CN110563904B - 一种聚合物包覆碳纳米管复合材料、制备方法和应用 - Google Patents

一种聚合物包覆碳纳米管复合材料、制备方法和应用 Download PDF

Info

Publication number
CN110563904B
CN110563904B CN201910717740.XA CN201910717740A CN110563904B CN 110563904 B CN110563904 B CN 110563904B CN 201910717740 A CN201910717740 A CN 201910717740A CN 110563904 B CN110563904 B CN 110563904B
Authority
CN
China
Prior art keywords
carbon nanotube
polymer
composite material
coated carbon
nanotube composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910717740.XA
Other languages
English (en)
Other versions
CN110563904A (zh
Inventor
戴李宗
李云同
刘玲
陈婷
吴海洋
吴俣哲
袁丛辉
李伟航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201910717740.XA priority Critical patent/CN110563904B/zh
Publication of CN110563904A publication Critical patent/CN110563904A/zh
Application granted granted Critical
Publication of CN110563904B publication Critical patent/CN110563904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08G12/30Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with substituted triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种聚合物包覆碳纳米管复合材料、制备方法和应用。首先,通过席夫碱反应,将含有醛基官能团的单体与氨基化的碳纳米管反应。其次,加入适当摩尔量的含氨基官能团的单体,通过化学反应和氢键作用力制备高分子聚合物包覆碳纳米管的复合材料。最后,将其用于电极材料,研究高分子聚合物包覆碳纳米管的复合材料的电化学行为。

Description

一种聚合物包覆碳纳米管复合材料、制备方法和应用
技术领域
本发明涉及一种聚合物包覆碳纳米管复合材料、制备方法和应用。
背景技术
随着科技的发展,社会的进步,人类对能源的需求量越来越大,因而由能源危机引发的问题也日益严重。碳材料作为能源材料的一种,被广泛的应用在超级电容器,氧化还原反应等领域中。但是,碳材料表面润湿性差,电荷分布均匀的特点使得其电化学性能表现不佳。因此,需要对纯碳材料进行改性,以期获得优异的电化学性能。近年来,通过杂原子改性碳材料的策略屡见不鲜,并且已经逐渐成为了能源领域的一大研究热点。杂原子的掺杂不仅可以改善碳材料的表面润湿性,改变碳材料的电荷分布,而且还可以提供赝电容,从而提高碳材料的电化学性能。但是,此类能源材料的制备方法复杂且耗能高。
互穿网络结构高分子聚合物的孔结构有利于电解质的传输,但该类材料大都不导电,不利于电荷传输,很难将其直接应用于电极材料。因此,如何改善互穿网络结构高分子聚合物的导电性决定高分子材料能否直接应用于电极材料。碳纳米管具有诸多的优异性能,如:力学、电学和化学性能,并且将其与其他工程材料复合,制成碳纳米管复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。因此,近年来碳纳米管的复合材料被科研人员广泛关注,其广阔的应用前景也不断地展现出来。然而,目前可用于超级电容器的高分子聚合物包覆碳纳米管的复合材料的制备鲜有报道。
发明内容
本发明的目的在于提供一种聚合物包覆碳纳米管复合材料、制备方法和应用。
本发明解决其技术问题所采用的技术方案之一是:提供了一种聚合物包覆碳纳米管复合材料的制备方法,包括如下步骤:
1)反应体系的制备:将醛基单体溶解于溶剂中,加入氨基化碳纳米管,于25~35℃下搅拌,得到反应体系,所述反应体系中氨基化碳纳米管均匀分散于醛基单体的溶液;其中,所述醛基单体和溶剂配比为0.01mmol:30~50mL,醛基单体和氨基化碳纳米管的质量比为1:10~20;
2)高分子聚合物的包覆:向反应体系中加入氨基单体,室温搅拌5~8h,得到聚合物包覆碳纳米管的复合材料;其中,氨基单体和醛基单体的摩尔比为1:0.85~1.25。
在本发明一较佳实施例中,所述醛基单体包括:
对苯二醛,结构式:
Figure BDA0002156041050000021
1,3,5-三(4-甲酰基苯基)苯,结构式:
Figure BDA0002156041050000022
在本发明一较佳实施例中,所述溶剂包括甲醇、乙醇、四氢呋喃、N,N-二甲基甲酰胺。
在本发明一较佳实施例中,所述氨基单体包括:
三(4-氨苯基)胺,结构式:
Figure BDA0002156041050000023
1,3,5-三(4-氨苯基)苯,结构式:
Figure BDA0002156041050000024
2,4,6-三(4-氨基苯基)-1,3,5-三嗪,结构式:
Figure BDA0002156041050000031
在本发明一较佳实施例中,所述步骤1)将醛基单体溶解于溶剂中,30~35℃下搅拌10~15分钟,再将氨基化碳纳米管分散于醛基单体的溶液中,室温下搅拌10~15分钟。
在本发明一较佳实施例中,所述步骤2)将搅拌后得到黑褐色沉淀离心,得到聚合物包覆碳纳米管的复合材料。
本发明还提供了上述制备方法制备的聚合物包覆碳纳米管复合材料,其结构单元为碳纳米管外部包覆具有互穿网络聚合物高分子。所述聚合物包覆碳纳米管复合材料电容值为90~125F/g。
本发明还提供了上述聚合物包覆碳纳米管复合材料在电化学材料中的应用。
在本发明一较佳实施例中,用于超级电容器。
本发明与现有技术相比具有如下优点:
(1)本发明制备的高分子聚合物包覆碳纳米管复合材料,通过对反应单体调控,实现聚合物壳层厚度的调节,利于研究聚合物壳层厚度对复合材料超级电容器性能的影响;
(2)本发明制备的产物具有多孔结构和优秀的导电性能,可应用于电化学材料;
(3)传统多孔结构的高分子聚合物因为导电性差无法直接作为超级电容器的电极材料,具有导电性能的碳纳米管的表面润湿性差,使得其超电性能差;本发明克服了现有高分子聚合物导电性差的缺陷,将两者的优点结合起来,制备出超电性能优异的超电复合材料,通过选择不同的醛基和氨基单体改变聚合物的原子含量,进而调控复合材料的超电性能。
附图说明
图1为实施例1制备的聚合物包覆碳纳米管复合材料的投射电镜图,其中,a-20000x,b-200000x;
图2为实施例1制备的聚合物包覆碳纳米管复合材料的电化学性能图,其中,a-横坐标为电位,纵坐标电流密度;b-横坐标为时间,纵坐标为电位。
具体实施方式
下面结合实施例对本发明作进一步详细的描述。
实施例1
(1)将0.01mmol的对苯二醛溶解于30mL乙醇溶液当中,35℃搅拌10分钟;缓慢加入0.2g氨基化碳纳米管分散在对苯二醛乙醇溶液中,并且在室温条件下搅拌10分钟。
(2)将0.085mmol的2,4,6-三(4-氨基苯基)-1,3,5-三嗪加入到氨基化碳纳米管均匀分散的对苯二醛乙醇溶液中;室温搅拌5h,将黑褐色沉淀离心,得到聚合物包覆碳纳米管的复合材料。(电容值:112F/g)
实施例2
(1)将0.015mmol的对苯二醛溶解于50mL甲醇溶液当中,25℃搅拌10分钟;缓慢加入0.2g氨基化碳纳米管分散在对苯二醛乙醇溶液中,并且在室温条件下搅拌15分钟。
(2)将0.01mmol的1,3,5-三(4-氨苯基)苯加入到氨基化碳纳米管均匀分散的对苯二醛甲醇溶液中;室温搅拌6h,将黑褐色沉淀离心,得到聚合物包覆碳纳米管的复合材料。(电容值:90F/g)
实施例3
(1)将0.02mmol的1,3,5-三(4-甲酰基苯基)苯溶解于60mL四氢呋喃/乙醇的混合溶液当中,30℃搅拌10分钟;缓慢加入0.12g氨基化碳纳米管分散在1,3,5-三(4-甲酰基苯基)苯四氢呋喃/乙醇溶液中,并且在室温条件下搅拌15分钟。
(2)将0.025mmol的1,3,5-三(4-氨苯基)苯加入到氨基化碳纳米管均匀分散的对苯二醛乙醇溶液中;室温搅拌7h,将黑褐色沉淀离心,得到聚合物包覆碳纳米管的复合材料。(电容值:100F/g)
实施例4
(1)将0.015mmol的对苯二醛溶解于50mL乙醇溶液当中,32℃搅拌12分钟;缓慢加入0.2g氨基化碳纳米管分散在对苯二醛N,N-二甲基甲酰胺溶液中,并且在室温条件下搅拌20分钟。
(2)将0.015mmol的三(4-氨苯基)胺加入到氨基化碳纳米管均匀分散的对苯二醛N,N-二甲基甲酰胺溶液中;室温搅拌7h,将黑褐色沉淀离心,得到聚合物包覆碳纳米管的复合材料。(电容值:118F/g)
实施例5
(1)将0.01mmol的1,3,5-三(4-甲酰基苯基)苯溶解于30mL四氢呋喃溶液当中,30℃搅拌5分钟;缓慢加入0.08g氨基化碳纳米管分散在1,3,5-三(4-甲酰基苯基)苯四氢呋喃溶液中,并且在室温条件下搅拌15分钟。
(2)将0.01mmol的2,4,6-三(4-氨基苯基)-1,3,5-三嗪加入到氨基化碳纳米管均匀分散的1,3,5-三(4-甲酰基苯基)苯四氢呋喃溶液中;室温搅拌5h,将黑褐色沉淀离心,得到聚合物包覆碳纳米管的复合材料。(电容值:125F/g)
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (8)

1.一种聚合物包覆碳纳米管复合材料的制备方法,其特征在于,包括如下步骤:
1)反应体系的制备:将醛基单体溶解于溶剂中,加入氨基化碳纳米管,于25~35℃下搅拌,得到反应体系,所述反应体系中氨基化碳纳米管均匀分散于醛基单体的溶液;其中,所述醛基单体和溶剂配比为0.01mmol:30~50mL,醛基单体和氨基化碳纳米管的质量比为1:10~20;
2)高分子聚合物的包覆:向反应体系中加入氨基单体,室温搅拌5~8h,得到聚合物包覆碳纳米管的复合材料;其中,氨基单体和醛基单体的摩尔比为1:0.85~1.25;
其中,所述醛基单体为1,3,5-三(4-甲酰基苯基)苯,所述氨基单体包括三(4-氨苯基)胺、1,3,5-三(4-氨苯基)苯、2,4,6-三(4-氨基苯基)-1,3,5-三嗪。
2.根据权利要求1所述的一种聚合物包覆碳纳米管复合材料的制备方法,其特征在于:所述溶剂包括甲醇、乙醇、四氢呋喃、N,N-二甲基甲酰胺。
3.根据权利要求1所述的一种聚合物包覆碳纳米管复合材料的制备方法,其特征在于:所述步骤1)将醛基单体溶解于溶剂中,30~35℃下搅拌10~15分钟,再将氨基化碳纳米管分散于醛基单体的溶液中,室温下搅拌10~15分钟。
4.根据权利要求1所述的一种聚合物包覆碳纳米管复合材料的制备方法,其特征在于:所述步骤2)将搅拌后得到黑褐色沉淀离心,得到聚合物包覆碳纳米管的复合材料。
5.如权利要求1~4所述方法制备的一种聚合物包覆碳纳米管复合材料,其特征在于:其结构单元为碳纳米管外部包覆具有互穿网络聚合物高分子。
6.根据权利要求5所述的一种聚合物包覆碳纳米管复合材料,其特征在于:所述聚合物包覆碳纳米管复合材料电容值为90~125F/g。
7.如权利要求5~6所述的一种聚合物包覆碳纳米管复合材料在电化学材料中的应用。
8.根据权利要求7所述的应用,其特征在于:用于超级电容器。
CN201910717740.XA 2019-08-05 2019-08-05 一种聚合物包覆碳纳米管复合材料、制备方法和应用 Active CN110563904B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910717740.XA CN110563904B (zh) 2019-08-05 2019-08-05 一种聚合物包覆碳纳米管复合材料、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910717740.XA CN110563904B (zh) 2019-08-05 2019-08-05 一种聚合物包覆碳纳米管复合材料、制备方法和应用

Publications (2)

Publication Number Publication Date
CN110563904A CN110563904A (zh) 2019-12-13
CN110563904B true CN110563904B (zh) 2020-12-22

Family

ID=68774627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910717740.XA Active CN110563904B (zh) 2019-08-05 2019-08-05 一种聚合物包覆碳纳米管复合材料、制备方法和应用

Country Status (1)

Country Link
CN (1) CN110563904B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307895B (zh) * 2020-04-03 2021-06-25 山东农业大学 一种快速制备cof@nh2-cnt复合材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295775A (zh) * 2011-06-09 2011-12-28 黑龙江大学 碳纳米管/聚希夫碱聚合物及其制备方法和应用
WO2016030913A2 (en) * 2014-08-29 2016-03-03 Council Of Scientific & Industrial Research Chemically stable hollow spherical cof and synthesis thereof
CN106883364A (zh) * 2017-01-23 2017-06-23 南开大学 检测有机溶剂中痕量水的共价有机骨架材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028614B2 (ja) * 2006-10-24 2012-09-19 国立大学法人 千葉大学 カ−ボンナノ構造体を保持する複合材料及びその製造方法。
US9453099B2 (en) * 2014-03-12 2016-09-27 The Regents Of The University Of Colorado, A Body Corporate Covalently cross-linked malleable polymers and methods of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295775A (zh) * 2011-06-09 2011-12-28 黑龙江大学 碳纳米管/聚希夫碱聚合物及其制备方法和应用
WO2016030913A2 (en) * 2014-08-29 2016-03-03 Council Of Scientific & Industrial Research Chemically stable hollow spherical cof and synthesis thereof
CN106883364A (zh) * 2017-01-23 2017-06-23 南开大学 检测有机溶剂中痕量水的共价有机骨架材料的制备方法

Also Published As

Publication number Publication date
CN110563904A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
Gao et al. Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries
CN108565129B (zh) 一种碳纳米管/硼氮共掺杂多孔碳复合材料的制备方法
CN111755259B (zh) 基于石墨烯/聚合物/水泥复合材料的结构超级电容器及其制备方法
CN107230784B (zh) 一种球形石墨烯/四氧化三锰复合材料及其制备方法及应用
Male et al. Aqueous, interfacial, and electrochemical polymerization pathways of aniline with thiophene: Nano size materials for supercapacitor
CN110563904B (zh) 一种聚合物包覆碳纳米管复合材料、制备方法和应用
CN112701419B (zh) 一种sei膜材料、制备方法和负极片
Liu et al. An effective interaction in polypyrrole/nickel phosphide (PPy/Ni 2 P) for high-performance supercapacitor
CN107417910A (zh) 碳纳米角/石墨烯/聚苯胺复合材料的制备方法及应用
Zhou Optimized preparation of core–shell composites based on polypyrrole doped with carbon nanotubes for high performance electrochemical capacitors
CN114005683B (zh) 一种CoZn-MOF/NiCo2O4@CNTs/rGO复合电极材料的制备方法
Xie et al. In situ preparation of flaky attached CuCo 2 S 4 microspheres for high-performance asymmetric supercapacitors
Cao et al. Sucrose in situ physically cross-linked of polyaniline and polyvinyl alcohol to prepare three-dimensional nanocomposite hydrogel with flexibility and high capacitance
US10121971B2 (en) Cellulose-polymer composites for solar cells
CN113717598A (zh) 一种不锈钢双极板表面有机导电防腐涂层的制备方法
CN111785530B (zh) 一种可拉伸微型超级电容器及其制备方法
CN106783233A (zh) CuCo2S4纳米粒子的制备方法
CN112071663A (zh) 一种纳米碳球电极材料的制备方法
CN110491679B (zh) 氧化石墨烯-聚噻吩复合材料和基于该材料的超级电容器
Xin et al. High-performance integrated supercapacitor based on glycerol-Mo hydrogel
CN113555549B (zh) 一种复合电极材料及其制备方法
Chen et al. Tailoring flexible-segment-rich resin network structure by multi-step copolymerization for improved composite bipolar plate of proton exchange membrane fuel cell
Wei et al. MOF-derived Ni-Co sulfide nanotubes/GO nanocomposites as electrode materials for supercapacitor applications
US20210367239A1 (en) High-Performance Lithium-Containing Organic Sulfur Electrode Material and Preparation Method of Integrated Flexible Electrode
CN113936928A (zh) 一种CNTs互穿MOF衍生的Co-Ni-S复合球互连结构的复合电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant