CN110548527A - 一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法 - Google Patents

一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法 Download PDF

Info

Publication number
CN110548527A
CN110548527A CN201910679420.XA CN201910679420A CN110548527A CN 110548527 A CN110548527 A CN 110548527A CN 201910679420 A CN201910679420 A CN 201910679420A CN 110548527 A CN110548527 A CN 110548527A
Authority
CN
China
Prior art keywords
mnfeo
plating solution
chemical plating
electrocatalyst
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910679420.XA
Other languages
English (en)
Other versions
CN110548527B (zh
Inventor
谢天
刘欣
吕尊航
王开航
王桂雪
谢广文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201910679420.XA priority Critical patent/CN110548527B/zh
Publication of CN110548527A publication Critical patent/CN110548527A/zh
Application granted granted Critical
Publication of CN110548527B publication Critical patent/CN110548527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/187Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Abstract

本发明提供了一种化学镀制备负载型Ni‑Fe‑P‑MnFeO3电催化剂的方法,其特征在于:载体为经除油、活化处理的泡沫镍,化学镀液组成为2~15g·L‑1NiSO4·6H2O,5~25g·L‑1(NH4)2Fe(SO4)2,2~20g·L‑1NH4F,5~50g·L‑1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L‑1NaH2PO2·H2O,化学镀液中添加0.2~15g·L‑1粒度为5~500纳米nm的MnFeO3粉体,化学镀温度为75~95℃,时间为0.1~5h,通过化学复合镀法在泡沫镍载体表面制得成分均匀的Ni‑Fe‑P‑MnFeO3电催化剂。该方法具有简单易行、成本低廉、催化性能优异的特点,易于规模化制备,是一种很有前景的催化剂制备方法。

Description

一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法
技术领域
本发明涉及一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法,具体是一种泡沫镍基体表面负载Ni-Fe-P-MnFeO3电催化剂的复合化学镀制备方法,属于能源材料及电催化技术领域。
背景技术
传统化石能源的枯竭与环境污染成为当前全球共同面对的挑战性问题。氢能作为一种高能量密度、无毒的清洁能源,被广泛认为是未来极具发展潜力的能源之一。电解水析氢是目前最有效的制备高纯氢的方法。从性能和实际应用等多方面考虑,对于电解水阴极析氢材料研究的焦点还是以Ni为基础的过渡族合金材料。Ni基析氢催化材料的研究经历了由单一金属到多元合金再到复合材料的过程,进一步开发廉价的低过电势、快反应速率的新型Ni基析氢催化复合材料,是当前催化析氢材料的研究重点。
本专利通过使用复合化学镀的方法,在化学镀液中加入合适的具有催化活性的钙钛矿氧化物(MnFeO3),于泡沫镍表面制得了成分均匀的Ni-Fe-P-MnFeO3电催化剂。该方法操作简单,催化剂析氢性能优异,易于规模化制备,是一种很有前景的催化剂制备方法。
发明内容
本发明的目的是提供一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法,以获得廉价、低过电势、快反应速率的Ni基析氢催化剂。该方法操作简单,易于规模化制备,是一种很有前景的催化剂制备方法。
本发明目的通过如下技术方案实现:
一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法,包括如下步骤:
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L-1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将0.2~15g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为0.1~5h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
本发明采用化学镀法制备出了Ni-Fe-P-MnFeO3电催化剂,与现有技术相比,本发明具有成本低廉、催化性能优异、方法简单易行等优点。
具体实施方式
通过下面给出的本发明的具体实施例可以进一步清楚地理解本发明,但下述实施例并不是对本发明的限定。
实施例1:
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L-1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将0.5g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为0.1h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
实施例2:
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L-1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将1.0g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为0.5h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
实施例3:
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L-1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将2.0g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为1h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
实施例4:
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L-1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将3.0g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为3h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
实施例5
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L-1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将5.0g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为1h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
实施例6
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L-1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将8.0g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为2h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
实施例7
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L-1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将10g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为2h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
实施例8
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L-1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将15g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为2h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
显然,本发明上述实施例仅仅是为了清楚地说明本发明所做的举例,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (5)

1.一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法,包括下列顺序步骤:
(1)将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温下在丙酮中超声除油5~30min,并在1~5mol·L-1的HCl中超声5~30min去除表面氧化层;
(2)将预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥;
(3)化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L- 1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12;
(4)将0.2~15g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min;
(5)将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为0.1~5h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,即获得负载型Ni-Fe-P-MnFeO3电催化剂。
2.按照权利要求1所述一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法,其特征在于:将孔径为0.01~0.1mm、厚度为0.05~50mm的泡沫镍载体,于室温进行超声除油和去除表面氧化层的处理。预处理后的泡沫镍载体用去离子水清洗至无HCl残留,后以无水乙醇进行脱水处理,真空干燥。
3.按照权利要求1所述一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法,其特征在于:化学镀液组成为2~15g·L-1NiSO4·6H2O,5~25g·L-1(NH4)2Fe(SO4)2,2~20g·L- 1NH4F,5~50g·L-1柠檬酸钠(C6H5Na3O7·2H2O),10~50g·L-1NaH2PO2·H2O,利用氨水调整镀液pH值至9~12。
4.按照权利要求1所述一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法,其特征在于:将0.2~15g·L-1粒度为5~500nm的MnFeO3粉体加入到化学镀液中,超声分散5~30min。
5.按照权利要求1所述一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法,其特征在于:将预处理后的泡沫镍浸入到温度为75~95℃的化学镀液中,在空气或者氮气或者惰性气体或者超声搅拌下,化学镀时间为0.1~5h。化学镀完成后,将样品取出,用去离子水超声清洗干净并干燥,制得负载型Ni-Fe-P-MnFeO3电催化剂。
CN201910679420.XA 2019-07-26 2019-07-26 一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法 Active CN110548527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910679420.XA CN110548527B (zh) 2019-07-26 2019-07-26 一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910679420.XA CN110548527B (zh) 2019-07-26 2019-07-26 一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法

Publications (2)

Publication Number Publication Date
CN110548527A true CN110548527A (zh) 2019-12-10
CN110548527B CN110548527B (zh) 2022-08-09

Family

ID=68736404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910679420.XA Active CN110548527B (zh) 2019-07-26 2019-07-26 一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法

Country Status (1)

Country Link
CN (1) CN110548527B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458482A (zh) * 2020-11-18 2021-03-09 华中科技大学 一种非晶态NiFeP过渡金属催化剂、制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034266A2 (en) * 2003-09-03 2005-04-14 Symyx Technologies, Inc. Platinum-nickel-iron fuel cell catalyst
CN105727957A (zh) * 2014-12-09 2016-07-06 中国科学院大连化学物理研究所 一种负载型铁镍磷化物催化剂材料及其应用
CN106460179A (zh) * 2014-09-11 2017-02-22 石原化学株式会社 化学镀镍或镍合金用镍胶体催化剂液及化学镀镍或镍合金方法
CN107447208A (zh) * 2017-06-23 2017-12-08 安庆师范大学 一种利用化学镀‑置换制备Pd‑Ni‑Fe‑P合金膜的方法
CN108707923A (zh) * 2018-06-11 2018-10-26 华东理工大学 一种以泡沫镍为载体的镍铁氢氧化物/还原氧化石墨烯电化学析氧催化剂及其制备方法
CN109023161A (zh) * 2018-08-30 2018-12-18 合肥工业大学 一种Fe-Ni-P-C系非晶合金电催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034266A2 (en) * 2003-09-03 2005-04-14 Symyx Technologies, Inc. Platinum-nickel-iron fuel cell catalyst
CN106460179A (zh) * 2014-09-11 2017-02-22 石原化学株式会社 化学镀镍或镍合金用镍胶体催化剂液及化学镀镍或镍合金方法
CN105727957A (zh) * 2014-12-09 2016-07-06 中国科学院大连化学物理研究所 一种负载型铁镍磷化物催化剂材料及其应用
CN107447208A (zh) * 2017-06-23 2017-12-08 安庆师范大学 一种利用化学镀‑置换制备Pd‑Ni‑Fe‑P合金膜的方法
CN108707923A (zh) * 2018-06-11 2018-10-26 华东理工大学 一种以泡沫镍为载体的镍铁氢氧化物/还原氧化石墨烯电化学析氧催化剂及其制备方法
CN109023161A (zh) * 2018-08-30 2018-12-18 合肥工业大学 一种Fe-Ni-P-C系非晶合金电催化剂及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458482A (zh) * 2020-11-18 2021-03-09 华中科技大学 一种非晶态NiFeP过渡金属催化剂、制备方法及应用
CN112458482B (zh) * 2020-11-18 2021-11-19 华中科技大学 一种非晶态NiFeP过渡金属催化剂、制备方法及应用

Also Published As

Publication number Publication date
CN110548527B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN107376958B (zh) NiFeP双功能过渡金属磷化物催化剂及其制备和用途
CN103924260A (zh) 一种三维泡沫镍负载铜和钴的复合析氢电极及其制备方法
CN110055552B (zh) 一种高效氮化镍析氢电极制备方法
CN110331415B (zh) 一种三维双金属氧化物集流体电极材料、其制备方法及用途
CN112626552B (zh) 一种泡沫镍表面电沉积Ni-Fe-Sn-P合金的方法
CN109277110B (zh) 一种不规则球状的V掺杂的Ni3S2/NF析氧电催化剂及其制备方法
CN110306204B (zh) 一种掺杂银的层状氢氧化镍复合电极材料及其制备方法与应用
CN107159227B (zh) 一种高效、长寿命硼氢化钠水解制氢用CoWB/NF催化剂及其制备方法
CN113279010B (zh) 一种高催化活性的Fe-Se析氢电极及其制备方法
Wang et al. Facile Synthesis of Nanostructural High‐Performance Cu–Pb Electrocatalysts for CO2 Reduction
CN110841658A (zh) 钴基硫化物纳米棒阵列的制备方法
CN110548527B (zh) 一种化学镀制备负载型Ni-Fe-P-MnFeO3电催化剂的方法
KR101500463B1 (ko) 연료전지용 코발트계 음극 촉매 및 그 제조방법
CN113275027A (zh) 一种生长在泡沫镍上以普鲁士蓝类似物为模板衍生的双金属磷化物的制备及应用
CN113512738A (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
CN110129826B (zh) 一种一步电沉积制备金属硫化物/金属电催化剂的普适性方法
CN114289043A (zh) 一种自支撑多孔纳米板钴镍磷化物催化剂制备方法及应用
CN105047884A (zh) 三维析氧电极阳极材料及其制备方法和应用
CN110629249B (zh) 植绒钢板表面化学镀-造孔制备高活性析氢电极的方法
CN115466979A (zh) 一种用于高效电解水析氢的镍钴磷电催化剂的制备方法
Darband Recent Advances in Phosphide-based Nanostructures by Electrodeposition for Hydrogen Evolution Reaction.
CN109537006B (zh) 一种高效的Ni-S-B析氢电极及其制备方法和应用
CN112501645A (zh) 一种氢氧化镍/镍网复合析氢析氧电极、制备方法及其应用
CN114318408B (zh) 一种自支撑Cu3P基异质结电催化剂及其制备方法与应用
CN115323392B (zh) 高效Co/NiCoP/CC异质纳米颗粒析氢反应电催化剂的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant