CN111710744A - 一种GaAs/InGaP双结表面等离子体增强太阳能结构 - Google Patents

一种GaAs/InGaP双结表面等离子体增强太阳能结构 Download PDF

Info

Publication number
CN111710744A
CN111710744A CN202010583272.4A CN202010583272A CN111710744A CN 111710744 A CN111710744 A CN 111710744A CN 202010583272 A CN202010583272 A CN 202010583272A CN 111710744 A CN111710744 A CN 111710744A
Authority
CN
China
Prior art keywords
layer
gaas
back field
ingap
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010583272.4A
Other languages
English (en)
Other versions
CN111710744B (zh
Inventor
张新勇
柯尊斌
徐卫
王卿伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Germanium Co ltd
Original Assignee
China Germanium Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Germanium Co ltd filed Critical China Germanium Co ltd
Priority to CN202010583272.4A priority Critical patent/CN111710744B/zh
Publication of CN111710744A publication Critical patent/CN111710744A/zh
Application granted granted Critical
Publication of CN111710744B publication Critical patent/CN111710744B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种GaAs/InGaP双结表面等离子体增强太阳能结构,包括从下到上依次相接的下电极、第一子电池、透明导电层、第二子电池和上电极;第一子电池为GaAs电池,包括从下到上依次相接的第一背场层、第一基层、第一发射层和第一窗口层;第二子电池为InGaP电池,包括从下到上依次相接的第二背场层、第二基层、第二发射层、第二窗口层和接触层;第一、第二背场层的下表面均具有金属纳米颗粒;接触层上表面上电极之外的部分覆盖有减反射膜层。上述结构包括两个子电池,并在两个电池的背电场中分别制作纳米金属颗粒,利用纳米金属颗粒表面等离子体共振所产生的表面局域增强效应,增加各子电池对相应波段的吸收利用;同时还可增加底电池吸收的光程,提高太阳能转换效率。

Description

一种GaAs/InGaP双结表面等离子体增强太阳能结构
技术领域
本发明涉及一种GaAs/InGaP双结表面等离子体增强太阳能结构,属于太阳能电池领域。
背景技术
随着节能减排运动的兴起,作为转化效率最高的GaAs太阳能电池的应用越来越广泛。目前,双结太阳能电池外延结构主要为两个子电池组成,两个子电池因禁带不同,分别吸收不同波段的太阳光。在上面的InGaP子电池,禁带宽度1.8EV,会吸收650nm以下的光产生电能;透过的650-900nm的光由GaAs子电池吸收,GaAs禁带宽度1.4EV。此结构可有效转化各波段光能,但InGaP吸收效率有限,未吸收的光会被底层GaAs吸收,因650nm以下的光子能量远大于GaAs的禁带宽度,高出的能量一般以热能的形式浪费掉。
发明内容
本发明提供一种GaAs/InGaP双结表面等离子体增强太阳能结构,本发明通过在两个子电池中分别加入可与不同波段入射光产生等离子体共振的纳米金属颗粒,利用纳米金属颗粒表面等离子体共振所产生的表面局域电场增强,增加对各子电池中相应波段的吸收,从而提高转换效率。
为解决上述技术问题,本发明所采用的技术方案如下:
一种GaAs/InGaP双结表面等离子体增强太阳能结构,包括从下到上依次相接的下电极、第一子电池、透明导电层、第二子电池和上电极;第一子电池为GaAs电池,GaAs电池包括从下到上依次相接的第一背场层、第一基层、第一发射层和第一窗口层,第一背场层的下表面分布有金属纳米颗粒;第二子电池为InGaP电池,第二子电池包括从下到上依次相接的第二背场层、第二基层、第二发射层、第二窗口层和接触层,第二背场层的下表面分布有金属纳米颗粒;接触层上表面上电极之外的部分覆盖有减反射膜层。
上述结构利用纳米金属颗粒表面等离子体共振所产生的表面局域增强效应,增加各子电池对相应波段的吸收利用;同时两个电池中间的表面等离子体共振的强散射作用,可以增加底电池吸收的光程,增加其吸收效率,从而提高太阳能转换效率。
为了进一步增强各波段的吸收,第一背场层下表面和第二背场层下表面的金属纳米颗粒所用材料均为Au Ag或Cu中的一种或两种以上的复合材料,形状均为球型、四面体形或圆柱体形。
进一步优选,第一背场层下表面和第二背场层下表面的金属纳米颗粒所用材料均为Au,形状均为四面体形;第一背场层下表面的金属纳米颗粒的尺寸(外接圆的直径)为50-100nm,第一背场层下表面相邻金属纳米颗粒之间的中心间距为100-500nm;第二背场层下表面的金属纳米颗粒的尺寸(外接圆的直径)为10-50nm,第二背场层下表面相邻金属纳米颗粒之间的中心间距为20-500nm。
为了进一步增强650nm以上波段光的吸收,第一背场层为AlxGa1-xAs或者(AlyGa1-y)zIn1-zP,其中,x取值范围为0-0.5,y取值范围为0-0.5,z取值范围为0.4-0.6,第一背场层的厚度范围为50-200nm。第一背场层的下表面分布有金属纳米颗粒,通过调整金属纳米颗粒的大小及形状,使其被650nm以上范围的光激发产生表面等离子体共振,增加650nm以上波段光的吸收。
上述第一基层由GaAs组成,吸收650-900nm光产生电子空穴对;第一基层的掺杂为n型或p型,掺杂浓度为0~×10-22;第一基层的总厚度为500-5000nm。
上述第一发射层与第一基层掺杂类型相反,第一发射层的掺杂浓度为1×10-16~1×10-22,第一发射层的厚度范围100-1000nm;第一窗口层为AlxGa1-xAs或者(AlyGa1-y)zIn1-zP,其中,x取值范围为0-0.5,y取值范围为0-0.5,z取值范围为0.4-0.6,第一窗口层的厚度范围为100-200nm。
为了进一步增强650nm以下波段光的吸收,第二背场层为(AlyGa1-y)zIn1-zP,其中,y取值范围为0-0.5,z取值范围为0.4-0.6,第二背场层的厚度范围为30-200nm。第二背场层的下表面分布有金属纳米颗粒,通过调整金属纳米颗粒的大小及形状,使其被650nm以下范围的光激发产生表面等离子体共振,通过局域增加此波段光的吸收。且通过共振引起的强散射效果,可以增加其下面第一子电池的光吸收。
上述第二基层由InxGa1-xP组成,吸收小于650nm光产生电子空穴对,其中,x取值范围为0.4-0.6;第二基层掺杂浓度为0~×10-22,第二基层的掺杂类型与第一基层掺杂类型相同;第二基层的总厚度为200-2000nm。
上述第二发射层与第二基层的掺杂类型相反,第二发射层的掺杂浓度为1×10-16~1×10-22,第二发射层的厚度范围100-1000nm;第二窗口层为(AlyGa1-y)zIn1-zP,其中,y取值范围为0-0.5,z取值范围为0.4-0.6,第二窗口层的厚度范围为30-200nm。
为了进一步确保电池的转换效率,第二子电池的接触层为高掺杂GaAs层,掺杂浓度范围1×10-18-1×10-22,掺杂类型与第二发射层相同,厚度范围为30-200nm;上电极为栅形或透明电极,优选栅形电极;减反膜层的厚度为50-150nm。
本发明未提及的技术均参照现有技术。
本发明GaAs/InGaP双结表面等离子体增强太阳能结构,由两个子电池组成,并在两个电池的背电场中分别制作纳米金属颗粒,利用纳米金属颗粒表面等离子体共振所产生的表面局域增强效应,增加各子电池对相应波段的吸收利用;同时两个电池中间的表面等离子体共振的强散射作用,可以增加底电池吸收的光程,增加其吸收效率,从而提高太阳能转换效率。
附图说明
图1为本发明GaAs/InGaP双结表面等离子体增强太阳能结构示意图;
图中,11为下电极,12为第一子电池,121为第一背场层,122为第一基层,123为第一发射层,124为第一窗口层,13为透明导电层,14为第二子电池,141为第二背场层,142为第二基层,143为第二发射层,144为第二窗口层,145为接触层,15为上电极,16为减反射膜层。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
如图1所示,一种GaAs/InGaP双结表面等离子体增强太阳能结构,包括从下到上依次相接的下电极、第一子电池、透明导电层、第二子电池和上电极;第一子电池为GaAs电池,GaAs电池包括从下到上依次相接的第一背场层、第一基层、第一发射层和第一窗口层,第一背场层的下表面分布有金属纳米颗粒;第二子电池为InGaP电池,第二子电池包括从下到上依次相接的第二背场层、第二基层、第二发射层、第二窗口层和接触层,第二背场层的下表面分布有金属纳米颗粒;接触层上表面上电极之外的部分覆盖有减反射膜层。
第一背场层下表面和第二背场层下表面的金属纳米颗粒所用材料均为Au,形状均为四面体形;第一背场层下表面的金属纳米颗粒的尺寸为70nm,第一背场层下表面相邻金属纳米颗粒之间的中心间距为225nm;第二背场层下表面的金属纳米颗粒的尺寸为40nm,第二背场层下表面相邻金属纳米颗粒之间的中心间距为140nm。
第一背场层为AlxGa1-xAs,其中,x取值0.2,第一背场层的厚度为100nm。第一背场层的下表面分布有金属纳米颗粒,可被650nm以上范围的光激发产生表面等离子体共振,增加650nm以上波段光的吸收。
第一基层由GaAs组成,吸收650-900nm光产生电子空穴对;第一基层的掺杂为n型,掺杂浓度为1×10-17;第一基层的总厚度为2000nm。
第一发射层与第一基层掺杂类型相反,第一发射层的掺杂浓度为1×10-18,第一发射层的厚度200nm;第一窗口层为(AlyGa1-y)zIn1-zP,其中,y取值0.2,z取值0.5,第一窗口层的厚度为150nm。
第二背场层为(AlyGa1-y)zIn1-zP,其中,y取值0.2,z取值0.5,第二背场层的厚度为100nm。第二背场层的下表面分布有金属纳米颗粒,可被650nm以下范围的光激发产生表面等离子体共振,通过局域增加此波段光的吸收。且通过共振引起的强散射效果,可以增加其下面第一子电池的光吸收。
第二基层由InxGa1-xP组成,吸收小于650nm光产生电子空穴对,其中,x取值0.56;第二基层掺杂浓度为1×10-17,第二基层的掺杂类型与第一基层掺杂类型相同;第二基层的总厚度为800nm。
第二发射层与第二基层的掺杂类型相反,第二发射层的掺杂浓度为1×10-18,第二发射层的厚度300nm;第二窗口层为(AlyGa1-y)zIn1-zP,其中,y取值0.3,z取值0.5,第二窗口层的厚度为80nm。
第二子电池的接触层为高掺杂GaAs层,掺杂浓度1×10-20,掺杂类型与第二发射层相同,厚度为80nm;上电极为栅形电极;减反膜层的厚度为100nm。
对比例1
与实施例1基本相同,所不同的是:第一、第二背场层下表面不设金属纳米颗粒。
对比数据如下:
实施例2
与实施例基本相同,所不同的是:第一背场层为(AlyGa1-y)zIn1-zP,其中,y取值0.3,z取值0.5。
表1为上述各例所得产品的太阳能转换效率
实施例 太阳能转换效率
实施例1 31.5%
对比例1 28.3%
实施例2 31.4%
说明:上述太阳能转换效率为各例所得产品随机抽取10样品的平均值。

Claims (10)

1.一种GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:包括从下到上依次相接的下电极、第一子电池、透明导电层、第二子电池和上电极;第一子电池为GaAs电池,GaAs电池包括从下到上依次相接的第一背场层、第一基层、第一发射层和第一窗口层,第一背场层的下表面分布有金属纳米颗粒;第二子电池为InGaP电池,第二子电池包括从下到上依次相接的第二背场层、第二基层、第二发射层、第二窗口层和接触层,第二背场层的下表面分布有金属纳米颗粒;接触层上表面上电极之外的部分覆盖有减反射膜层。
2.如权利要求1所述的GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:第一背场层下表面和第二背场层下表面的金属纳米颗粒所用材料均为Au Ag或Cu中的一种或两种以上的复合材料,形状均为球型、四面体形或圆柱体形。
3.如权利要求2所述的GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:第一背场层下表面和第二背场层下表面的金属纳米颗粒所用材料均为Au,形状均为四面体形;第一背场层下表面的金属纳米颗粒的尺寸为50-100nm;第二背场层下表面的金属纳米颗粒的尺寸为10-50nm。
4.如权利要求1-3任意一项所述的GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:第一背场层为AlxGa1-xAs或者(AlyGa1-y)zIn1-zP,其中,x取值范围为0-0.5,y取值范围为0-0.5,z取值范围为0.4-0.6,第一背场层的厚度范围为50-200nm。
5.如权利要求1-3任意一项所述的GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:第一基层由GaAs组成,吸收650-900nm光产生电子空穴对;第一基层的掺杂为n型或p型,掺杂浓度为0~×10-22;第一基层的总厚度为500-5000nm。
6.如权利要求1-3任意一项所述的GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:第一发射层与第一基层掺杂类型相反,第一发射层的掺杂浓度为1×10-16~1×10-22,第一发射层的厚度范围100-1000nm;第一窗口层为AlxGa1-xAs或者(AlyGa1-y)zIn1-zP,其中,x取值范围为0-0.5,y取值范围为0-0.5,z取值范围为0.4-0.6,第一窗口层的厚度范围为100-200nm。
7.如权利要求1-3任意一项所述的GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:第二背场层为(AlyGa1-y)zIn1-zP,其中,y取值范围为0-0.5,z取值范围为0.4-0.6,第二背场层的厚度范围为30-200nm。
8.如权利要求1-3任意一项所述的GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:第二基层由InxGa1-xP组成,吸收小于650nm光产生电子空穴对,其中,x取值范围为0.4-0.6;第二基层掺杂浓度为0~×10-22,第二基层的掺杂类型与第一基层掺杂类型相同;第二基层的总厚度为200-2000nm。
9.如权利要求1-3任意一项所述的GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:第二发射层与第二基层的掺杂类型相反,第二发射层的掺杂浓度为1×10-16~1×10-22,第二发射层的厚度范围100-1000nm;第二窗口层为(AlyGa1-y)zIn1-zP,其中,y取值范围为0-0.5,z取值范围为0.4-0.6,第二窗口层的厚度范围为30-200nm。
10.如权利要求1-3任意一项所述的GaAs/InGaP双结表面等离子体增强太阳能结构,其特征在于:第二子电池的接触层为高掺杂GaAs层,掺杂浓度范围1×10-18-1×10-22,掺杂类型与第二发射层相同,厚度范围为30-200nm;上电极为栅形或透明电极;减反膜层的厚度为50-150nm。
CN202010583272.4A 2020-06-23 2020-06-23 一种GaAs/InGaP双结表面等离子体增强太阳能结构 Active CN111710744B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010583272.4A CN111710744B (zh) 2020-06-23 2020-06-23 一种GaAs/InGaP双结表面等离子体增强太阳能结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010583272.4A CN111710744B (zh) 2020-06-23 2020-06-23 一种GaAs/InGaP双结表面等离子体增强太阳能结构

Publications (2)

Publication Number Publication Date
CN111710744A true CN111710744A (zh) 2020-09-25
CN111710744B CN111710744B (zh) 2022-04-12

Family

ID=72541829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010583272.4A Active CN111710744B (zh) 2020-06-23 2020-06-23 一种GaAs/InGaP双结表面等离子体增强太阳能结构

Country Status (1)

Country Link
CN (1) CN111710744B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186052A (zh) * 2020-10-12 2021-01-05 厦门大学 一种深紫外多波长msm窄带光电探测器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083290A (zh) * 2006-06-02 2007-12-05 昂科公司 多结太阳能电池中的变形层
US20080001127A1 (en) * 2006-06-19 2008-01-03 The Regents Of The University Of California High efficiency thermoelectric materials based on metal/semiconductor nanocomposites
US20100006136A1 (en) * 2008-07-08 2010-01-14 University Of Delaware Multijunction high efficiency photovoltaic device and methods of making the same
CN103000740A (zh) * 2012-11-28 2013-03-27 中国科学院苏州纳米技术与纳米仿生研究所 GaAs/GaInP双结太阳能电池及其制作方法
CN106653926A (zh) * 2017-01-23 2017-05-10 华南理工大学 一种等离激元增强GaAs基多结太阳电池及其制备方法
CN110556448A (zh) * 2018-05-30 2019-12-10 东泰高科装备科技(北京)有限公司 一种叠层串联太阳能电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101083290A (zh) * 2006-06-02 2007-12-05 昂科公司 多结太阳能电池中的变形层
US20080001127A1 (en) * 2006-06-19 2008-01-03 The Regents Of The University Of California High efficiency thermoelectric materials based on metal/semiconductor nanocomposites
US20100006136A1 (en) * 2008-07-08 2010-01-14 University Of Delaware Multijunction high efficiency photovoltaic device and methods of making the same
CN103000740A (zh) * 2012-11-28 2013-03-27 中国科学院苏州纳米技术与纳米仿生研究所 GaAs/GaInP双结太阳能电池及其制作方法
CN106653926A (zh) * 2017-01-23 2017-05-10 华南理工大学 一种等离激元增强GaAs基多结太阳电池及其制备方法
CN110556448A (zh) * 2018-05-30 2019-12-10 东泰高科装备科技(北京)有限公司 一种叠层串联太阳能电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186052A (zh) * 2020-10-12 2021-01-05 厦门大学 一种深紫外多波长msm窄带光电探测器及其制备方法

Also Published As

Publication number Publication date
CN111710744B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
JP6259393B2 (ja) 電流生成が向上した半導体デバイス
Dimova-Malinovska The state-of-the-art and future development of the photovoltaic technologies–the route from crystalline to nanostructured and new emerging materials
CN111710744B (zh) 一种GaAs/InGaP双结表面等离子体增强太阳能结构
CN110335909B (zh) 一种基于反射聚光的双面耦合光伏电池系统
Zhang et al. Development of inorganic solar cells by nano-technology
CN103094378B (zh) 含有变In组分InGaN/GaN多层量子阱结构的背入射太阳能电池
CN204315606U (zh) 双异质结双面太阳能电池
CN108172638B (zh) 一种三结太阳电池
Spinelli et al. Photovoltaics: Light‐Trapping in Crystalline Silicon and Thin‐Film Solar Cells by Nanostructured Optical Coatings
EP4379820A1 (en) Solar cell and photovoltaic module
US9614108B1 (en) Optically-thin chalcogenide solar cells
CN209981254U (zh) 一种晶体硅双面太阳电池结构
CN110534612B (zh) 一种反向生长三结太阳电池的制备方法
CN111430493A (zh) 一种多结太阳能电池及供电设备
CN202712196U (zh) 一种n型背接触双面太阳能电池的背面电极结构
CN214152915U (zh) 太阳能电池组件
CN201311936Y (zh) 具有反射层的三结太阳电池
CN207834310U (zh) 一种三结太阳电池
McIntosh et al. Increased mc-Si module efficiency using fluorescent organic dyes: a ray-tracing study
CN111952377A (zh) 曲面陷光结构的钙钛矿/硅叠层太阳电池及其制作方法
CN217955889U (zh) 一种改善载流输出的叠层电池
CN219591399U (zh) 叠层太阳能电池组件
US20240222540A1 (en) Solar cell and tandem solar cell
CN115172500B (zh) 一种激光电池组件
CN210467862U (zh) 一种三结GaAs太阳能电池外延结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A GaAs/InGaP double junction surface plasmon enhanced solar energy structure

Granted publication date: 20220412

Pledgee: China Minsheng Banking Corp Nanjing branch

Pledgor: CHINA GERMANIUM Co.,Ltd.

Registration number: Y2024980010281