅结构的纳米管隧穿晶体管

Also Published As

Publication number Publication date
CN110690290B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN110690290B (zh) 一种非对称栅氧结构的纳米片环栅场效应晶体管
CN102217074B (zh) 鳍式场效应晶体管(finfet)
EP3534407B1 (en) Field effect transistor and manufacturing method therefor
CN100517759C (zh) 半导体器件及其制造方法
US8120073B2 (en) Trigate transistor having extended metal gate electrode
KR101430820B1 (ko) 이중 게이트 횡형 mosfet
CN103928327B (zh) 鳍式场效应晶体管及其形成方法
US9679962B2 (en) FinFET and method of manufacturing the same
CN103545370A (zh) 用于功率mos晶体管的装置和方法
CN102214684A (zh) 一种具有悬空源漏的半导体结构及其形成方法
US9640660B2 (en) Asymmetrical FinFET structure and method of manufacturing same
WO2012116528A1 (en) Tunneling field effect transistor and method for forming the same
WO2012100563A1 (zh) 一种锗基肖特基n型场效应晶体管的制备方法
US20160133695A1 (en) A method of inhibiting leakage current of tunneling transistor, and the corresponding device and a preparation method thereof
CN102142376A (zh) 硅纳米线围栅器件的制备方法
KR101108915B1 (ko) 고유전율막을 갖는 터널링 전계효과 트랜지스터
JP2008028263A (ja) 半導体装置
CN113130489A (zh) 一种半导体器件的制造方法
US11315942B2 (en) Nonvolatile memory device having a memory-transistor gate-electrode provided with a charge-trapping gate-dielectric layer and two sidewall select-transistor gate-electrodes
CN104183500A (zh) 在FinFET器件上形成离子注入侧墙保护层的方法
CN113838803B (zh) 半导体结构及其形成方法
KR20240038102A (ko) 최하부 유전체 아이솔레이션 층들을 형성하는 방법
KR102131902B1 (ko) 터널링 전계효과 트랜지스터 및 이의 제조방법
CN103383961A (zh) FinFET结构及其制造方法
CN110911494B (zh) 一种非对称侧墙结构的纳米片环栅场效应晶体管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant