CN110518070B - 一种适用于单片集成的碳化硅ldmos器件及其制造方法 - Google Patents

一种适用于单片集成的碳化硅ldmos器件及其制造方法 Download PDF

Info

Publication number
CN110518070B
CN110518070B CN201910828983.0A CN201910828983A CN110518070B CN 110518070 B CN110518070 B CN 110518070B CN 201910828983 A CN201910828983 A CN 201910828983A CN 110518070 B CN110518070 B CN 110518070B
Authority
CN
China
Prior art keywords
region
silicon carbide
type
drain
ldmos device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910828983.0A
Other languages
English (en)
Other versions
CN110518070A (zh
Inventor
温正欣
叶怀宇
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN201910828983.0A priority Critical patent/CN110518070B/zh
Publication of CN110518070A publication Critical patent/CN110518070A/zh
Application granted granted Critical
Publication of CN110518070B publication Critical patent/CN110518070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及功率半导体技术领域,公开了一种适合集成的碳化硅LDMOS器件及其制造方法。该器件包含N型高掺杂衬底,其上方依次为一P型外延隔离埋层,一N‑型轻掺杂漂移区。在漂移区顶部,分布有一P‑阱区,一P+基区,一N+源区,一P‑RESURF区和一N+漏区。其中,P+基区,N+源区位于P‑阱区内部。在P‑阱区和N+漏区之间为P‑RESURF区,紧贴N+漏区。漂移区之上为一栅氧化层,覆盖P‑阱区和N+源区嵌套形成的沟道区域以及P‑RESURF区。该新型碳化硅LDMOS器件具有高阻断电压、低导通电阻等特点,且其工艺与目前垂直结构碳化硅MOSFET完全兼容,便于制备碳化硅功率集成电路。同时该器件引入RESURF技术,提升器件击穿电压,降低器件导通电阻。

Description

一种适用于单片集成的碳化硅LDMOS器件及其制造方法
技术领域
本发明属于半导体功率器件技术领域,具体涉及一种高压碳化硅LDMOS器件及制造方法。
背景技术
碳化硅材料具有优良的材料特性,被认为是下一代功率半导体技术的核心材料,目前碳化硅JBS、MOSFET等器件已经被广泛的运用在新能源汽车,电能转换等诸多领域。然而在功率集成电路领域,碳化硅技术的应用仍较为少见,其主要原因是碳化硅的缺陷密度依然较大,以及合适的,便于集成的横向碳化硅器件仍然较为缺乏。
LDMOS(横向双扩散金属氧化物场效应晶体管)具有增益高,线性范围宽,失真小,便于集成等优点,被广泛的应用于功率集成电路领域。与垂直结构器件一样,击穿电压和导通电阻间的矛盾是功率LDMOS器件最主要的矛盾,碳化硅材料的应用可以大幅缓解这一矛盾,但也会带来诸如高界面态密度等诸多问题。
通常硅集成电路中所使用的LDMOS器件均使用P型衬底或SOI硅衬底,而对于碳化硅材料而言,P型衬底极其难制备,半绝缘衬底的价格也比较高。因此开发新型的N型高掺杂衬底碳化硅LDMOS器件是发展碳化硅集成电路必不可少的一环。
RESURF技术是一种利用P型区域辅助耗尽N型漂移区,使得漂移区中杂质电离电荷被二维共享,避免电力线朝主结表面处汇集从而降低器件表面电场尖峰,提升器件击穿电压。同时可以提高器件漂移区掺杂浓度,降低导通电阻。通过在LDMOS器件中引入RESURF技术,能够大幅提升器件综合性能。
发明内容
(一)要解决的技术问题
本发明的目的是针对碳化硅材料特点,提供一种适合单片集成的横向碳化硅LDMOS器件结构及制备方法。该新型碳化硅LDMOS器件具有高阻断电压、低导通电阻等特点,且其工艺与目前垂直结构碳化硅MOSFET完全兼容,便于制备碳化硅功率集成电路。同时该器件引入RESURF技术,提升器件击穿电压,降低器件导通电阻。
(二)技术方案
本发明的技术方案综合考虑材料特性、工艺难度、器件性能和成本等方面,提供一种适用于单片集成的碳化硅LDMOS器件结构。
图1为该器件结构。该结构包含一N型高掺杂衬底1,其上方依次为一P型外延隔离埋层2,一N-型轻掺杂漂移区3。在漂移区3顶部,分布有一P-阱区4,一P+基区5,一N+源区6,一P-RESURF区8和一N+漏区7。其中,P+基区5,N+源区6位于P-阱区4内部,N+漏区和P-阱区之间有一定宽度的间隔,其间隔宽度取决于器件设计中设定的阻断电压。在P-阱区和N+漏区之间为P-RESURF区8,紧贴N+漏区7。漂移区3之上为一栅氧化层11,覆盖P-阱区4和N+源区6嵌套形成的沟道区域以及P-RESURF区8。P+基区5和N源区6上方为源电极9,栅氧化层11上方为栅电极12,N+漏区7上方为漏电极10。器件两侧通过深入埋层的隔离槽13实现隔离。
本发明的另一方面,提出了一种制备该碳化硅LDMOS器件的基本工艺流程,包括以下步骤:
S1:在N+型碳化硅衬底1上依次外延P型埋层2,N-漂移区3。
S2:在N-漂移区3顶部离子注入形成P-阱区4。一次离子注入同时形成N+源区6和N+漏区7,再离子注入形成P+基区5和P-RESURF区8,并进行离子注入激活退火。
S3:刻蚀隔离槽13,并回填隔离介质。
S4:氧化形成栅氧化层,并在NO环境下进行栅氧化层退火,沉积并刻蚀多晶硅栅电极12。刻蚀栅氧化层电极开口,溅射金属形成源电极9、漏电极10。
(三)有益效果
本发明设计了一种碳化硅LDMOS器件结构,该器件与现有碳化硅垂直结构工艺完全兼容,采用商业化的碳化硅N+衬底,成本较为低廉,十分便于作为碳化硅集成电路的基础元器件。器件使用较薄的外延层,引入P-RESURF区和P型埋层区,阻断大电压同时具有较低的导通电阻。
器件使用较薄的外延层便能实现高阻断电压,且其导通电流密度较大,具有极好的器件综合性能。
附图说明
图1为本发明的碳化硅LDMOS器件结构图;
图2为本发明的碳化硅LDMOS器件输出特性曲线;
图3为本发明的碳化硅LDMOS器件工艺流程图;
图4为本发明实施例所提供的器件制备工艺步骤S1示意图;
图5为本发明实施例所提供的器件制备工艺步骤S2示意图;
图6为本发明实施例所提供的器件制备工艺步骤S3示意图;
图7为本发明实施例所提供的器件制备工艺步骤S4示意图;
图8为本发明实施例2所提供的器件结构图;
图9为本发明实施例3所提供的器件结构图
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
实施例1:
本发明实施例的一方面提供了一种碳化硅LDMOS器件结构,图1为本发明的碳化硅LDMOS器件结构示意图。如图1所示,该器件结构包含一N型高掺杂衬底1,其上方依次为一P型外延隔离埋层2,一N-型轻掺杂漂移区3。在漂移区3顶部,分布有一P-阱区4,一P+基区5,一N+源区6,一P-RESURF区8和一N+漏区7。其中,P+基区5,N+源区6位于P-阱区4内部,N+漏区和P-阱区之间有一定宽度的间隔,其间隔宽度取决于器件设计中设定的阻断电压。在P-阱区和N+漏区之间为P-RESURF区8,紧贴N+漏区7。漂移区3之上为一栅氧化层11,覆盖P-阱区4和N+源区6嵌套形成的沟道区域以及P-RESURF区8。P+基区5和N源区6上方为源电极9,栅氧化层11上方为栅电极12,N+漏区7上方为漏电极10。器件两侧通过深入埋层的隔离槽13实现隔离。
所述结构可以和垂直结构的碳化硅VDMOSFET器件同步制备工艺完全兼容。
在本实施例中,优选的,所述N型高掺杂衬底1为大规模商业化的碳化硅N型高掺衬底,其掺杂浓度为1×1018cm-3至1×1021cm-3。所述P型埋层2的厚度为2μm至10μm,掺杂浓度1×1014cm-3至1×1016cm-3。所述N-漂移区3的作用为导通状态下导通电流,阻断状态形成耗尽区承载电压,其厚度1μm至30μm,掺杂浓度2×1014cm-3至1×1016cm-3
在本实施例中,优选的,所述P-阱区掺杂浓度为2×1017cm-3至2×1018cm-3,深度为0.6μm至1μm。P-阱区内部的P+基区5和N+源区6掺杂浓度均为1×1018cm-3至5×1019cm-3,深度为0.2μm至0.4μm。N+漏区7与N+源区6可以通过离子注入同时形成,因此具有相同的掺杂浓度和深度。N+漏区7和P-阱区4之间的间距取决于器件所需要阻断的电压,可选的,其间距为5μm至100μm。
在本实施例中,优选的,所述P-RESURF区8紧贴N+漏区7,且与P-阱区4有一定的间隔,可选的,间隔宽度为1μm至50μm。其掺杂浓度为1×1016cm-3至1×1018cm-3,深度为0.2μm至0.4μm。
所述源电极9同时与P+基区5和N+源区6实现欧姆接触,漏电极10与N+漏区实现欧姆接触。可选的,源电极9和漏电极10均可采用相同的三层金属Ni/Ti/Al形成,三层金属的厚度分别为80nm/30nm/80nm。
在本实施例中,优选的,所述栅氧化层11厚度为20nm至100nm,栅电极使用N型多晶硅,厚度0.2μm至1μm。
在本实施例中,所述隔离槽13中回填有隔离介质,如SiO2、Si3N4等。
本发明实施例的另一方面,提供了制备该碳化硅LDMOS器件的基本工艺流程,包括以下步骤:
步骤S1:在N+型碳化硅衬底1上依次外延P型埋层2,N-漂移区3。
步骤S2:在N-漂移区3顶部离子注入形成P-阱区4。一次离子注入同时形成N+源区6和N+漏区7,再离子注入形成P+基区5和P-RESURF区8,并进行离子注入激活退火。
清洗外延片表面后,在碳化硅表面沉积一层厚度为20nm至100nm的二氧化硅,涂胶光刻显影后蒸发金属Ti,经过剥离形成P-阱区4的注入掩膜,使用Al离子在500℃下注入形成P-阱区4。浓硫酸双氧水混合液去除晶片表面阱区注入掩膜,再次涂胶光刻显影后蒸发金属Ti,经过剥离形成N+源区6和N+漏区7的注入掩膜,使用N离子在500℃下注入形成N+源区6和N+漏区7。再次使用浓硫酸双氧水混合液去除晶片表面源区漏区注入掩膜,涂胶光刻显影后蒸发金属Ti,经过剥离形成基区注入掩膜,使用Al离子在500℃下注入形成P+基区5。最后再次使用浓硫酸双氧水混合液去除晶片表面的基区注入掩膜,再一次涂胶光刻显影后蒸发金属Ti,经过剥离形成RESURF区注入掩膜,使用Al离子在500℃下注入形成P-RESURF区。
完成上述步骤后,使用浓硫酸双氧水混合液、BOE溶液、氨水双氧水混合液、HCl双氧水混合液清洗晶片表面,去除碳化硅表面的氧化膜和金属。在碳化硅表面覆盖碳膜,在1750℃以上激活退火2小时。
步骤S3:刻蚀隔离槽13,并回填隔离介质;
再次清洗晶片表面后,使用PECVD在碳化硅表面生长SiO2,厚度为2μm至50μm,在1000℃氧气氛围中增密SiO2三小时。之后在二氧化硅表面涂胶光刻显影后蒸发金属Ti,经过剥离形成SiO2刻蚀掩膜,使用CF4和O2作为二氧化硅的刻蚀气体刻蚀SiO2。浓硫酸双氧水清洗去除Ti之后,使用SF6、O2、HBr作为碳化硅深槽的刻蚀气体进行ICP刻蚀。刻蚀完成后,在1600℃下使用H2刻蚀去除微沟槽。再次清洗晶片表面,在沟槽中回填SiO2或Si3N4介质。
步骤S4:氧化形成栅氧化层,并在NO环境下进行栅氧化层退火,沉积并刻蚀多晶硅栅电极12。刻蚀栅氧化层电极开口,溅射金属形成源电极9、漏电极10。
在本步骤中,清洗晶片表面后将晶片在氧化炉中干氧氧化,氧化温度为1250℃,氧化层厚度约为50nm;氧化完成后,在N2环境下原位退火,并在NO环境下退火,退火温度均为1300℃。涂胶光刻显影后打开源、漏区域表面,溅射金属Ni/Ti/Al,三层金属的厚度分别为80nm/30nm/80nm,并在950℃下RTA退火2分钟,同时形成源区的N型欧姆接触、漏区的N型欧姆接触和基区的P型欧姆接触,形成最终器件。
实施例2:
本发明实施例提供了另一种碳化硅LDMOS的基本结构,其基本结构如图8所示。与实施例1所提供的结构的不同点是,P-RESURF区8被分段P-区域8替代,这样能够获得更均匀的横向场降,提高器件的阻断能力,降低器件导通电阻。
实施例3:
本发明实施例提供了一种碳化硅LDMOS的基本结构,其基本结构如图9所示。与实施例1所提供的结构的不同点是,P型埋层被分为了高掺杂P+埋层22和轻掺杂P-埋层21两部分。P-埋层21掺杂浓度为1×1014cm-3至1×1016cm-3,P+埋层22掺杂浓度为1×1014cm-3至1×1016cm-3,这样能够提高阻断状态下漏衬击穿电压。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明。凡在本发明的精神和原则之内,通过改变某个区域厚度或掺杂浓度,增加或减少辅助环数目,或者在本发明的基础上,再额外增加复合终端的数目,均应包含在本发明的保护范围之内。

Claims (9)

1.一种适用于单片集成的碳化硅LDMOS器件,其特征在于,包含一N型高掺杂衬底(1),其上方依次为一P型外延隔离埋层(2),一N-型轻掺杂漂移区(3),在所述N-型轻掺杂漂移区(3)顶部,分布有一P-阱区(4),一P+基区(5),一N+源区(6),一P-RESURF区(8)和一N+漏区(7),其中,所述P+基区(5),所述N+源区(6)位于所述P-阱区(4)内部,所述N+漏区(7)和所述P-阱区(4)之间有一定宽度的间隔,其间隔宽度取决于器件设计中设定的阻断电压,在所述P-阱区(4)和所述N+漏区(7)之间为P-RESURF区(8),紧贴所述N+漏区(7),N-型轻掺杂漂移区(3)之上为一栅氧化层(11),覆盖所述P-阱区(4)和所述N+源区(6)嵌套形成的沟道区域以及P-RESURF区(8),所述P+基区(5)和所述N+源区(6)上方为源电极(9),栅氧化层(11)上方为栅电极(12),所述N+漏区(7)上方为漏电极(10),器件两侧通过深入埋层的隔离槽(13)实现隔离,所述P-RESURF区(8)紧贴所述N+漏区(7),且与所述P-阱区(4)有一定的间隔,间隔宽度为1μm至50μm,其掺杂浓度为1×1016cm-3至1×1018cm-3,深度为0.2μm至0.4μm。
2.根据权利要求1所述的碳化硅LDMOS器件,其特征在于,所述N型高掺杂衬底(1)为大规模商业化的碳化硅N型高掺衬底,其掺杂浓度为1×1018cm-3至1×1021cm-3,所述P型外延隔离埋层(2)的厚度为2μm至10μm,掺杂浓度1×1014cm-3至1×1016cm-3,所述N-型轻掺杂漂移区(3)的作用为导通状态下导通电流,阻断状态形成耗尽区承载电压,其厚度1μm至30μm,掺杂浓度2×1014cm-3至1×1016cm-3
3.根据权利要求2所述的碳化硅LDMOS器件,其特征在于,所述P-阱区(4)掺杂浓度为2×1017cm-3至2×1018cm-3,深度为0.6μm至1μm,P-阱区(4)内部的所述P+基区(5)和所述N+源区(6)掺杂浓度均为1×1018cm-3至5×1019cm-3,深度为0.2μm至0.4μm,N+漏区(7)与所述N+源区(6)可以通过离子注入同时形成,因此具有相同的掺杂浓度和深度,所述N+漏区(7)和所述P-阱区(4)之间的间距取决于器件所需要阻断的电压,其间距为5μm至100μm。
4.根据权利要求3所述的碳化硅LDMOS器件,其特征在于,所述源电极(9)同时与所述P+基区(5)和所述N+源区(6)实现欧姆接触,所述漏电极(10)与所述N+漏区(7)实现欧姆接触,所述源电极(9)和所述漏电极(10)均可采用相同的三层金属Ni/Ti/Al形成,三层金属的厚度分别为80nm/30nm/80nm。
5.根据权利要求4所述的碳化硅LDMOS器件,其特征在于,所述栅氧化层(11)厚度为20nm至100nm,栅电极使用N型多晶硅,厚度0.2μm至1μm。
6.根据权利要求5所述的碳化硅LDMOS器件,其特征在于,所述隔离槽(13)中回填有隔离介质,如SiO2或Si3N4
7.根据权利要求6所述的碳化硅LDMOS器件,其特征在于,P-RESURF区(8)由分段P-RESURF区(8)代替。
8.根据权利要求7所述的碳化硅LDMOS器件,其特征在于,P型外延隔离埋层(2)被分为了高掺杂P+埋层(22)和轻掺杂P-埋层(21)两部分,轻掺杂P-埋层(21)掺杂浓度为1×1014cm-3至1×1016cm-3,高掺杂P+埋层(22)掺杂浓度为1×1014cm-3至1×1016cm-3,这样能够提高阻断状态下漏衬击穿电压。
9.一种如权利要求1-8任一项所述的碳化硅LDMOS器件的制造方法,其特征在于,包括以下步骤:
S1:在N型高掺杂衬底(1)上依次P型外延隔离埋层(2),N-型轻掺杂漂移区(3);
S2:在N-型轻掺杂漂移区(3)顶部离子注入形成P-阱区(4),一次离子注入同时形成N+源区(6)和N+漏区(7),再离子注入形成P+基区(5)和P-RESURF区(8),并进行离子注入激活退火;
S3:刻蚀隔离槽(13),并回填隔离介质;
S4:氧化形成栅氧化层,并在NO环境下进行栅氧化层退火,沉积并刻蚀栅电极(12),刻蚀栅氧化层电极开口,溅射金属形成源电极(9)、漏电极(10)。
CN201910828983.0A 2019-09-03 2019-09-03 一种适用于单片集成的碳化硅ldmos器件及其制造方法 Active CN110518070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910828983.0A CN110518070B (zh) 2019-09-03 2019-09-03 一种适用于单片集成的碳化硅ldmos器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910828983.0A CN110518070B (zh) 2019-09-03 2019-09-03 一种适用于单片集成的碳化硅ldmos器件及其制造方法

Publications (2)

Publication Number Publication Date
CN110518070A CN110518070A (zh) 2019-11-29
CN110518070B true CN110518070B (zh) 2022-11-15

Family

ID=68630567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910828983.0A Active CN110518070B (zh) 2019-09-03 2019-09-03 一种适用于单片集成的碳化硅ldmos器件及其制造方法

Country Status (1)

Country Link
CN (1) CN110518070B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354797B (zh) * 2020-03-12 2023-03-10 上海华虹宏力半导体制造有限公司 射频器件及其形成方法
CN112164654B (zh) * 2020-09-25 2022-03-29 深圳基本半导体有限公司 集成肖特基二极管的功率器件及其制造方法
WO2022061768A1 (zh) * 2020-09-25 2022-03-31 深圳基本半导体有限公司 功率器件及其制造方法
CN112164653B (zh) * 2020-09-25 2022-03-29 深圳基本半导体有限公司 功率器件及其基于自对准工艺的制造方法
CN112382655B (zh) * 2020-11-12 2022-10-04 中国科学院半导体研究所 一种宽禁带功率半导体器件及制备方法
CN114695505A (zh) * 2020-12-29 2022-07-01 无锡华润上华科技有限公司 电子设备、半导体器件及其制备方法
CN113871482B (zh) * 2021-09-29 2024-04-12 杭州电子科技大学 一种用于提高抗单粒子烧毁效应的ldmos器件
CN114823631B (zh) * 2022-04-27 2023-05-26 电子科技大学 一种抗辐射的高压器件结构
CN118738081A (zh) * 2023-03-28 2024-10-01 无锡华润上华科技有限公司 具有隔离结构的半导体器件及隔离结构的制造方法
CN118231413B (zh) * 2024-05-24 2024-08-06 杭州积海半导体有限公司 Pdsoi晶体管及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020185695A1 (en) * 2001-06-08 2002-12-12 Beasom James Douglas Lateral DMOS structure with lateral extension structure for reduced charge trapping in gate oxide
CN1601751A (zh) * 2003-09-25 2005-03-30 电子科技大学 一种soi功率器件中的槽形绝缘耐压层
CN101488524B (zh) * 2009-02-27 2011-05-11 东南大学 高压n型绝缘体上硅的金属氧化物半导体管
CN103094350B (zh) * 2013-02-07 2016-03-23 南京邮电大学 一种高压ldmos器件
CN103840008B (zh) * 2014-03-31 2016-06-08 成都立芯微电子科技有限公司 基于bcd工艺的高压ldmos器件及制造工艺

Also Published As

Publication number Publication date
CN110518070A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN110518070B (zh) 一种适用于单片集成的碳化硅ldmos器件及其制造方法
US8716087B2 (en) Silicon carbide semiconductor device and method for producing the same
CN102832248A (zh) 基于半超结的碳化硅mosfet及制作方法
KR20070083844A (ko) 탄화규소 mos 전계 효과 트랜지스터 및 그 제조 방법
JP2015109472A (ja) 半導体装置
CN106876256B (zh) SiC双槽UMOSFET器件及其制备方法
JP2006066439A (ja) 半導体装置およびその製造方法
CN114927559B (zh) 一种碳化硅基超结沟槽型mosfet及制备方法
CN104241348A (zh) 一种低导通电阻的SiC IGBT及其制备方法
CN108417617B (zh) 碳化硅沟槽型MOSFETs及其制备方法
CN112382655B (zh) 一种宽禁带功率半导体器件及制备方法
CN114284358A (zh) 一种碳化硅功率器件及其制备方法
CN114496784B (zh) 一种底部保护接地沟槽型碳化硅mosfet及其制备方法
CN115377200A (zh) 一种半导体器件及其制备方法
US11315824B2 (en) Trench isolation structure and manufacturing method therefor
CN114582975A (zh) 一种具有低比导通电阻的SiC MOSFET器件及其制备方法
CN105185833B (zh) 一种隐埋沟道碳化硅沟槽栅MOSFETs器件及其制备方法
CN109801959B (zh) 一种SiC基DMOSFET器件及其制备方法
WO2014102994A1 (ja) 炭化珪素半導体装置及びその製造方法
CN114664934B (zh) 一种含有场板的dmos晶体管及其制作方法
CN114068721B (zh) 双梯形槽保护梯形槽碳化硅mosfet器件及制造方法
CN106876471B (zh) 双槽umosfet器件
KR102330787B1 (ko) 트렌치 게이트형 SiC MOSFET 디바이스 및 그 제조 방법
CN105161526B (zh) 提高垂直导电结构SiC MOSFET沟道迁移率的方法
CN106298868B (zh) 一种超结mosfet结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230412

Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: Southern University of Science and Technology

Address before: 518000 1st Floor, Taizhou Building, Southern University of Science and Technology, No.1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong Province

Patentee before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute

TR01 Transfer of patent right