CN110531700B - 基于三维广义欧拉螺线的空间拐角光顺方法 - Google Patents

基于三维广义欧拉螺线的空间拐角光顺方法 Download PDF

Info

Publication number
CN110531700B
CN110531700B CN201910846032.6A CN201910846032A CN110531700B CN 110531700 B CN110531700 B CN 110531700B CN 201910846032 A CN201910846032 A CN 201910846032A CN 110531700 B CN110531700 B CN 110531700B
Authority
CN
China
Prior art keywords
straight line
circular arc
segment
dimensional generalized
euler spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910846032.6A
Other languages
English (en)
Other versions
CN110531700A (zh
Inventor
张卫红
肖群宝
万敏
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910846032.6A priority Critical patent/CN110531700B/zh
Publication of CN110531700A publication Critical patent/CN110531700A/zh
Application granted granted Critical
Publication of CN110531700B publication Critical patent/CN110531700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34242For measurement only

Abstract

本发明涉及一种基于三维广义欧拉螺线的空间拐角光顺方法,该方法首先通过坐标旋转使得相邻直线段或圆弧段在空间拐角处的切平面与XY平面平行;然后令三维广义欧拉螺线在端点处与直线段或圆弧段的三阶导数相同,从而求解得到三维广义欧拉螺线的各个参数;接着采用牛顿法计算三维广义欧拉螺线与直线段或圆弧段之间的距离,并用割线法将该距离限制在公差允许的范围内;最后通过坐标逆旋转将相邻直线段或圆弧段、以及三维广义欧拉螺线变换到原始的位置,从而得到光顺后的空间拐角。本发明实现了相邻直线段或圆弧段不在同一平面内的刀具轨迹、即包含空间拐角的刀具轨迹的光顺,可以应用于数控机床的轨迹预处理,提高加工效率。

Description

基于三维广义欧拉螺线的空间拐角光顺方法
技术领域
本发明涉及数控机床加工技术领域,本发明涉及一种数控机床加工刀具轨迹中空间拐角的光顺方法,特别涉及一种基于三维广义欧拉螺线的空间拐角光顺方法。
背景技术
文献1“W.Wang,C.Hu,K.Zhou,S.He,(B.6)Corner trajectory smoothing withasymmetrical transition profile for CNC machine tools,International Journalof Machine Tools and Manufacture 144(2019).”公开了一种使用非对称转接曲线来实现拐角光顺的方法。该方法通过在刀具轨迹的拐角中插入一段非对称转接曲线来实现刀具轨迹的光滑过渡。但该方法仅适用于只包含G01指令的刀具轨迹、即只包含直线段的刀具轨迹的光顺,无法适用于包含G02或G03指令刀具轨迹、即包含圆弧的刀具轨迹的光顺。
文献2“A.Shahzadeh,A.Khosravi,T.Robinette,S.Nahavandi,Smooth pathplanning using biclothoid fillets for high speed CNC machines,InternationalJournal of Machine Tools and Manufacture 132(2018)36-49.”公开了一种使用双欧拉螺线来实现拐角光顺的方法。该方法通过在两段相邻的圆弧或直线之间插入一段双欧拉螺线来实现拐角光顺。该方法可以实现包含G01、G02或G03指令刀具轨迹的光顺。但该方法只适用于相邻圆弧或直线位于同一平面内的刀具轨迹的光顺,对于相邻圆弧或直线不在同一平面内的刀具轨迹,即包含空间拐角的刀具轨迹,该方法无法进行光顺。
以上文献的典型特点是:均无法实现相邻圆弧或直线段不在同一平面内的刀具轨迹、即包含空间拐角的刀具轨迹的光顺。
发明内容
要解决的技术问题
为了克服现有拐角光顺方法无法对空间拐角进行光顺的问题,本发明提供了一种基于三维广义欧拉螺线的空间拐角光顺方法。
技术方案
一种基于三维广义欧拉螺线的空间拐角光顺方法,其特征在于步骤如下:
步骤1:计算第k个拐角相邻直线段或圆弧段在空间拐角处的法向量:
Figure RE-GDA0002230464520000021
其中,v1为前一段直线或圆弧在拐角处的切向量,v2为后一段直线或圆弧在拐角处的切向量,n1为前一段直线或圆弧所在平面的法向量,n2为后一段直线或圆弧所在平面的法向量,v1||v2表示向量v1和v2共线,
Figure RE-GDA0002230464520000025
表示向量v1和v2不共线;
步骤2:计算三维旋转矩阵:
Figure RE-GDA0002230464520000022
其中
Figure RE-GDA0002230464520000023
Figure RE-GDA0002230464520000024
其中,nx、ny和nz为法向量n的坐标分量,n=[nx,ny,nz]T
步骤3:计算旋转后的直线段或圆弧段及其各阶导数:
Figure RE-GDA0002230464520000031
Figure RE-GDA0002230464520000032
Figure RE-GDA0002230464520000033
Figure RE-GDA0002230464520000034
其中,Ptraj(s)为坐标旋转之前的直线段或圆弧段的轨迹,P′traj(s)、P″traj(s)和P″′traj(s) 分别为坐标旋转之前的直线段或圆弧段轨迹的一阶、二阶和三阶导数;
步骤4:计算直线段或圆弧段与三维广义欧拉螺线交点处的切角θ1,01,42,02,4
Figure RE-GDA0002230464520000035
其中,se=2sc-s0;s0为未光顺的轨迹在三维广义欧拉螺线的起点处的弧长参数,sc为未光顺的轨迹在拐角处的弧长参数;
步骤5:计算直线段或圆弧段与三维广义欧拉螺线交点处的曲率κ1,01,42,02,4
Figure RE-GDA0002230464520000041
步骤6:计算直线段或圆弧段与三维广义欧拉螺线交点处的锐度c1,0,c1,4,c2,0,c2,4
Figure RE-GDA0002230464520000042
其中
Figure RE-GDA0002230464520000043
步骤7:采用Powell dogleg方法求解如下方程组得到三维广义欧拉螺线的参数γ1,12,1,s1
Figure RE-GDA0002230464520000051
其中
Figure RE-GDA0002230464520000052
Figure RE-GDA0002230464520000053
Figure RE-GDA0002230464520000054
Figure RE-GDA0002230464520000055
Figure RE-GDA0002230464520000056
Figure RE-GDA0002230464520000057
步骤8:计算得到三维广义欧拉螺线在旋转后的坐标系下的表达式:
Figure RE-GDA0002230464520000061
步骤9:用牛顿法计算三维广义欧拉螺线到原始轨迹的最大距离e,然后采用割线法求解e(s0)=ε得到三维广义欧拉螺线的起点处的弧长参数s0,其中ε为预设的最大光顺误差;
步骤10:通过坐标逆旋转计算三维广义欧拉螺线在原坐标系下的表达式:
Figure RE-GDA0002230464520000062
步骤11:逐一对刀具轨迹的每个拐角执行步骤1至步骤9,完成该刀具轨迹的光顺。
有益效果
本发明提出的一种基于三维广义欧拉螺线的空间拐角光顺方法,该方法首先通过坐标旋转使得相邻直线段或圆弧段在空间拐角处的切平面与XY平面平行;然后令三维广义欧拉螺线在端点处与直线段或圆弧段的三阶导数相同,从而求解得到三维广义欧拉螺线的各个参数;接着采用牛顿法计算三维广义欧拉螺线与直线段或圆弧段之间的距离,并用割线法将该距离限制在公差允许的范围内;最后通过坐标逆旋转将相邻直线段或圆弧段、以及三维广义欧拉螺线变换到原始的位置,从而得到光顺后的空间拐角。本发明实现了相邻直线段或圆弧段不在同一平面内的刀具轨迹、即包含空间拐角的刀具轨迹的光顺,可以应用于数控机床的轨迹预处理,提高加工效率。
附图说明
图1是本发明方法实施例中未光顺的碗形刀具轨迹图。
图2是本发明方法实施例中光顺后拐角3和拐角4的局部放大图。
图3是本发明方法实施例中光顺后拐角20和拐角21的局部放大图。
图4是本发明方法实施例中光顺后曲率的局部放大图。
图5是本发明方法实施例中光顺后锐度的局部放大图。
图6是本发明方法实施例中各个拐角的光顺误差图。
图7是本发明方法实施例中光顺与未光顺轨迹的速度图。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
参照图1-7。选择刀具轨迹为三维碗形轨迹,特别的,该轨迹包含了G02/G03指令与空间拐角。采用本发明方法对该轨迹进行拐角光顺,预设最大光顺误差为100um。采用三次加速度方法对未光顺的轨迹和光顺后的轨迹分别进行速度规划,得到两者的速度曲线及加工时间。
本发明一种基于三维广义欧拉螺线的空间拐角光顺方法具体步骤如下:
步骤1、计算第k个拐角相邻直线段或圆弧段在空间拐角处的法向量:
Figure RE-GDA0002230464520000071
v1为前一段直线或圆弧在拐角处的切向量,v2为后一段直线或圆弧在拐角处的切向量, n1为前一段直线或圆弧所在平面的法向量,n2为后一段直线或圆弧所在平面的法向量, v1||v2表示向量v1和v2共线,
Figure RE-GDA0002230464520000072
表示向量v1和v2不共线。
步骤2、计算三维旋转矩阵:
Figure RE-GDA0002230464520000081
其中
Figure RE-GDA0002230464520000082
Figure RE-GDA0002230464520000083
nx、ny和nz为法向量n的坐标分量,n=[nx,ny,nz]T.
步骤3、计算旋转后的直线段或圆弧段及其各阶导数:
Figure RE-GDA0002230464520000084
Figure RE-GDA0002230464520000085
Figure RE-GDA0002230464520000086
Figure RE-GDA0002230464520000087
其中,Ptraj(s)为坐标旋转之前的直线段或圆弧段的轨迹,P′traj(s)、P″traj(s)和P″′traj(s)分别为坐标旋转之前的直线段或圆弧段轨迹的一阶、二阶和三阶导数。
步骤4、计算直线段或圆弧段与三维广义欧拉螺线交点处的切角θ1,01,42,02,4
Figure RE-GDA0002230464520000091
其中
se=2sc-s0
s0为未光顺的轨迹在三维广义欧拉螺线的起点处的弧长参数,sc为未光顺的轨迹在拐角处的弧长参数。
步骤5、计算直线段或圆弧段与三维广义欧拉螺线交点处的曲率κ1,01,42,02,4
Figure RE-GDA0002230464520000092
步骤6、计算直线段或圆弧段与三维广义欧拉螺线交点处的锐度c1,0,c1,4,c2,0,c2,4
Figure RE-GDA0002230464520000101
其中
Figure RE-GDA0002230464520000102
步骤7、采用Powell dogleg方法求解如下方程组得到三维广义欧拉螺线的参数γ1,12,1,s1
Figure RE-GDA0002230464520000103
其中
Figure RE-GDA0002230464520000104
Figure RE-GDA0002230464520000105
Figure RE-GDA0002230464520000111
Figure RE-GDA0002230464520000112
Figure RE-GDA0002230464520000113
Figure RE-GDA0002230464520000114
步骤8、计算得到三维广义欧拉螺线在旋转后的坐标系下的表达式:
Figure RE-GDA0002230464520000115
步骤9、用牛顿法计算三维广义欧拉螺线到原始轨迹的最大距离e,然后采用割线法求解e(s0)=ε得到三维广义欧拉螺线的起点处的弧长参数s0,其中ε为预设的最大光顺误差。
步骤10、通过坐标逆旋转计算三维广义欧拉螺线在原坐标系下的表达式:
Figure RE-GDA0002230464520000116
步骤11、逐一对刀具轨迹的每个拐角执行步骤1至步骤9,完成该刀具轨迹的光顺。
可以看出,本发明实现了相邻直线段或圆弧段不在同一平面内的刀具轨迹、即包含空间拐角的刀具轨迹的光顺,可以应用于数控机床的轨迹预处理,提高加工效率。
图2和图3为光顺后轨迹的局部放大图,可以看到,在原始轨迹拐角中插入三维广义欧拉螺线后实现了轨迹的光滑连接。图4和图5为光顺后轨迹的局部曲率图和局部锐度图,注意到锐度为曲率关于弧长的导数。可以看到,光顺后各个指令段的曲率实现光滑连接,各个指令段的锐度连续,说明本发明方法实现了G3连续。图6为各个拐角的光顺误差图,可以看到,光顺误差被严格限制在预设值100um以内。图7为光顺和未光顺轨迹的速度图。由于未光顺的轨迹在拐角处会发生速度和加速度突变,从而导致机床振动。为了避免这种现象,未光顺的轨迹在拐角处需要将速度减至0然后重新加速,这极大地延长了加工时间,降低了加工效率。而光顺后的轨迹在拐角处光滑连接,没有速度和加速度突变,因而不需要将速度完全减至0,从而减短了加工时间。本实施例中未光顺轨迹的加工时间为12.12s,光顺后轨迹的加工时间为10.41s,减少了14.11%,提高了加工效率。
本发明实现了相邻直线段或圆弧段不在同一平面内的刀具轨迹、即包含空间拐角的刀具轨迹的光顺,可以应用于数控机床的轨迹预处理,提高加工效率。

Claims (1)

1.一种基于三维广义欧拉螺线的空间拐角光顺方法,其特征在于步骤如下:
步骤1:计算第k个拐角相邻直线段或圆弧段在空间拐角处的法向量:
Figure FDA0002195218410000011
其中,v1为前一段直线或圆弧在拐角处的切向量,v2为后一段直线或圆弧在拐角处的切向量,n1为前一段直线或圆弧所在平面的法向量,n2为后一段直线或圆弧所在平面的法向量,v1||v2表示向量v1和v2共线,
Figure FDA0002195218410000012
表示向量v1和v2不共线;
步骤2:计算三维旋转矩阵:
Figure FDA0002195218410000013
其中
Figure FDA0002195218410000014
Figure FDA0002195218410000015
其中,nx、ny和nz为法向量n的坐标分量,n=[nx,ny,nz]T
步骤3:计算旋转后的直线段或圆弧段及其各阶导数:
Figure FDA0002195218410000016
Figure FDA0002195218410000017
Figure FDA0002195218410000018
Figure FDA0002195218410000019
其中,Ptraj(s)为坐标旋转之前的直线段或圆弧段的轨迹,P′traj(s)、P″traj(s)和P″′traj(s)分别为坐标旋转之前的直线段或圆弧段轨迹的一阶、二阶和三阶导数;
步骤4:计算直线段或圆弧段与三维广义欧拉螺线交点处的切角θ1,01,42,02,4
Figure FDA0002195218410000021
其中,se=2sc-s0;s0为未光顺的轨迹在三维广义欧拉螺线的起点处的弧长参数,sc为未光顺的轨迹在拐角处的弧长参数;
步骤5:计算直线段或圆弧段与三维广义欧拉螺线交点处的曲率κ1,01,42,02,4
Figure FDA0002195218410000022
步骤6:计算直线段或圆弧段与三维广义欧拉螺线交点处的锐度c1,0,c1,4,c2,0,c2,4
Figure FDA0002195218410000031
其中
Figure FDA0002195218410000032
步骤7:采用Powell dogleg方法求解如下方程组得到三维广义欧拉螺线的参数γ1,12,1,s1
Figure FDA0002195218410000033
其中
Figure FDA0002195218410000034
Figure FDA0002195218410000035
Figure FDA0002195218410000041
Figure FDA0002195218410000042
Figure FDA0002195218410000043
Figure FDA0002195218410000044
步骤8:计算得到三维广义欧拉螺线在旋转后的坐标系下的表达式:
Figure FDA0002195218410000045
步骤9:用牛顿法计算三维广义欧拉螺线到原始轨迹的最大距离e,然后采用割线法求解e(s0)=ε得到三维广义欧拉螺线的起点处的弧长参数s0,其中ε为预设的最大光顺误差;
步骤10:通过坐标逆旋转计算三维广义欧拉螺线在原坐标系下的表达式:
Figure FDA0002195218410000046
步骤11:逐一对刀具轨迹的每个拐角执行步骤1至步骤9,完成该刀具轨迹的光顺。
CN201910846032.6A 2019-09-09 2019-09-09 基于三维广义欧拉螺线的空间拐角光顺方法 Active CN110531700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910846032.6A CN110531700B (zh) 2019-09-09 2019-09-09 基于三维广义欧拉螺线的空间拐角光顺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910846032.6A CN110531700B (zh) 2019-09-09 2019-09-09 基于三维广义欧拉螺线的空间拐角光顺方法

Publications (2)

Publication Number Publication Date
CN110531700A CN110531700A (zh) 2019-12-03
CN110531700B true CN110531700B (zh) 2021-11-23

Family

ID=68667782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910846032.6A Active CN110531700B (zh) 2019-09-09 2019-09-09 基于三维广义欧拉螺线的空间拐角光顺方法

Country Status (1)

Country Link
CN (1) CN110531700B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112506139B (zh) * 2020-11-23 2022-02-25 西北工业大学 一种五轴短直线段轨迹的局部拐角光顺方法
CN113256758B (zh) * 2021-05-20 2023-08-18 稿定(厦门)科技有限公司 图形光滑处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860805A (en) * 1973-05-07 1975-01-14 Bendix Corp Method and apparatus for producing a fairing contour in numerical control systems
CN101482979A (zh) * 2008-12-30 2009-07-15 清华大学 一种光顺优化的nurbs空间曲线曲率连续拼接的cad方法
CN103413175A (zh) * 2013-07-10 2013-11-27 西北工业大学 基于遗传算法的闭合非均匀有理b样条曲线光顺方法
CN103676788A (zh) * 2013-12-31 2014-03-26 苏州大学 面向光顺加工的数控加工轨迹处理方法
CN105425727A (zh) * 2015-12-08 2016-03-23 上海交通大学 五轴侧铣加工刀具路径光顺方法
CN108319224A (zh) * 2018-03-13 2018-07-24 大连理工大学 一种基于径向曲线插值的多轴数控加工螺旋路径生成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860805A (en) * 1973-05-07 1975-01-14 Bendix Corp Method and apparatus for producing a fairing contour in numerical control systems
CN101482979A (zh) * 2008-12-30 2009-07-15 清华大学 一种光顺优化的nurbs空间曲线曲率连续拼接的cad方法
CN103413175A (zh) * 2013-07-10 2013-11-27 西北工业大学 基于遗传算法的闭合非均匀有理b样条曲线光顺方法
CN103676788A (zh) * 2013-12-31 2014-03-26 苏州大学 面向光顺加工的数控加工轨迹处理方法
CN105425727A (zh) * 2015-12-08 2016-03-23 上海交通大学 五轴侧铣加工刀具路径光顺方法
CN108319224A (zh) * 2018-03-13 2018-07-24 大连理工大学 一种基于径向曲线插值的多轴数控加工螺旋路径生成方法

Also Published As

Publication number Publication date
CN110531700A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN109664303B (zh) 一种误差可控的四轴工业机器人b样条过渡式平顺轨迹生成方法
CN109571473B (zh) 一种误差可控的小线段轨迹光顺方法
CN110865610B (zh) 一种基于机床振动抑制的刀具轨迹插值和速度规划方法
CN110531700B (zh) 基于三维广义欧拉螺线的空间拐角光顺方法
CN108829031B (zh) 轨迹间的局部光顺过渡方法、设备及存储介质
Rahaman et al. A new approach to contour error control in high speed machining
CN106647623B (zh) 一种几何精度及衔接速度最优化的五轴联动平滑插补方法
CN108829045B (zh) 连续微直线段的衔接速度的优化方法及系统
JP5615377B2 (ja) 工具経路の生成方法および生成装置
CN109676613B (zh) 一种误差可控的四轴工业机器人圆弧过渡式平顺轨迹生成方法
CN109918807B (zh) 一种优化曲率的局部刀轨光顺方法
CN106094737B (zh) 一种指定加工误差条件下的数控加工速度优化控制方法
CN102707671A (zh) 应用于工具机的加工路径最佳化方法
CN104988497B (zh) 面向复杂回转体表面的激光熔覆轨迹规划方法
CN112346406B (zh) 五轴数控机床刀具轨迹的光顺方法
CN108279644A (zh) 基于叠加指令的直线插补控制方法
CN113467376B (zh) 一种面向多加工场景的多轴轨迹压缩方法
KR20200047123A (ko) 가상 공작 기계를 활용하여 가공 오차를 제한하는 수치 제어 장치
CN111487927B (zh) 一种基于双代码联合作用的样条轨迹控制指令优化方法
CN112883502B (zh) St2速度曲线的设计方法及基于sst2速度曲线的五轴轨迹加工方法
US7110853B2 (en) Processes and devices for computer-aided adaptation of an application program for a machine tool
CN112334847A (zh) 用于由给定轮廓确定粗略轨迹的方法
CN117008532B (zh) 三阶几何连续的数控刀具路径拐角平滑方法
CN109991928B (zh) 用于实现分段变坡加工的方法
CN108984810A (zh) 一种玻璃升降系统引导线的生成方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant