CN110577272A - 一种含钙有机磷系阻垢剂废水的处理方法 - Google Patents

一种含钙有机磷系阻垢剂废水的处理方法 Download PDF

Info

Publication number
CN110577272A
CN110577272A CN201910837567.7A CN201910837567A CN110577272A CN 110577272 A CN110577272 A CN 110577272A CN 201910837567 A CN201910837567 A CN 201910837567A CN 110577272 A CN110577272 A CN 110577272A
Authority
CN
China
Prior art keywords
wastewater
calcium
scale inhibitor
organic phosphorus
containing organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910837567.7A
Other languages
English (en)
Other versions
CN110577272B (zh
Inventor
徐炎华
刘珍雪
刘璧铭
宋文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910837567.7A priority Critical patent/CN110577272B/zh
Publication of CN110577272A publication Critical patent/CN110577272A/zh
Application granted granted Critical
Publication of CN110577272B publication Critical patent/CN110577272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明涉及一种含钙有机磷系阻垢剂废水的处理方法。将水合氧化铁(HFO)负载在强碱性阴离子交换树脂(D201)上,制成负载型HFO‑D201复合纳米催化剂。在非均相类芬顿体系中,本发明制得的催化剂能够催化产生强氧化性的羟基自由基降解废水中的有机磷酸盐,同时对降解产物进行吸附,并能够依于钙离子和无机磷的相互作用二次协同强化去除总磷。构建的非均相HFO‑D201催化剂一方面能够提高类芬顿法中H2O2对有机磷降解效率,高程度除磷,减少反应时间,同时降低能耗且无二次污染。

Description

一种含钙有机磷系阻垢剂废水的处理方法
技术领域
本发明属于有机磷废水处理工艺领域,具体涉及一种含钙有机磷系阻垢剂废水的处理方法。
背景技术
在水体中投加阻垢剂在现今已成为阻止水垢和保护设备管道的一项重要方法,但同时引发新的环境问题,使出水中的有机磷含量增加,超出排放标准。有机磷系阻垢剂废水的重要特征是含有大分子量的难处理、十分稳定的有机磷,不易生物降解。羟基乙叉二膦酸(HEDP)是工业中应用较为广泛的一种有机磷系阻垢剂,其碳原子与磷原子直接相连,不易破键,并且能够与多种离子反应生成络合物,尤其能与Ca2+生成稳定的环形螯合物。化学沉淀、生化等传统水处理方法往往达不到很好的效果。因此对于含钙有机磷系阻垢剂废水急需采取新的有效措施进行处理。
有机磷酸盐现今多采取的手段是将其氧化转化为无机磷酸盐,如次亚磷盐或正磷盐,再二次沉淀处理去除总磷,可简单的划分为两步法和单步法。典型的两步法是Fenton氧化-沉淀法,具体来说是利用Fe2+催化H2O2产生的具有高氧化还原电位的羟基自由基(·OH),将有机磷化合物转变为无机磷,再加化学药剂实现总磷去除,但是操作过程繁杂,适用范围窄,药剂消耗量大,易产生剩余污泥等二次污染问题。与两步法相比,单步法能够在一个体系中有机磷酸盐的去除,具有操作简便易行的优势,然而,单步法在实际应用过程中的一些挑战仍然在阻碍它们的发展,其难点主要在于在同一个体系中实现有机磷的氧化分解和去除,且避免二次污染。
非均相类Fenton体系解决了传统Fenton法在运行过程对pH的严苛要求、铁泥产生、H2O2利用率低的问题,并且性质稳定的非均相催化剂能够提高目标污染物的降解效率。水合氧化铁-树脂D201(HFO-D201)催化剂是一种双功能复合纳米催化剂,利用表面含铁的活性组分催化H2O2降解有机磷酸盐,然后通过吸附过程去除,另外液相中的Ca2+能与吸附的无机磷相互作用形成P-Ca-P三元复合物,强化材料对总磷的去除。能够实现单步法处理含钙有机磷阻垢剂废水,解决有机磷处理不彻底的问题,同时降低能耗,减少二次污染。
发明内容
本发明的目的是提供一种含钙有机磷系阻垢剂废水的处理方法,利用HFO-D201催化剂具备催化氧化和吸附的双重作用,在非均相类芬顿体系中对有机磷实现氧化降解并吸附产物无机磷,另由于液相中钙离子和无机磷自主的相互作用,催化剂再次强化吸附,高程度降低总磷。
本发明的目的可通过如下技术方案实现:一种含钙有机磷系阻垢剂废水的处理方法,其特征在于由强碱性阴离子交换树脂(D201)以及负载在树脂上的水合氧化铁构成的非均相催化剂催化氧化含钙有机磷阻垢剂废水,并对无机磷产物强化吸附,具体步骤如下:
1)将(六水)三氯化铁、氯化钠和盐酸溶解于纯水中,混合搅拌均匀,得到FeCl4 -前驱体溶液;
2)取预处理过的大孔树脂D201加入FeCl4 -前驱体溶液中,经冰浴,超声反应2~4h;
3)配制氢氧化钠-氯化钠混合溶液,将经步骤2)处理得到的树脂加入到氢氧化钠-氯化钠混合溶液中,经冰浴,超声反应2~4h,纯水洗涤,真空干燥,得到HFO-D201催化剂;
4)向含钙有机磷系阻垢剂废水中加入HFO-D201催化剂,调节pH后,加入双氧水,然后置于震荡床中,在200~300rpm下室温震荡反应8~24h。
优选步骤1)中所述的FeCl4 -前驱体溶液中三氯化铁摩尔浓度为0.2~2.0mol/L,氯化钠的摩尔浓度为0.2~1.0mol/L,盐酸的摩尔浓度为0.2~1.0mol/L。
优选步骤2)中大孔树脂D201的预处理过程为:首先用清水对购买的大孔树脂D201进行冲洗,洗至出水清澈无混浊、无杂质,而后用质量分数为4%~5%的NaOH和HCI依次交替浸泡2~4h,在碱酸浸泡之间清水冲洗至出水接近中性,重复2~3次,其中每次酸碱用量与树脂体积比为1~3:1;然后50~60℃温度下烘干,过60目筛,备用。
优选步骤2)中FeCl4 -前驱体溶液中大孔树脂D201的加入质量与FeCl4 -前驱体溶液的体积比为5~10g/L。
优选步骤3)中所述的氢氧化钠-氯化钠混合溶液中氢氧化钠摩尔浓度为0.2~2.0mol/L,氯化钠的摩尔浓度为0.2~1.0mol/L;大孔树脂D201的加入质量与氢氧化钠-氯化钠混合溶液的体积比为5~10g/L。
优选步骤4)中所述的含钙有机磷系阻垢剂废水为钙-羟基乙叉二膦酸(Ca2+-HEDP)废水;其中Ca2+浓度为40~200mg/L,HEDP浓度为10~50mg/L。
优选步骤4)中所述的含钙有机磷系阻垢剂废水中HFO-D201催化剂加入质量与含钙有机磷系阻垢剂废水的体积比为0.4~4.0g/L。
优选步骤4)中所述pH值的范围为2~9;采用0.05~0.15mmol/L的盐酸进行调节。
优选步骤4)中所述的双氧水的质量浓度为30%;双氧水与含钙有机磷系阻垢剂废水的体积比为1‰~8‰:1。
检测本发明提供的方法HEDP和总磷的去除率:
将反应后的废水经孔径为0.45μm水系滤膜过滤,测定液体中HEDP和总磷浓度,测定结果HEDP的去除率能达到80.2%~94.6%;总磷的去除率能达到77.4%~90.2%;其中HEDP采用液相色谱法测定,总磷采用钼酸铵分光光度法(GB11893-89)测定。
本发明中,水合氧化铁-树脂D201(HFO-D201)复合纳米催化剂在类芬顿体系产生羟基自由基(·OH)对含钙有机磷系阻垢剂废水的降解吸附反应主要归结于以下几个方面的创新机理:
(1)在颗粒HFO-D201表面含有丰富的活性基团与水合氧化铁生成稳定的含活性组分铁的络合物;
(2)HFO-D201结构中的络合态的活性组分铁对双氧水的非均相催化;
(3)HFO-D201表面丰富的官能团和活性铁络合物对无机磷有很好的去除作用;
(4)HFO-D201表面的活性组分铁、降解产生的无机磷、钙离子三者通过配体交换、内部络合作用二次协同强化对总磷的去除。
有益效果:
与现有技术相比,本发明中将水合氧化铁负载在大孔树脂D201上,制成双功能负载型HFO-D201复合纳米催化剂,非均相类芬顿体系产生强氧化性的羟基自由基破坏碳磷键降解有机磷酸盐,同时HFO-D201催化剂对有机磷降解产物进行多种作用机制的吸附。本发明构建非均相HFO-D201催化剂类芬顿体系能够提高有机磷降解效率、自主强化无机磷的吸附、解决有机磷处理不彻底的问题,同时降低能耗,减少二次污染。
具体实施方式
实施例1:
一种含钙有机磷系阻垢剂废水的处理方法,包括以下步骤:
1)用市售通用大孔树脂D201,经预处理:用清水对购买的大孔树脂D201进行冲洗,洗至清澈无混浊、无杂质。而后用质量分数为4%的NaOH和HCI依次交替浸泡2h,在碱酸之间大量清水淋洗至接近中性,重复2次,每次酸碱用量与树脂体积比为2:1,然后55℃温度下烘干,过60目筛,备用;
2)配制200mL的FeCl4 -前驱体溶液,溶液中六水三氯化铁摩尔浓度为0.3mol/L,氯化钠的摩尔浓度为0.2mol/L,盐酸的摩尔浓度为0.2mol/L;将1.2gD201加入到上述FeCl4 -前驱体溶液中,冰浴、超声反应3h后,抽滤,再将得到的树脂加入到200mL氢氧化钠-氯化钠混合溶液中,溶液中氢氧化钠的摩尔浓度为0.2mol/L,氯化钠的摩尔浓度为0.2mol/L,冰浴、超声反应3h,纯水洗涤,真空干燥,得到HFO-D201催化剂;
3)将0.2g的HFO-D201催化剂投加到200mL的Ca2+-HEDP废水中,废水中Ca2+=80mg/L,HEDP=10mg/L,用0.05mol/L的HCl溶液调节pH至2.0后,加入0.2mL质量浓度为30%的双氧水后,将反应试管置于震荡床,震荡速率为200rpm,反应至8h时间;
取反应后的废水用孔径为0.45μm水系滤膜过滤;测定上清液中的HEDP和总磷的浓度,测定结果HEDP去除率能达到80.6%;总磷去除率能达到77.4%。HEDP和总磷分别采用液相色谱法和钼酸铵分光光度法测定。
实施例2:
一种含钙有机磷阻垢剂废水的处理方法,包括以下步骤:
1)用市售通用大孔树脂D201,经预处理:用清水对购买的大孔树脂D201进行冲洗,洗至清澈无混浊、无杂质。而后用质量分数为5%的NaOH和HCI依次交替浸泡4h,在碱酸之间大量清水淋洗至接近中性,重复3次,每次酸碱用量与树脂体积比为3:1,然后55℃温度下烘干,过60目筛,备用;
2)配制200mL的FeCl4 -前驱体溶液,溶液中六水三氯化铁摩尔浓度为1.5mol/L,氯化钠的摩尔浓度为0.4mol/L,盐酸的摩尔浓度为0.8mol/L;将1gD201加入到上述FeCl4 -前驱体溶液中,冰浴、超声反应2h后,抽滤,再将得到的树脂加入到200mL氢氧化钠-氯化钠混合溶液中,溶液中氢氧化钠的摩尔浓度为1.0mol/L,氯化钠的摩尔浓度为0.6mol/L,冰浴、超声反应2h,纯水洗涤,真空干燥,得到HFO-D201催化剂;
3)将0.1g的HFO-D201催化剂投加到200mL的Ca2+-HEDP废水中,废水中Ca2+=40mg/L,HEDP=20mg/L,用0.1mol/L的HCl溶液调节pH至4.0后,加入0.5mL质量浓度为30%的双氧水后,将反应试管置于震荡床,震荡速率为260rpm,反应至12h时间;
取反应后的废水用孔径为0.45μm水系滤膜过滤;测定上清液中的HEDP和总磷的浓度,测定结果HEDP去除率能达到94.6%;总磷去除率能达到90.2%。HEDP和总磷分别采用液相色谱法和钼酸铵分光光度法测定。
实施例3:
一种含钙有机磷阻垢剂废水的处理方法,包括以下步骤:
1)用市售通用大孔树脂D201,经预处理:用清水对购买的大孔树脂D201进行冲洗,洗至清澈无混浊、无杂质。而后用质量分数为5%的NaOH和HCI依次交替浸泡2h,在碱酸之间大量清水淋洗至接近中性,重复2次,每次酸碱用量与树脂体积比为2:1,然后60℃温度下烘干,过60目筛,备用。
2)配制200mL的FeCl4 -前驱体溶液,溶液中六水三氯化铁摩尔浓度为1.0mol/L,氯化钠的摩尔浓度为0.4mol/L,盐酸的摩尔浓度为0.4mol/L;将1.5gD201加入到上述FeCl4 -前驱体溶液中,冰浴、超声反应4h后,再将上述树脂加入到200mL氢氧化钠-氯化钠混合溶液中,溶液中氢氧化钠的摩尔浓度为0.8mol/L,氯化钠的摩尔浓度为0.4mol/L,冰浴超声反应4h,纯水洗涤,真空干燥,得到HFO-D201催化剂;
3)将0.4g的HFO-D201催化剂投加到200mL的Ca2+-HEDP废水中,废水中Ca2+=160mg/L,HEDP=40mg/L,用0.1mol/L的HCl溶液调节pH至6.0后,加入1.0mL质量浓度为30%的双氧水后,将反应试管置于震荡床,震荡速率为280rpm,反应至18h时间;
取反应后的废水用孔径为0.45μm水系滤膜过滤;测定上清液中的HEDP和总磷的浓度,测定结果HEDP去除率能达到85.8%;总磷去除率能达到82.9%。HEDP和总磷分别采用液相色谱法和钼酸铵分光光度法测定。
实施例4:
一种含钙有机磷阻垢剂废水的处理方法,包括以下步骤:
1)用市售通用大孔树脂D201,经预处理:用清水对购买的大孔树脂D201进行冲洗,洗至清澈无混浊、无杂质。而后用质量分数为4%的NaOH和HCI依次交替浸泡3h,在碱酸之间大量清水淋洗至接近中性,重复3次,每次酸碱用量与树脂体积比为1:1,然后60℃温度下烘干,过60目筛,备用。
2)配制200mL的FeCl4 -前驱体溶液,溶液中六水三氯化铁摩尔浓度为2.0mol/L,氯化钠的摩尔浓度为1.0mol/L,盐酸的摩尔浓度为1.0mol/L;将2gD201加入到上述FeCl4 -前驱体溶液中,冰浴、超声反应4h后,抽滤,再将得到的树脂加入到200mL氢氧化钠-氯化钠混合溶液中,溶液中氢氧化钠的摩尔浓度为2.0mol/L,氯化钠的摩尔浓度为1.0mol/L,冰浴超声反应4h,纯水洗涤,真空干燥,得到HFO-D201催化剂;
3)将0.8g的HFO-D201催化剂投加到200mL的Ca2+-HEDP废水中,废水中Ca2+=200mg/L,HEDP=50mg/L,用0.1mol/L的HCl溶液调节pH至9.0后,加入1.4mL质量浓度为30%的双氧水后,将反应试管置于震荡床,震荡速率为300rpm,反应至24h时间;
取反应后的废水用孔径为0.45μm水系滤膜过滤;测定上清液中的HEDP和总磷的浓度,测定结果HEDP去除率能达到81.5%;总磷去除率能达到80.2%。HEDP和总磷分别采用液相色谱法和钼酸铵分光光度法测定。

Claims (9)

1.一种含钙有机磷系阻垢剂废水的处理方法,其具体步骤如下:
1)将三氯化铁、氯化钠和盐酸溶解于纯水中,混合搅拌均匀,得到FeCl4 -前驱体溶液;
2)取预处理过的大孔树脂D201加入FeCl4 -前驱体溶液中,经冰浴,超声反应2~4h;
3)配制氢氧化钠-氯化钠混合溶液,将经步骤2)处理得到的树脂加入到氢氧化钠-氯化钠混合溶液中,经冰浴,超声反应2~4h,洗涤,真空干燥,得到HFO-D201催化剂;
4)向含钙有机磷系阻垢剂废水中加入HFO-D201催化剂,调节pH后,加入双氧水,然后置于震荡床中,在200~300rpm下室温震荡反应8~24h。
2.根据权利要求1所述的处理方法,其特征在于:步骤1)中所述的FeCl4 -前驱体溶液中三氯化铁摩尔浓度为0.2~2.0mol/L,氯化钠的摩尔浓度为0.2~1.0mol/L,盐酸的摩尔浓度为0.2~1.0mol/L。
3.根据权利要求1所述的处理方法,其特征在于:步骤2)中大孔树脂D201的预处理过程为:首先用清水对购买的大孔树脂D201进行冲洗,而后用质量分数为4%~5%的NaOH和HCI依次交替浸泡2~4h,在碱酸浸泡之间清水冲洗,重复2~3次,其中每次酸碱用量与树脂体积比为1~3:1;然后50~60℃温度下烘干,过60目筛,备用。
4.根据权利要求1所述的处理方法,其特征在于:步骤2)中FeCl4 -前驱体溶液中大孔树脂D201的加入质量与FeCl4 -前驱体溶液的体积比为5~10g/L。
5.根据权利要求1所述的处理方法,其特征在于:步骤3)中所述的氢氧化钠-氯化钠混合溶液中氢氧化钠摩尔浓度为0.2~2.0mol/L,氯化钠的摩尔浓度为0.2~1.0mol/L;大孔树脂D201的加入质量与氢氧化钠-氯化钠混合溶液的体积比为5~10g/L。
6.根据权利要求1所述的处理方法,其特征在于:步骤4)中所述的含钙有机磷系阻垢剂废水为钙-羟基乙叉二膦酸(Ca2+-HEDP)废水;其中Ca2+浓度为40~200mg/L,HEDP浓度为10~50mg/L。
7.根据权利要求1所述的处理方法,其特征在于:步骤4)中所述的含钙有机磷系阻垢剂废水中HFO-D201催化剂加入质量与含钙有机磷系阻垢剂废水的体积比为0.4~4.0g/L。
8.根据权利要求1所述的处理方法,其特征在于:步骤4)中所述pH值的范围为2~9;采用0.05~0.15mmol/L的盐酸进行调节。
9.根据权利要求1所述的处理方法,其特征在于:步骤4)中所述的双氧水的质量浓度为30%;双氧水与含钙有机磷系阻垢剂废水的体积比为1‰~8‰:1。
CN201910837567.7A 2019-09-05 2019-09-05 一种含钙有机磷系阻垢剂废水的处理方法 Active CN110577272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910837567.7A CN110577272B (zh) 2019-09-05 2019-09-05 一种含钙有机磷系阻垢剂废水的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910837567.7A CN110577272B (zh) 2019-09-05 2019-09-05 一种含钙有机磷系阻垢剂废水的处理方法

Publications (2)

Publication Number Publication Date
CN110577272A true CN110577272A (zh) 2019-12-17
CN110577272B CN110577272B (zh) 2022-02-22

Family

ID=68812278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910837567.7A Active CN110577272B (zh) 2019-09-05 2019-09-05 一种含钙有机磷系阻垢剂废水的处理方法

Country Status (1)

Country Link
CN (1) CN110577272B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729693A (zh) * 2020-06-05 2020-10-02 中北大学 一种水合氧化铁负载型阴离子交换树脂的制备方法
CN113492000A (zh) * 2020-04-01 2021-10-12 南京工业大学 一种同步去除废水中有机砷和无机砷的树脂基复合型纳米吸附材料及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772370A (zh) * 2005-11-02 2006-05-17 南京大学 一种树脂基除砷吸附剂的制备方法
CN102151543A (zh) * 2011-03-16 2011-08-17 浙江大学 负载催化活性纳米微粒吸附剂的制备方法、产品及应用
CN108079968A (zh) * 2017-11-17 2018-05-29 河南师范大学 一种同步去除水中硝酸盐和磷酸盐的纳米复合吸附剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1772370A (zh) * 2005-11-02 2006-05-17 南京大学 一种树脂基除砷吸附剂的制备方法
CN102151543A (zh) * 2011-03-16 2011-08-17 浙江大学 负载催化活性纳米微粒吸附剂的制备方法、产品及应用
CN108079968A (zh) * 2017-11-17 2018-05-29 河南师范大学 一种同步去除水中硝酸盐和磷酸盐的纳米复合吸附剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BINGJUN PAN等: "Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents", 《WATER RESEARCH》 *
YANYANG ZHANG等: "Unexpected Favorable Role of Ca2+ in Phosphate Removal by Using Nanosized Ferric Oxides Confined in Porous Polystyrene Beads", 《ENVIRONMENTAL SCIENCE & TECHNOLOGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113492000A (zh) * 2020-04-01 2021-10-12 南京工业大学 一种同步去除废水中有机砷和无机砷的树脂基复合型纳米吸附材料及方法
CN111729693A (zh) * 2020-06-05 2020-10-02 中北大学 一种水合氧化铁负载型阴离子交换树脂的制备方法

Also Published As

Publication number Publication date
CN110577272B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
Sheng et al. Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe (II)/PMS
Li et al. In-situ production and activation of H2O2 for enhanced degradation of roxarsone by FeS2 decorated resorcinol-formaldehyde resins
Li et al. Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron
CN110577272B (zh) 一种含钙有机磷系阻垢剂废水的处理方法
KR20110083852A (ko) 시안오염토양 복원방법
Liao et al. Precise decomplexation of Cr (III)-EDTA and in-situ Cr (III) removal with oxalated zero-valent iron
Zhang et al. Ferrocene-based resin as heterogeneous fenton-like catalyst for efficient treatment of high salinity wastewater at acidic, neutral, and basic pH
Fang et al. Highly efficient in-situ purification of Fe (II)-rich high-arsenic groundwater under anoxic conditions: Promotion mechanisms of PMS on oxidation and adsorption
CN114345344A (zh) 一种过硫酸盐催化剂及其制备方法与应用
CN106669592A (zh) 用于微污染水处理的铁镍负载纳米过氧化钙的制备方法
Yang et al. Microwave synthesis of Fe–Cu diatomic active center MOF: synergistic cyclic catalysis of persulfate for degrading norfloxacin
CN106477836B (zh) 用于治理污染河道底泥的修复剂及其制备方法和应用
CN111747480A (zh) 一种可见光强化三价铁活化过硫酸盐处理有机废水的方法
CN109368764B (zh) 一种强化过硫酸盐氧化的水处理方法
CN113072164B (zh) 强化类芬顿反应去除效率的活性氧炭及制备和使用方法
CN106587187A (zh) 一种用于微污染水处理的复合材料的制备方法
CN114230059A (zh) 一种利用热活化过硫酸盐去除水中2-氯苯酚的方法
Zhang et al. Efficient degradation of benzalkonium chloride by FeMn-CA300 catalyst activated persulfate process: Surface hydroxyl potentiation mechanism and degradation pathway
CN116639789B (zh) 利用改性生物炭催化剂催化过硫酸盐去除废水中难降解有机物的方法
Luo et al. Acetylacetone promoted high-efficiency coagulation toward arsenite through a synchronous photooxidation process
KR102193775B1 (ko) 투수성 반응벽체 및 이를 이용한 오염물질의 선택적 제거 방법
Li et al. Photodegradation of E2 in the presence of natural montmorillonite and the iron complexing agent ethylenediamine-N, N′-disuccinic acid
Yin et al. Photocatalytic oxidation activity enhanced by iron-oxalate chelates for Fenton-like oxidation of As (III) in oxalate systems
CN116251563A (zh) 一种基于改性沸石的煤焦化工业废水净水剂的制备方法
CN115779906A (zh) 一种利用改性多壁碳纳米管高效催化过氧乙酸降解水中内分泌干扰物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant