CN110511556B - 一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法 - Google Patents

一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法 Download PDF

Info

Publication number
CN110511556B
CN110511556B CN201910813366.3A CN201910813366A CN110511556B CN 110511556 B CN110511556 B CN 110511556B CN 201910813366 A CN201910813366 A CN 201910813366A CN 110511556 B CN110511556 B CN 110511556B
Authority
CN
China
Prior art keywords
composite material
electromagnetic
electromagnetic shielding
preparation
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910813366.3A
Other languages
English (en)
Other versions
CN110511556A (zh
Inventor
徐佩
董佳伟
桑国龙
丁运生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201910813366.3A priority Critical patent/CN110511556B/zh
Publication of CN110511556A publication Critical patent/CN110511556A/zh
Application granted granted Critical
Publication of CN110511556B publication Critical patent/CN110511556B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2433/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法,是以具有高磁导率的包镍多壁碳纳米管与高电导率的多壁碳纳米管作为混合填料构筑电导和磁导网络,以聚氨酯弹性体为基体,通过聚离子液体改善碳纳米材料在基体内的分散性和与基体的相容性,采用非溶剂诱导相分离法得到复合材料。本发明的制备工艺简单,所得复合材料具有密度低、比屏蔽性能高和屏蔽效能可控等优点,在航空航天领域有潜在的应用前景。

Description

一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其 制备方法
技术领域
本发明涉及导电聚合物复合材料及其制备领域,特别涉及一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法。
背景技术
随着当今社会电子通讯技术的快速发展,给人类生活带来了巨大便利的同时也带来了严重的电磁污染的问题。电磁污染不仅无形中对人类健康和环境产生着不良影响,而且对一些精密电子器件的正常工作也会造成严重的千扰,甚至会使计算机等缺乏信息安全保障从而引起重要信息泄露。因此研发高性能的电磁屏蔽材料显得尤为重要。
碳纳米管(MWCNT)是一维碳纳米材料,具有优异的电导率和极大的长径比,在电磁屏蔽复合材料领域已显示出在提供优异的EMI屏蔽效果方面的巨大潜力。包镍碳纳米管是一种磁性导电填料,通过其与聚合物基体复合得到的磁性导电复合材料是一种兼具电损耗和磁损耗的电磁辐射防护材料,具有轻、薄、柔韧、吸收频带宽、吸收效能高且使用方便等特点,具有较高的应用价值。
中国专利CN108586809A公开了一种碳纳米管基复合填料的制备方法和一种环氧树脂基电磁屏蔽纳米复合材料。具体公开了以Fe3O4纳米颗粒为原料制备Fe3O4@Ag-COOH纳米颗粒,以碳纳米管为原料制备氨基化碳纳米管,再将二者进行酰胺化反应制备碳纳米管基复合填料。然后将这种碳纳米管基复合填料、环氧树脂和固化剂混合后,倒入模具中通过固化成型的方法制备得到电磁协同增强的环氧树脂基电磁屏蔽纳米复合材料。但该制备方法仅仅对碳纳米管基复合填料和环氧树脂进行简单的混合,并没有调控填料在聚合物基体中的分散,因此导致该材料电磁屏蔽效能一般。
中国专利CN 108178930 A公开了一种电磁屏蔽用硅橡胶纳米复合材料及其制备方法。具体公开一种先构建出三维连续的石墨烯/碳纳米管/镧系金属氧化物网络骨架,然后再回填硅橡胶,硫化定型得到的电磁屏蔽复合材料。但该制备方法对设备要求较高,工序较复杂,不适合大批量生产。
因此,制备工艺简单的同时,具有高电磁屏蔽效能的电磁屏蔽复合材料亟待挖掘。
发明内容
基于上述现有技术所存在的问题,本发明提供了一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法,以期可以获得轻质、高电磁屏蔽性能的电磁屏蔽复合材料。
本发明解决技术问题,采用如下技术方案:
本发明首先公开了一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料,其特点在于,包括按质量百分比构成的如下组分:
Figure BDA0002185653460000021
进一步地,所述聚离子液体为P[MMA-VEIm][PF6],所述聚离子液体的用量占所述多壁碳纳米管和所述包镍多壁碳纳米管总质量的25%。更进一步地,所述聚离子液体P[MMA-VEIm][PF6]按如下方法制得:
65℃的条件下,将甲基丙烯酸甲酯、1-乙烯基咪唑和偶氮二异丁腈按质量比1:1:0.02溶于DMF中,在氮气氛围下搅拌24h;再在45℃的条件下加入过量的1-溴乙烷,继续反应24h;用乙醚将所得聚合物沉淀出来,然后用镊子取出并放入表面皿中,在鼓风干燥箱中80℃干燥4h,最后在真空条件下110℃干燥12h以除去DMF,得到P[MMA-VEIm][Br];
将所述P[MMA-VEIm][Br]溶于去离子水中,加入过量的KPF6使Br-与PF6 -进行离子交换,待白色絮状沉淀产生,在30℃的条件下干燥24h,使PF6 -完全与Br-进行离子交换,将得到的产物用去离子水清洗,即获得聚离子液体P[MMA-VEIm][PF6]。
进一步地,所述多壁碳纳米管为粉末状,长度为10-30μm,直径为10-50nm;所述包镍多壁碳纳米管为粉末状,长度10-30μm,直径10-50nm,镍含量为50-70wt%。
本发明还公开了所述电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料的制备方法,包括如下步骤:
(1)溶液共混:将聚离子液体、多壁碳纳米管、包镍多壁碳纳米管和聚氨酯加入DMF中,在80℃下磁力搅拌3h进行分散,再超声分散1h,最后在真空条件下脱除气泡,制得铸膜液;
(2)浇铸成膜:将所述铸膜液浇铸在敞开的聚四氟乙烯模具中,在空气中暴露一定时间;
(3)凝固成型:将所得样品连同模具浸入凝固浴水中12h,使DMF与水完全交换,然后在30℃下干燥48h,即获得电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料。
进一步地,通过控制步骤(2)中样品在空气中暴露的时间,即控制样品的表干时间,来控制所得复合材料泡孔的微观结构,从而调节复合材料的电磁屏蔽效能。
本发明以具有高磁导率的包镍多壁碳纳米管与高电导率的多壁碳纳米管作为混合填料构筑电导和磁导网络,以聚氨酯弹性体为基体,通过聚离子液体改善碳纳米材料在基体内的分散性和与基体的相容性,采用非溶剂诱导相分离法得到了具有优异电磁屏蔽效能的复合材料,制备工艺简单,而且所得复合材料具有密度低、比屏蔽性能高和屏蔽效能可控等优点,在航空航天领域有潜在的应用前景。具体的,本发明的有益效果主要体现在以下几方面:
1、本发明首先以离子液体表面修饰碳纳米管,通过离子液体阳离子-π共轭作用形成表面吸附离子液体的改性碳纳米管,以提高碳纳米管在聚氨酯基体中的分散性能,增强与聚合物基体的界面作用,更好的形成导电网络,从而提高了材料的电磁屏蔽性能。
2、本发明所用的导电填料为包镍多壁碳纳米管和多壁碳纳米管的混合填料,多壁碳纳米管具有高电导率和极大的长径比,能够更好的形成导电网络,包镍多壁碳纳米管具有高导磁率,通过将这两种填料混合,发挥其协同作用,从而提高了材料的电磁屏蔽性能。
3、本发明通过非溶剂诱导相分离法制备PIL/MWCNT/Ni-CNT/PU电磁屏蔽复合泡沫,制备方法简单,而且所制备的复合材料具有密度小、比屏蔽效能较高、屏蔽效能可控等优点。
附图说明
图1为实施例1中不同表干时间的PIL/10Ni-CNT/10MWCNT/PU复合材料脆断面扫描电镜图片。
图2为各实施例所得复合材料PIL/20Ni-CNT/PU(图2(a))、PIL/20MWCNT/PU(图2(b))和PIL/10Ni-CNT/10MWCNT/PU(图2(c))在X波段电磁屏蔽效能与表干时间的关系。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
下述实施例所用多壁碳纳米管为粉末状,长度为10-30μm,直径为10-20nm;下述实施例所用包镍多壁碳纳米管为粉末状,长度10-30μm,直径10-20nm,镍含量为60wt%。
下述实施例所用聚离子液体为P[MMA-VEIm][PF6],按如下方法制得:
65℃的条件下,将甲基丙烯酸甲酯2.5g、1-乙烯基咪唑2.5g和偶氮二异丁腈0.05g溶于适量DMF中,在氮气氛围下搅拌24h;再在45℃的条件下加入过量的1-溴乙烷,继续反应24h;用乙醚将所得聚合物沉淀出来,然后用镊子取出并放入表面皿中,在鼓风干燥箱中80℃干燥4h,最后在真空条件下110℃干燥12h以除去DMF,得到P[MMA-VEIm][Br];
将P[MMA-VEIm][Br]溶于去离子水中,加入过量的KPF6使Br-与PF6 -进行离子交换,待白色絮状沉淀产生,在30℃的条件下干燥24h,使PF6 -完全与Br-进行离子交换,将得到的产物用去离子水清洗,即获得聚离子液体P[MMA-VEIm][PF6]。
下述实施例所用聚氨酯为热塑性聚氨酯弹性体PU(德国拜耳,牌号790)
实施例1
本实施例电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料,包括按质量百分比构成的如下组分:
Figure BDA0002185653460000041
本实施例多孔轻质聚氨酯电磁屏蔽复合材料的制备方法,包括如下步骤:
(1)溶液共混:将聚离子液体、多壁碳纳米管、包镍多壁碳纳米管和聚氨酯加入DMF(占原料总质量的5.7倍)中,在80℃下磁力搅拌3h进行分散,再超声分散1h,最后在真空条件下脱除气泡,制得铸膜液;
(2)浇铸成膜:将铸膜液浇铸在敞开的聚四氟乙烯模具中,在空气中暴露一定时间。
(3)凝固成型:将所得样品连同模具浸入凝固浴水中12h,使DMF与水完全交换,然后在30℃下干燥48h,即获得电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料。
通过控制步骤(2)中样品空气中暴露的时间,即控制样品的表干时间,来控制所得复合材料的微孔结构。本实施例中,控制样品的表干时间为3min、15min、30min、60min、90min、120min,所得样品标记为PIL/10Ni-CNT/10MWCNT/PU-x,其中x为表干时间。
本实施例所得各复合材料样品脆断面扫描电镜图片如图1所示。
对比例1
本对比例按实施例1相同的方法制备电磁屏蔽复合材料,区别仅在于将实施例1配方体系中的包镍多壁碳纳米管Ni-CNT换为等量多壁碳纳米管MWCNT,即配方体系为
聚离子液体PIL 5%;
多壁碳纳米管MWCNT 20%;
聚氨酯PU 75%。
本对比例所得样品标记为PIL/20MWCNT/PU-x,其中x为表干时间。
对比例2
本对比例按实施例1相同的方法制备电磁屏蔽复合材料,区别仅在于将实施例1配方体系中的多壁碳纳米管MWCNT换为等量包镍多壁碳纳米管Ni-CNT,即配方体系为
聚离子液体PIL 5%;
包镍多壁碳纳米管Ni-CNT 20%;
聚氨酯PU 75%。
本对比例所得样品标记为PIL/Ni-CNT/PU-x,其中x为表干时间。
上述各实施例所得样品密度随表干时间的变化列表如表1所示。
表1
Figure BDA0002185653460000051
图2为上述各实施例所得复合材料PIL/20Ni-CNT/PU(图2(a))、PIL/20MWCNT/PU(图2(b))和PIL/10Ni-CNT/10MWCNT/PU(图2(c))在X波段电磁屏蔽效能与表干时间的关系。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料的制备方法,其特征在于:
所述电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料,包括按质量百分比构成的如下组分:
聚离子液体 2.5-7.5%;
多壁碳纳米管 5-15%;
包镍多壁碳纳米管 5-15%;
聚氨酯 62.5-87.5%;
所述电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料的制备方法,包括如下步骤:
(1)溶液共混:将聚离子液体、多壁碳纳米管、包镍多壁碳纳米管和聚氨酯加入DMF中,在80 oC下磁力搅拌3h进行分散,再超声分散1h,最后在真空条件下脱除气泡,制得铸膜液;
(2)浇铸成膜:将所述铸膜液浇铸在敞开的聚四氟乙烯模具中,在空气中暴露一定时间;
(3)凝固成型:将所得样品连同模具浸入凝固浴水中12h,使DMF与水完全交换,然后在30 oC下干燥48h,即获得电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料;
通过控制步骤(2)中样品在空气中暴露的时间,即控制样品的表干时间,来控制所得复合材料泡孔的微观结构,从而调节复合材料的电磁屏蔽效能。
2.根据权利要求1所述的制备方法,其特征在于:所述聚离子液体为P[MMA-VEIm][PF6],所述聚离子液体的用量占所述多壁碳纳米管和所述包镍多壁碳纳米管总质量的25%。
3.根据权利要求2所述的制备方法,其特征在于,所述聚离子液体P[MMA-VEIm][PF6]按如下方法制得:
65oC的条件下,将甲基丙烯酸甲酯、1-乙烯基咪唑和偶氮二异丁腈按质量比1:1:0.02溶于DMF中,在氮气氛围下搅拌24h;再在45oC的条件下加入过量的1-溴乙烷,继续反应24h;用乙醚将所得聚合物沉淀出来,然后用镊子取出并放入表面皿中,在鼓风干燥箱中80oC干燥4h,最后在真空条件下110oC干燥12h以除去DMF,得到P[MMA-VEIm][Br];
将所述P[MMA-VEIm][Br]溶于去离子水中,加入过量的KPF6使Br-与PF6 -进行离子交换,待白色絮状沉淀产生,在30oC的条件下干燥24h,使PF6 -完全与Br-进行离子交换,将得到的产物用去离子水清洗,即获得聚离子液体P[MMA-VEIm][PF6]。
4.根据权利要求1所述的制备方法,其特征在于:所述多壁碳纳米管为粉末状,长度为10-30μm,直径为10-50nm;所述包镍多壁碳纳米管为粉末状,长度10-30μm,直径10-50nm,镍含量为50-70wt%。
CN201910813366.3A 2019-08-30 2019-08-30 一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法 Active CN110511556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910813366.3A CN110511556B (zh) 2019-08-30 2019-08-30 一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910813366.3A CN110511556B (zh) 2019-08-30 2019-08-30 一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110511556A CN110511556A (zh) 2019-11-29
CN110511556B true CN110511556B (zh) 2021-05-04

Family

ID=68629531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910813366.3A Active CN110511556B (zh) 2019-08-30 2019-08-30 一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110511556B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978457A (zh) * 2020-09-04 2020-11-24 北京化工大学常州先进材料研究院 一种离子凝胶/磁性材料电磁屏蔽材料、制备方法及其应用
CN112004395A (zh) * 2020-09-04 2020-11-27 北京化工大学常州先进材料研究院 一种离子凝胶/碳材料电磁屏蔽材料的制备方法
CN113133297B (zh) * 2021-04-20 2023-06-27 合肥工业大学 一种超交联聚苯乙烯基复合炭气凝胶电磁屏蔽材料及其制备方法
CN114369244B (zh) * 2022-01-10 2023-03-31 北京理工大学 超轻环保型多孔电磁云毁伤复合材料及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469141A (zh) * 2007-12-28 2009-07-01 中国科学院兰州化学物理研究所 多壁碳纳米管复合材料的制备方法
WO2009137508A1 (en) * 2008-05-05 2009-11-12 Ada Technologies, Inc. High performance carbon nanocomposites for ultracapacitors
CN102504516A (zh) * 2011-10-18 2012-06-20 四川大学 高导电高敏感性或高导电低敏感性复合材料及其制备方法
KR20150094491A (ko) * 2014-02-10 2015-08-19 성균관대학교산학협력단 전도성 신축성 섬유, 상기 섬유를 포함하는 직물, 및 이들의 제조방법
CN105153678A (zh) * 2015-10-13 2015-12-16 中国人民解放军广州军区武汉总医院 碳纳米管-导电高分子材料/铁氧体复合聚氨酯的制备
CN105315963A (zh) * 2014-07-29 2016-02-10 北京市射线应用研究中心 电磁屏蔽材料与其纳米复合材料及它们的制备方法
CN105463854A (zh) * 2015-11-16 2016-04-06 江苏东邦科技有限公司 一种电磁屏蔽布及其制备方法
CN105860496A (zh) * 2016-04-27 2016-08-17 中国科学院微电子研究所 吸波材料及其制备方法
CN106098400A (zh) * 2016-06-30 2016-11-09 合肥工业大学 一种氨基咪唑离子液体修饰石墨烯纳米片/聚乙烯复合材料及其制备方法
CN106564227A (zh) * 2016-10-21 2017-04-19 中国科学院宁波材料技术与工程研究所 一种具有电磁屏蔽性能的聚合物/石墨烯发泡材料及制备方法和应用
CN108339410A (zh) * 2018-03-08 2018-07-31 华东师范大学 一种聚离子液体修饰的三维结构网膜及制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469141A (zh) * 2007-12-28 2009-07-01 中国科学院兰州化学物理研究所 多壁碳纳米管复合材料的制备方法
WO2009137508A1 (en) * 2008-05-05 2009-11-12 Ada Technologies, Inc. High performance carbon nanocomposites for ultracapacitors
CN102504516A (zh) * 2011-10-18 2012-06-20 四川大学 高导电高敏感性或高导电低敏感性复合材料及其制备方法
KR20150094491A (ko) * 2014-02-10 2015-08-19 성균관대학교산학협력단 전도성 신축성 섬유, 상기 섬유를 포함하는 직물, 및 이들의 제조방법
CN105315963A (zh) * 2014-07-29 2016-02-10 北京市射线应用研究中心 电磁屏蔽材料与其纳米复合材料及它们的制备方法
CN105153678A (zh) * 2015-10-13 2015-12-16 中国人民解放军广州军区武汉总医院 碳纳米管-导电高分子材料/铁氧体复合聚氨酯的制备
CN105463854A (zh) * 2015-11-16 2016-04-06 江苏东邦科技有限公司 一种电磁屏蔽布及其制备方法
CN105860496A (zh) * 2016-04-27 2016-08-17 中国科学院微电子研究所 吸波材料及其制备方法
CN106098400A (zh) * 2016-06-30 2016-11-09 合肥工业大学 一种氨基咪唑离子液体修饰石墨烯纳米片/聚乙烯复合材料及其制备方法
CN106564227A (zh) * 2016-10-21 2017-04-19 中国科学院宁波材料技术与工程研究所 一种具有电磁屏蔽性能的聚合物/石墨烯发泡材料及制备方法和应用
CN108339410A (zh) * 2018-03-08 2018-07-31 华东师范大学 一种聚离子液体修饰的三维结构网膜及制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"A new solid-state electrolyte based on polymeric ionic liquid for high-performance supercapacitor";Xinge Wen等;《IONICS》;20180521;第1-11页 *
"Electrical conductivity and EMI shielding effectiveness of polyurethane foam–conductive filler composites";Ji Mun Kim等;《J. APPL. POLYM. SCI》;20171231;第44373页 *
"Rigid Polyurethane Foam with Ionic Liquid modified Multi Walled Carbon Nanotubes Composites";A.A.Sina等;《Materials Science Forum》;20160520;第857卷;第159-163页 *
磁场取向镀镍碳纳米管/聚氨酯复合泡沫材料的制备及性能;陈晨等;《塑料工业》;20110331;第39卷(第3期);第52-55页 *

Also Published As

Publication number Publication date
CN110511556A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN110511556B (zh) 一种电磁协同增强的多孔轻质聚氨酯电磁屏蔽复合材料及其制备方法
CN103160049B (zh) 一种纳米银/碳纳米管/聚乙烯醇复合导电薄膜的制备方法
Wen et al. Overview of polyvinyl alcohol nanocomposite hydrogels for electro‐skin, actuator, supercapacitor and fuel cell
CN108165018A (zh) 一种电磁屏蔽用硅橡胶/石墨烯/银纳米线纳米复合材料及其制备方法
CN108178930B (zh) 一种电磁屏蔽用硅橡胶纳米复合材料及其制备方法
CN103614098B (zh) 一种功能化石墨烯掺杂环氧树脂导电胶及其制备方法
CN105081310A (zh) 一种制备石墨烯增强铝基复合材料的方法
CN109762339A (zh) 碳纳米管/石墨烯/聚合物电磁屏蔽材料、其制法及应用
CN108530676A (zh) 基于模板的三维网状碳材料/高分子功能复合材料及其制备方法
Li et al. Graphene-based magnetic composite foam with hierarchically porous structure for efficient microwave absorption
CN105623136A (zh) 一种聚合物导电复合材料及其制备方法
CN103333465B (zh) 一种FeCo@MWNTs/环氧树脂基吸波复合材料的制备方法
CN110564107B (zh) 一种高效电磁屏蔽复合材料及其制备方法
CN111925630B (zh) 高强电磁屏蔽及导热pbt/pet纳米复合材料及制备方法
CN105733267A (zh) 一种混杂填料的柔性硅橡胶导体的制备方法
Farhan et al. Carbon foam decorated with silver particles and in situ grown nanowires for effective electromagnetic interference shielding
CN107627678A (zh) 高吸收低反射的电磁屏蔽材料及其制备方法
Guo et al. Flexible aramid nanofiber/Ag nanowires/graphene nanosheets composite films with sandwich structure for high-performance electromagnetic interference shielding and Joule heating
Chen et al. Vinyl ester resin nanocomposites reinforced with carbon nanotubes modified basalt fibers
Zou et al. Efficient electromagnetic interference shielding of flexible Ag microfiber sponge/polydimethylsiloxane composite constructed by blow spinning
CN113912884B (zh) 一种柔性电磁屏蔽聚醚砜膜的制备方法
CN108586809A (zh) 一种碳纳米管基复合填料及其制备方法和一种环氧树脂基电磁屏蔽纳米复合材料
CN108329468A (zh) 一种电磁屏蔽复合材料的制备方法
Zhang et al. Fabrication and mechanical properties of multiwalled carbon nanotube/nanonickel reinforced epoxy resin composites
CN105906846A (zh) 一种氰乙基纤维素基高介电纳米复合膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant