CN110556448A - 一种叠层串联太阳能电池 - Google Patents

一种叠层串联太阳能电池 Download PDF

Info

Publication number
CN110556448A
CN110556448A CN201810540681.9A CN201810540681A CN110556448A CN 110556448 A CN110556448 A CN 110556448A CN 201810540681 A CN201810540681 A CN 201810540681A CN 110556448 A CN110556448 A CN 110556448A
Authority
CN
China
Prior art keywords
sub
gaas
gainp
layer
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810540681.9A
Other languages
English (en)
Inventor
乔秀梅
刘琦
童翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zishi Energy Co.,Ltd.
Original Assignee
Dongtai Hi-Tech Equipment Technology (beijing) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongtai Hi-Tech Equipment Technology (beijing) Co Ltd filed Critical Dongtai Hi-Tech Equipment Technology (beijing) Co Ltd
Priority to CN201810540681.9A priority Critical patent/CN110556448A/zh
Publication of CN110556448A publication Critical patent/CN110556448A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种叠层串联太阳能电池,其主要改进之处为,通过单层石墨烯将双结或多结III‑V族太阳能子电池进行串联。本发明中的双结或多结电池采用石墨烯连接两个子电池,避免了传统隧穿结的采用,减少了隧穿结中重掺杂向上下子电池中的扩散,简化了电池的制作工艺,降低成本。本发明的电池中所采用的石墨烯具有较好的导电性和透光性,减少了对光的无用吸收和对电子的额外消耗,有助于提高效率。

Description

一种叠层串联太阳能电池
技术领域
本发明涉及太阳能电池领域,特别是涉及一种基于石墨烯的双结或多结叠层串联太阳能电池。
背景技术
III-V族化合物半导体材料是继硅之后应用最为广泛的半导体材料之一,上世纪70年代就开始了光伏应用领域的开发。多结III-V化合物太阳电池通过匹配不同带隙的半导体材料,可实现对太阳光的宽光谱吸收,目前双结电池的世界效率已超过30%。
在常规的III-V族双结或多结串联太阳电池中采用隧道结将不同子电池串接起来。隧道结的性能直接影响到多结太阳电池的性能,要想获得高性能的太阳电池,隧道结应具有高透光率(宽带隙,结薄)、阻抗小以及减小多结电池的电学损失(高掺杂)等特点。所以对隧穿结结构的设计及材料的选择及其严格,工艺复杂。且常规的隧穿结作为一种III-V半导体材料总会对光照有一定的吸收,且有一定的电阻性能,在一定程度上影响电流的有效输运。为了解决上述问题,本专利提出了一种新型的电池串联方式。
发明内容
本发明的目的是提供一种用石墨烯替代普通隧道结的III-V族叠层太阳能电池,其主要改进之处为,通过单层石墨烯将双结或多结III-V族太阳能子电池进行串联。
其结构具体为:包括双结或多结层叠设置的III-V族子电池,相邻的子电池间通过单层石墨烯进行联结,实现串联。
III-V族电池在制备的过程中需要晶格匹配,因此联结子电池的材料既需要考虑其导电性,还需考虑晶格匹配的问题。本发明采用单层石墨烯来替代传统的隧道结材料既可实现理想地导电,还可解决上下子电池晶格匹配的问题,而且可简化选材和制备工艺,降低生产成本。
优选的,所述单层石墨烯通过直接生长法或转移生长法设置于两个子电池之间。所述直接生长法是指直接在下面子电池上生长单层石墨烯层,所述转移生长法是指单层石墨烯层进行生长后再转移到下面子电池上。
本发明的另一个目的是提供一种基于石墨烯的双结叠层串联太阳能电池,从下至上依次包括层叠设置的GaAs子电池、单层石墨烯和GaInP子电池。GaAs材料能隙为1.42eV,与太阳光谱较为匹配,吸收系数较高,GaInP能隙为1.89eV,是与GaAs晶格匹配的顶电池材料的理想选择,上述两种子电池的禁带宽度组合合理,可获得较高效率。
优选的,所述GaAs子电池从下至上包括GaAs子电池的背场层、p(n)型GaAs基极、n(p)型GaAs发射极和GaAs子电池的窗口层。
进一步优选的,所述GaAs子电池的背场层下还依次设有GaAs基底和GaAs子电池背电极。
优选的,所述GaInP子电池从下至上包括依次形成于所述石墨烯层上GaInP子电池的背场层、p(n)型GaInP基极、n(p)型GaInP发射极、GaInP子电池的窗口层。
进一步优选的,所述GaInP子电池的GaInP子电池的窗口层上还依次设有减反膜和正面电极。
本申请中基极或发射极的n或p型的具体选择本领域技术人员可根据需要灵活进行。
优选的,所述GaAs子电池的厚度为2.5~3.5微米。
优选的,所述GaInP子电池的厚度为0.5~1.0微米。
优选的,叠层串联GaAs/GaInP太阳能电池的制备方法包括如下步骤:
1)通过外延生长的方法,在衬底上生长GaAs子电池;
2)在所述GaAs子电池上通过转移生长法设置单层石墨烯层;
3)在所述单层石墨烯层上通过外延生长方法生长GaInP子电池。
优选的,所述外延长生长法为MOCVD或MBE。
优选的,所述GaAs子电池的生长温度是600~750℃,生长速率30-90nm/min;
优选的,所述GaInP子电池的生长温度为600~750℃,生长速率为30-90nm/min。
优选的,所述转移生长法包括但不限于聚甲基丙烯酸甲酯(PMMA)转移法、PDSM印章转移法、热剥离胶带法、卷对卷转移技术和电化学转移法。
作为优选的实施方式,本申请所述的叠层串联GaAs/GaInP太阳能电池的制备方法包括如下步骤:
1)在GaAs基底上利用MOCVD法外延生长AlGaAs背场层;
2)在所述AlGaAs背场层上利用MOCVD法外延生长GaAs基极;
3)在所述GaAs基极上利用MOCVD法外延生长GaAs发射极;
4)在所述GaAs发射极上利用MOCVD法外延生长GaAs子电池的窗口层GaInP;
步骤1)~4)中AlGaAs、GaAs和GaInP的生长温度分别是690~710℃、650~670℃和650~670℃,生长速率分别为30~35nm/min、30~35nm/min和85~90nm/min;
5)在所述GaInP窗口层上利用热剥离胶带法转移制备单层石墨烯;
6)在所述石墨烯上利用MOCVD法外延生长GaInP子电池的背场层;
7)在所述GaInP子电池的背场层上利用MOCVD法外延生长GaInP基极;
8)在所述GaInP基极上利用MOCVD法外延生长GaInP发射极;
9)在所述GaInP发射极上利用MOCVD法外延生长GaInP的窗口层AlInP;
步骤6)~9)中GaInP的生长温度为650~670℃,生长速率为85~90nm/min,AlInP的生长温度为和690~710℃,生长速度为45~55nm/min。
优选的,所述热剥离胶带法具体为,通过CVD法在Si/SiO2基底上生长单层石墨烯,将撕去剥离层的TRT与石墨烯/Cu箔平整地紧密贴合,之后用硫酸铵溶液腐蚀除去铜箔,清洗晾干,将TRT-石墨烯与第一个子电池的GaInP窗口层紧密贴合,烘烤至热剥离温度以上,胶带自发脱落,转移完成。
本发明的方法具有如下有益效果:
(1)本发明中的双结或多结电池采用石墨烯进行串联,避免了传统隧穿结的采用,减少了隧穿结中重掺杂向上下子电池中的扩散,简化了电池的制作工艺,降低成本。
(2)通过采用石墨烯连接两个子电池,由于石墨烯具有较好的导电性和透光性,减少了中间层对光的吸收和对电子的消耗,有助于提高效率。
附图说明
图1所示为本发明具体实施例1中GaAs/GaInP双结太阳能电池的结构示意图。
其各层分别是:1、GaAs子电池,2、GaInP子电池,3、Cu背电极,4、GaAs基底,5、p+型AlGaAs背场层,6、p型GaAs基极,7、n型GaAs发射极,8、n+型GaInP窗口层,9、石墨烯层,10、p+型GaInP背场层,11、p型GaInP基极,12、n型GaInP发射极,13、n+型AlInP窗口层,14、SiN减反膜,15、正面电极。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例涉及一种GaAs/GaInP叠层串联双结太阳能电池,包括GaAs子电池、位于GaAs子电池上方的单层石墨烯和位于石墨烯上方的GaInP子电池,所述GaAs子电池的厚度为2.5~3.5微米,所述GaInP子电池的厚度为0.5~7微米。
其具体结构如图1,包括1、GaAs子电池,2、GaInP子电池,3、Cu背电极,4、GaAs基底,5、p+型AlGaAs背场层,6、p型GaAs基极,7、n型GaAs发射极,8、n+型GaInP窗口层,9、石墨烯层,10、p+型GaInP背场层,11、p型GaInP基极,12、n型GaInP发射极,13、n+型AlInP窗口层,14、SiN减反膜,15、正面电极。
本实施例所述电池的转换效率为26.6%,其中,单层石墨烯的透光性可达97.7%,电子迁移率10000~250000cm2/vs。
实施例2
本实施例涉及实施例1所述GaAs/GaInP叠层串联双结太阳能电池的制备方法,包括如下步骤:
1)在p型GaAs基底上利用MOCVD法外延生长p+型AlGaAs背场层;
2)在p+型AlGaAs背场层上利用MOCVD法外延生长p型GaAs基极;
3)在p型GaAs基极上利用MOCVD法外延生长n型GaAs发射极;
4)在n型GaAs发射极上利用MOCVD法外延生长n+型GaInP窗口层;
步骤1)~4)中AlGaAs、GaAs和GaInP的生长温度分别是700℃、660℃和660℃,生长速率分别为30nm/min、30nm/min和90nm/min;
5)在n+型GaInP窗口层上利用热剥离胶带法转移制备单层石墨烯,其具体操作为,通过CVD法在Si/SiO2基底上生长单层石墨烯,将撕去剥离层的TRT与石墨烯/Cu箔平整地紧密贴合,之后用硫酸铵溶液腐蚀除去铜箔,清洗晾干,将TRT-石墨烯与子电池的GaInP窗口层紧密贴合,烘烤至热剥离温度以上,胶带自发脱落,转移完成;
6)在石墨烯上利用MOCVD法外延生长p+型GaInP背场层;
7)在p+型GaInP背场层上利用MOCVD法外延生长p型GaInP基极;
8)在p型GaInP基极上利用MOCVD法外延生长n型GaInP发射极;
9)在n型GaInP发射极上利用MOCVD法外延生长n+型AlInP窗口层;
步骤6)~9)中GaInP和AlInP的生长温度为660℃和700℃,生长速率为90nm/min和50nm/min;
10)在n+型AlInP窗口层上PVD沉积SiN减反膜;
11)在p型GaAs衬底另一面利用PVD法沉积Cu背电极;
13)在SiN减反膜上制作Cu栅极。
对比例1
与实施例1相比,其区别仅在于,用隧道结替代石墨烯层,其结构具体为GaAs子电池/p+型InGaP/n+型InGaP隧道结/GaInP子电池
其中,所述GaAs子电池/ITO/GaInP子电池包括1、GaAs子电池,2、GaInP子电池,3、Cu背电极,4、GaAs基底,5、n+型AlGaAs背场层,6、n型GaAs基极,7、p型GaAs发射极,8、p+型GaInP窗口层,9、p+型InGaP/n+型InGaP隧道结,10、n+型GaInP背场层,11、n型GaInP基极,12、p型GaInP发射极,13、p+型AlInP窗口层,14、SiN减反膜和15、正面电极。
本实例所制备的电池转换效率为25.4%,其中,p+型InGaP/n+型InGaP隧道结对光的吸收率远大于单层石墨烯,且在该高掺杂的隧道结中,存在着一定的电荷符合,导电性相对单层石墨烯较差。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.一种叠层串联太阳能电池,其特征在于,通过单层石墨烯将双结或多结III-V族太阳能子电池进行串联。
2.根据权利要求1所述的太阳能电池,其特征在于,所述单层石墨烯通过直接生长法或转移生长法设置于两个子电池之间。
3.一种叠层串联GaAs/GaInP太阳能电池,其特征在于,从下至上依次包括层叠设置的GaAs子电池、单层石墨烯和GaInP子电池。
4.根据权利要求3所述的太阳能电池,其特征在于,所述GaAs子电池从下至上包括GaAs子电池的背场层、GaAs基极、GaAs发射极和GaAs子电池的窗口层。
5.根据权利要求3或4所述的太阳能电池,其特征在于,所述GaInP子电池从下至上包括形成于所述石墨烯上GaInP子电池的背场层、GaInP基极、GaInP发射极和GaInP子电池的窗口层。
6.根据权利要求3~5任一项所述的太阳能电池,其特征在于,所述GaAs子电池的厚度为2.5~3.5微米。
7.根据权利要求3~6任一项所述的太阳能电池,其特征在于,所述GaInP子电池的厚度为0.5~1.0微米。
8.一种权利要求3~7任一项所述太阳能电池的制备方法,其特征在于,包括如下步骤:
1)通过外延生长的方法,在衬底上生长GaAs子电池;
2)在所述GaAs子电池上通过转移生长法设置单层石墨烯层;
3)在所述单层石墨烯层上通过外延生长方法生长GaInP子电池。
9.根据权利要求8所述的制备方法,其特征在于,所述GaAs子电池的生长温度是600~750℃,生长速率为30-90nm/min;
和/或,所述GaInP子电池的生长温度为生长速率为30-90nm/min。
10.根据权利要求8或9所述的制备方法,其特征在于,所述转移生长法包括聚甲基丙烯酸甲酯转移法、PDSM印章转移法、热剥离胶带法、卷对卷转移技术或电化学转移法。
CN201810540681.9A 2018-05-30 2018-05-30 一种叠层串联太阳能电池 Pending CN110556448A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810540681.9A CN110556448A (zh) 2018-05-30 2018-05-30 一种叠层串联太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810540681.9A CN110556448A (zh) 2018-05-30 2018-05-30 一种叠层串联太阳能电池

Publications (1)

Publication Number Publication Date
CN110556448A true CN110556448A (zh) 2019-12-10

Family

ID=68735082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810540681.9A Pending CN110556448A (zh) 2018-05-30 2018-05-30 一种叠层串联太阳能电池

Country Status (1)

Country Link
CN (1) CN110556448A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710744A (zh) * 2020-06-23 2020-09-25 中锗科技有限公司 一种GaAs/InGaP双结表面等离子体增强太阳能结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710744A (zh) * 2020-06-23 2020-09-25 中锗科技有限公司 一种GaAs/InGaP双结表面等离子体增强太阳能结构

Similar Documents

Publication Publication Date Title
CN102184980B (zh) 基于晶片键合的三结太阳能电池及其制备方法
US9437769B2 (en) Four-junction quaternary compound solar cell and method thereof
CN104300015B (zh) AlGaAs/GaInAs/Ge连续光谱太阳能电池
CN102790120B (zh) GaInP/GaAs/Ge三结级联太阳能电池及其制备方法
CN103928539A (zh) 多结iii-v太阳能电池及其制造方法
CN109728119B (zh) 一种石墨烯/AlGaAs/GaAs/GaInAs多异质结太阳能电池及其制备方法
CN102790116B (zh) 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
WO2016145936A1 (zh) 倒装多结太阳能电池及其制备方法
CN103219414B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN106299011A (zh) 基于InP衬底的五结太阳能电池及其制备方法
CN109216484B (zh) 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
CN102790117B (zh) GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN110556445A (zh) 一种叠层并联太阳能电池
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN110556448A (zh) 一种叠层串联太阳能电池
CN106409958A (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN114171615B (zh) 一种硅基多结太阳电池及其渐变缓冲层
CN206584943U (zh) 一种正向生长的匹配四结太阳能电池
CN102779865B (zh) 一种以锗为隧穿结的硅基三结太阳能电池
CN106252448B (zh) 一种含GaInNAs材料的多结太阳能电池及其制备方法
CN107546293B (zh) 双结太阳能电池及其制备方法、太阳能电池外延结构
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
CN210692559U (zh) 一种倒装生长的双异质结四结柔性太阳能电池
CN110797427B (zh) 倒装生长的双异质结四结柔性太阳能电池及其制备方法
Mizuno et al. A “smart stack” triple-junction cell consisting of InGaP/GaAs and crystalline Si

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information

Address after: 102209 Beijing City, Changping District Beiqijia Town, Tivoli Park No. 15

Applicant after: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY Co.,Ltd.

Address before: 102209 Beijing City, Changping District Beiqijia Town, Tivoli Park No. 15

Applicant before: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY (BEIJING) Co.,Ltd.

CB02 Change of applicant information
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211026

Address after: Unit 611, unit 3, 6 / F, building 1, yard 30, Yuzhi East Road, Changping District, Beijing 102208

Applicant after: Zishi Energy Co.,Ltd.

Address before: 102209 Beijing City, Changping District Beiqijia Town, Tivoli Park No. 15

Applicant before: DONGTAI HI-TECH EQUIPMENT TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right