CN110668822B - 一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法 - Google Patents

一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法 Download PDF

Info

Publication number
CN110668822B
CN110668822B CN201911106719.2A CN201911106719A CN110668822B CN 110668822 B CN110668822 B CN 110668822B CN 201911106719 A CN201911106719 A CN 201911106719A CN 110668822 B CN110668822 B CN 110668822B
Authority
CN
China
Prior art keywords
diboride
solid solution
carbide
powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911106719.2A
Other languages
English (en)
Other versions
CN110668822A (zh
Inventor
王玉金
霍思嘉
陈磊
孔庆易
刘鑫睿
周玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201911106719.2A priority Critical patent/CN110668822B/zh
Publication of CN110668822A publication Critical patent/CN110668822A/zh
Application granted granted Critical
Publication of CN110668822B publication Critical patent/CN110668822B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种反应热压烧结法低温制备二硼化物‑碳化物固溶体复相陶瓷的方法,属于复相陶瓷材料技术领域。本申请解决了现有二硼化物‑碳化物复相陶瓷烧结温度较高的问题。本发明的方法选择能够发生固相交换的过渡金属二硼化物和碳化物,采用高能球磨工艺制备复合粉体,在真空或惰性气氛保护,进行反应热压烧结制备得到致密的二硼化物‑碳化物固溶体复相陶瓷。本方法充分利用了烧结过程中固相反应及其固溶耦合协同过程,与传统直接采用目标二硼化物和碳化物粉体制备复相陶瓷材料热压烧结工艺相比,能够降低材料烧结温度250℃~400℃。且低温烧结保证了材料晶粒尺寸均匀细小,得到的复相陶瓷的强度和韧性均得到显著提升。

Description

一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相 陶瓷的方法
技术领域
本发明涉及一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法,属于复相陶瓷材料技术领域。
背景技术
过渡金属二硼化物(MB2,如TiB2,ZrB2,HfB2,NbB2,TaB2等)具有优异的物理和化学性能,如高熔点、高硬度、高模量,良好的抗热震和抗氧化性能等。然而,由于MB2自身具有强共价键和低自扩散系数,在无烧结助剂情况下低温(<2000℃)制备MB2陶瓷材料几乎不可能实现。长期以来业界一直将难熔金属碳化物(B4C,VC,TiC,ZrC,SiC,WC等)作为MB2的烧结助剂。碳化物作为烧结助剂的最主要机理是碳化物能够和MB2粉体表面的氧化物(如MO2和B2O3)反应,而起到除氧的作用。且大量文献结果已经表明碳化物的除氧作用对于MB2的致密化有着非常重要的作用,且考虑到MB2粉体表面的氧杂质含量一般较少,通常添加助剂碳化物的量不超过10vol.%。目前过渡金属二硼化物和碳化物反应热压制备固溶体复相陶瓷的研究为见报道。
发明内容
本发明为了解决现有二硼化物-碳化物复相陶瓷烧结温度较高的问题,提供一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法。
本发明的技术方案:
一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法,该方法的操作步骤如下:
步骤一、将二硼化物粉体和含碳化物粉体混合后,球磨,得到复合粉体;
所述的复合粉体中二硼化物粉体的摩尔分数为45%~55%,余量为含碳化物粉体;
所述的复合粉体为二硼化锆粉体和碳化钛粉体组成的混合物、二硼化铪粉体和碳化钛粉体组成的混合物、二硼化铌粉体和碳化钛粉体组成的混合物、二硼化钽粉体和碳化钛粉体组成的混合物、二硼化铌粉体和碳化锆粉体组成的混合物、二硼化铪粉体和碳化锆粉体组成的混合物、二硼化钽粉体和碳化锆粉体组成的混合物、二硼化铪粉体和碳化铌粉体组成的混合物、二硼化钽粉体和碳化铌粉体组成的混合物或二硼化钽粉体和碳化铪粉体组成的混合物;
步骤二,将步骤一球磨后的复合粉体置于模具中进行烧结,得到二硼化物-碳化物固溶体复相陶瓷。
优选的:所述的复合粉体中二硼化物粉体的摩尔分数为50%,余量为含碳化物粉体。
优选的:所述的步骤一利用高能球磨机球磨的条件为:球料比为(10~100):1,转速为250r/min~800r/min,球磨时间为5h~30h。
优选的:所述的步骤二的烧结为热压烧结。
优选的:所述的步骤二中热压烧结条件为:烧结温度1700℃~2200℃,保温时间0.5h~10h,烧结压力30MPa~80MPa,升温速率10℃/min~100℃/min。
优选的:所述的烧结温度1800℃~2000℃,保温时间0.5h~2h,烧结压力30MPa~80MPa,升温速率10℃/min~100℃/min。
本发明具有以下有益效果:本发明的方法选择能够发生固相交换的过渡金属二硼化物和碳化物,采用高能球磨工艺制备复合粉体,在真空或惰性气氛保护,进行反应热压烧结制备得到致密的二硼化物-碳化物固溶体复相陶瓷。本方法提出低温反应热压烧结制备方法,充分利用了烧结过程中固相反应及其固溶耦合协同过程,与传统直接采用目标二硼化物和碳化物粉体制备复相陶瓷材料热压烧结工艺相比,能够降低材料烧结温度250℃~400℃。且低温烧结保证了材料晶粒尺寸均匀细小,得到的复相陶瓷的强度和韧性均得到显著提升,室温下的硬度为高达33.1±0.7GPa,三点弯曲强度为高达941±30MPa,断裂韧性高达6.56MPa·m1/2
附图说明
图1为具体实施方式2制备的复相陶瓷材料的XRD示意图;
图2为具体实施方式2制备的复相陶瓷材料的表面SEM照片;
图3为具体实施方式2制备的复相陶瓷材料的表面EDS面扫描图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明均为常规方法。
具体实施方式1:
(1)将二硼化锆粉体和碳化钛粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比40:1,球磨时间20h,转速425r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以30℃/min升温至1750℃,到温加压30MPa,并保温1h,再以30℃/min降至室温;脱模,得到(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(i)。
对(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(i)进行力学性能表征,结果表面,室温下该材料的硬度为27.3±1.0GPa,三点弯曲强度为597±32MPa,断裂韧性为5.01MPa·m1/2。该材料密度为5.61g·cm3
具体实施方式2:
(1)将二硼化锆粉体和碳化钛粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比40:1,球磨时间20h,转速425r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以30℃/min升温至1800℃,到温加压30MPa,并保温1h,再以30℃/min降至室温;脱模,得到(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(ii)。
对(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(ii)进行XRD测试,测试结果如图1所示。由图1可知二硼化物和金属碳化物发生固相交换反应,同时产物之间能够相互固溶,得到硼化物和碳化物固溶体复相陶瓷,如二硼化锆可以和碳化钛发生置换反应如下:
ZrB2+TiC→TiB2+ZrC→(Ti,Zr)B2+(Zr,Ti)C
由于目前的研究中,碳化物仅仅处于烧结助剂的地位,上述反应和产物的固溶过程被研究者忽视,特别是当碳化物的摩尔含量与二硼化物接近时。相较于MB2自扩散传质,二硼化物和碳化物之间反应-固溶驱动的互扩散传质对于材料的低温致密化具有重要意义。
对(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(ii)的表面进行进行SEM测试,测试结果如图2所示。由图2可知复相陶瓷(ii)由白色相A和灰色相B两相组成,材料完全致密,组织分布均匀,晶粒尺寸细小。结合能谱分析可知,白色相A和灰色相B均含有显著的阳离子固溶,为固溶体相,其中白色相为(Zr,Ti)C,灰色相为(Ti,Zr)B2。能谱定量计算表明(Zr,Ti)C和(Ti,Zr)B2中阳离子固溶度均约为12%。由图3复相陶瓷(ii)EDS面扫描分析可知,材料由富Ti相和富Zr相组成,在单相内元素分布基本均匀。
对(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(ii)进行力学性能表征,结果表面,室温下该材料的硬度为27.9±0.8GPa,三点弯曲强度为705±48MPa,断裂韧性为5.32MPa·m1/2。该材料密度为5.65g·cm3
具体实施方式3:
(1)将二硼化锆粉体和碳化钛粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比40:1,球磨时间20h,转速425r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以30℃/min升温至1900℃,到温加压30MPa,并保温1h,再以30℃/min降至室温;脱模,得到(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(iii)。
对(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(iii)进行力学性能表征,结果表面,室温下该材料的硬度为27.3±1.5GPa,三点弯曲强度为709±33MPa,断裂韧性为5.61MPa·m1/2。该材料密度为5.65g·cm3
具体实施方式4:
(1)将二硼化锆粉体和碳化钛粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比40:1,球磨时间20h,转速425r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(iiii)。
对(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(iiii)进行力学性能表征,结果表面,室温下该材料的硬度为27.2±1.1GPa,三点弯曲强度为572±24MPa,断裂韧性为5.15MPa·m1 /2。该材料密度为5.69g·cm3
具体实施方式5:
(1)将二硼化铌粉体和碳化钛粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比10:1,球磨时间30h,转速500r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Ti,Nb)B2-(Nb,Ti)C固溶体复相陶瓷。
对(Ti,Nb)B2-(Nb,Ti)C固溶体复相陶瓷进行力学性能表征,结果表面,室温下该材料的硬度为30.6±1.8GPa,三点弯曲强度为676±9.8MPa,断裂韧性为3.92MPa·m1/2。该材料密度为6.03g·cm3
具体实施方式6:
(1)将二硼化铪粉体和碳化钛粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比10:1,球磨时间30h,转速500r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Ti,Hf)B2-(Hf,Ti)C固溶体复相陶瓷。
对(Ti,Hf)B2-(Hf,Ti)C固溶体复相陶瓷进行力学性能表征,结果表面,室温下该材料的硬度为29.4±2.7GPa,三点弯曲强度为683±31MPa,断裂韧性为5.26MPa·m1/2。该材料密度为8.52g·cm3
具体实施方式7:
(1)将二硼化钽粉体和碳化钛粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比10:1,球磨时间30h,转速500r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Ti,Ta)B2-(Ta,Ti)C固溶体复相陶瓷。
对(Ti,Ta)B2-(Ta,Ti)C固溶体复相陶瓷进行力学性能表征,结果表面,室温下该材料的硬度为32.4±2.7GPa,三点弯曲强度为580±37MPa,断裂韧性为3.29MPa·m1/2。该材料密度为9.12g·cm3
具体实施方式8:
(1)将二硼化铌粉体和碳化锆粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比10:1,球磨时间30h,转速500r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Zr,Nb)B2-(Nb,Zr)C固溶体复相陶瓷。
对(Zr,Nb)B2-(Nb,Zr)C固溶体复相陶瓷进行力学性能表征,结果表面,室温下该材料的硬度为27.8±1.4GPa,三点弯曲强度为626±48MPa,断裂韧性为5.03MPa·m1/2。该材料密度为6.81g·cm3
具体实施方式9:
(1)将二硼化铪粉体和碳化锆粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比10:1,球磨时间30h,转速500r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Zr,Hf)B2-(Hf,Zr)C固溶体复相陶瓷。
对(Zr,Hf)B2-(Hf,Zr)C固溶体复相陶瓷进行力学性能表征,结果表面,室温下该材料的硬度为30.8±0.4GPa,三点弯曲强度为716±47MPa,断裂韧性为5.95MPa·m1/2。该材料密度为9.04g·cm3
具体实施方式10:
(1)将二硼化钽粉体和碳化锆粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比10:1,球磨时间30h,转速500r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Zr,Ta)B2-(Ta,Zr)C固溶体复相陶瓷。
对(Zr,Hf)B2-(Hf,Zr)C固溶体复相陶瓷进行力学性能表征,结果表面,室温下该材料的硬度为28.1±0.4GPa,三点弯曲强度为594±30MPa,断裂韧性为4.92MPa·m1/2。该材料密度为9.61g·cm3
具体实施方式11:
(1)将二硼化铪粉体和碳化铌粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比10:1,球磨时间30h,转速500r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Nb,Hf)B2-(Hf,Nb)C固溶体复相陶瓷。
对(Nb,Hf)B2-(Hf,Nb)C固溶体复相陶瓷进行力学性能表征,结果表面,室温下该材料的硬度为33.1±0.7GPa,三点弯曲强度为941±30MPa,断裂韧性为6.56MPa·m1/2。该材料密度为9.72g·cm3
具体实施方式12:
(1)将二硼化钽粉体和碳化铌粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比10:1,球磨时间30h,转速500r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Nb,Ta)B2-(Ta,Nb)C固溶体复相陶瓷。
对(Nb,Ta)B2-(Ta,Nb)C固溶体复相陶瓷进行力学性能表征,结果表面,室温下该材料的硬度为35.2±0.7GPa,三点弯曲强度为822±101MPa,断裂韧性为5.27MPa·m1/2。该材料密度为10.38g·cm3
具体实施方式13:
(1)将二硼化钽粉体和碳化铪粉体的按照摩尔质量比为1:1混合,利用高能球磨机球磨,球磨条件为:球料比10:1,球磨时间30h,转速500r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以20℃/min升温至2000℃,到温加压30MPa,并保温1h,再以20℃/min降至室温;脱模,得到(Hf,Ta)B2-(Ta,Hf)C固溶体复相陶瓷。
对(Hf,Ta)B2-(Ta,Hf)C固溶体复相陶瓷进行力学性能表征,结果表面,室温下该材料的硬度为34.7±2.5GPa,三点弯曲强度为605±47MPa,断裂韧性为6.01MPa·m1/2。该材料密度为12.61g·cm3
具体实施方式14:
(1)将二硼化锆粉体和碳化钛粉体的按照摩尔质量比为9:11混合,利用高能球磨机球磨,球磨条件为:球料比40:1,球磨时间20h,转速425r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以30℃/min升温至1800℃,到温加压30MPa,并保温1h,再以30℃/min降至室温;脱模,得到(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(v)。
对(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(v)进行力学性能表征,结果表面,室温下该材料的硬度为29.8±1.2GPa,三点弯曲强度为753±87MPa,断裂韧性为6.67MPa·m1/2。该材料密度为5.57g·cm3
具体实施方式15:
(1)将二硼化锆粉体和碳化钛粉体的按照摩尔质量比为11:9混合,利用高能球磨机球磨,球磨条件为:球料比40:1,球磨时间20h,转速425r/min,得到成分均匀颗粒细小的复合粉体;
(2)将复合粉体置于模具中,在真空或惰性气氛下,将材料以30℃/min升温至1800℃,到温加压30MPa,并保温1h,再以30℃/min降至室温;脱模,得到(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(vi)。
对(Ti,Zr)B2-(Zr,Ti)C固溶体复相陶瓷(vi)进行力学性能表征,结果表面,室温下该材料的硬度为27.0±0.6GPa,三点弯曲强度为689±11MPa,断裂韧性为5.26MPa·m1/2。该材料密度为5.68g·cm3

Claims (3)

1.一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法,其特征在于该方法的操作步骤如下:
步骤一、将二硼化锆粉体和碳化钛粉体的按照摩尔质量比为1:1混合后,高能球磨,得到复合粉体;
步骤二,将步骤一高能球磨后的复合粉体置于模具中进行热压烧结,得到二硼化物-碳化物固溶体复相陶瓷;
所述的步骤一利用高能球磨机球磨的条件为:球料比为(10~100):1,转速为250 r/min~800 r/min,球磨时间为5 h ~30 h;
所述的步骤二中热压烧结条件为:烧结温度为1700 ℃~2200 ℃,保温时间为0.5 h ~10 h,烧结压力为30 MPa ~80 MPa,升温速率为10 ℃/min ~100 ℃/min。
2.根据权利要求1所述一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法,其特征在于:所述的烧结温度为1800 ℃~2000 ℃。
3.根据权利要求1所述一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法,其特征在于:所述的保温时间为0.5 h ~2 h。
CN201911106719.2A 2019-11-13 2019-11-13 一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法 Active CN110668822B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911106719.2A CN110668822B (zh) 2019-11-13 2019-11-13 一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911106719.2A CN110668822B (zh) 2019-11-13 2019-11-13 一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法

Publications (2)

Publication Number Publication Date
CN110668822A CN110668822A (zh) 2020-01-10
CN110668822B true CN110668822B (zh) 2021-10-08

Family

ID=69087083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911106719.2A Active CN110668822B (zh) 2019-11-13 2019-11-13 一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法

Country Status (1)

Country Link
CN (1) CN110668822B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109665848B (zh) * 2019-01-16 2021-07-09 广东工业大学 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN113248261B (zh) * 2021-06-16 2022-05-10 北京理工大学 一种二硅化钼包覆硼化钽-碳化铪球形粉体及其制备方法
CN114315359B (zh) * 2022-01-04 2022-09-06 哈尔滨工业大学 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN114262229B (zh) * 2022-01-04 2022-09-16 哈尔滨工业大学 一种高强韧二硼化物-碳化物复相高熵陶瓷的制备方法和应用
CN114394837A (zh) * 2022-02-08 2022-04-26 哈尔滨工业大学 一种抗氧化性的二硼化物-碳化物固溶体陶瓷的制备方法和应用
CN114804888A (zh) * 2022-05-06 2022-07-29 郑州大学 一种三元二硼化物固溶体基复合陶瓷的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503427B (zh) * 2011-11-10 2013-06-05 哈尔滨工业大学 一种高韧性硼化物-碳化物复相陶瓷的制备方法
CN103073332B (zh) * 2013-02-05 2014-07-16 中国科学院上海硅酸盐研究所 具有纳米孔结构的过渡金属碳化物陶瓷及其制备方法
CN103992113B (zh) * 2014-04-28 2016-01-20 广东工业大学 一种B4C-ZrB2复相陶瓷材料的制备方法
CN104016681B (zh) * 2014-06-25 2016-04-27 中国人民解放军国防科学技术大学 一种硼化物及其复相陶瓷粉体的固相制备方法
CN104591743B (zh) * 2015-02-06 2016-06-22 淄博硅元泰晟陶瓷新材料有限公司 氮化硅-碳化铪复相陶瓷的制备方法

Also Published As

Publication number Publication date
CN110668822A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN110668822B (zh) 一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法
Khodaei et al. Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites
CN106834878B (zh) 一种微波烧结制备内生性高熵合金基复合材料的方法
JP3501317B2 (ja) 高熱伝導率窒化ケイ素質焼結体および窒化ケイ素質焼結体製絶縁基板
Wood et al. Microstructural development of calcium alpha‐SiAlON ceramics with elongated grains
JP2736380B2 (ja) 炭化珪素質材料の製造方法及び原料組成物
CN110655408B (zh) 一种单相碳硼化物固溶体陶瓷材料的制备方法
CN108751997B (zh) 一种B4C-TiB2-SiC复合陶瓷块体及其快速制备方法
CN114315359B (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN110282983B (zh) 一种无中间相的高硬度TiB2-B4C陶瓷复合材料制备方法及其应用
CN108546130B (zh) 一种超高温陶瓷及其制备方法
Jou et al. High temperature creep of SiC densified using a transient liquid phase
CN113416077A (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
US5391339A (en) Continuous process for producing alumina-titanium carbide composites
CN114394837A (zh) 一种抗氧化性的二硼化物-碳化物固溶体陶瓷的制备方法和应用
CN114262229B (zh) 一种高强韧二硼化物-碳化物复相高熵陶瓷的制备方法和应用
Sun et al. Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders
CN113582673A (zh) 一种氧化铝/钛硅碳层状复合材料及其原位制备方法
JPH0812441A (ja) 窒化珪素質焼結体の製造方法
JP2651935B2 (ja) 複合材料の製造方法および原料組成物
JP2511696B2 (ja) 高靭性酸化アルミニウム基焼結体及びその製造方法
Zhang et al. Pressureless sintering of ZrB2-SiC ceramics incorporating sol-gel synthesized ultra-fine ceramic powders
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
Chkhartishvili et al. New low-temperature method of synthesis of boron carbide matrix ceramics ultra-dispersive powders and their spark plasma sintering
CN114133250B (zh) 一种反应烧结制备组分可调的含bn复相陶瓷制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant