CN110508293A - 一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料及其制备方法 - Google Patents

一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料及其制备方法 Download PDF

Info

Publication number
CN110508293A
CN110508293A CN201910839006.0A CN201910839006A CN110508293A CN 110508293 A CN110508293 A CN 110508293A CN 201910839006 A CN201910839006 A CN 201910839006A CN 110508293 A CN110508293 A CN 110508293A
Authority
CN
China
Prior art keywords
nio
solution
junction
hollow
composite nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910839006.0A
Other languages
English (en)
Inventor
邓崇海
叶凡
王韬
吴云
王黎丽
刘伶俐
杨蕾
董强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Hefei College
Original Assignee
Hefei College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei College filed Critical Hefei College
Priority to CN201910839006.0A priority Critical patent/CN110508293A/zh
Publication of CN110508293A publication Critical patent/CN110508293A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种用于光解水制氢的中空多级p‑n结NiO@CdS复合纳米材料及其制备方法,NiO@CdS复合材料由n‑CdS纳米颗粒紧密负载在p‑NiO空心微球的表面上构成,CdS纳米颗粒的粒径为10‑30nm,NiO空心微球的外直径为0.8‑1.2μm,由多孔的厚度约8nm的NiO纳米片交叠组装而成。该方法采用廉价易得的镍源和镉源,通过四步工艺技术路线将n‑CdS纳米颗粒负载在p‑NiO空心微球的表面上,制得p‑n结NiO/CdS复合纳米中空结构。此复合材料结构新颖,比表面积大,可促进光生载流子的有效分离,作为可见光催化剂具有优越的光解水制氢性能。

Description

一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料 及其制备方法
技术领域
本发明涉及可见光催化剂材料制备技术领域,具体涉及一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料及其制备方法。
背景技术
自近现代以来,由于大量消耗煤炭、石油及天然气等化石原料,人类面临着极大的能源危机和严峻的环境污染问题。寻找新能源的研究越来越受到人们的关注。氢能,它作为二次能源,具有清洁、高效、安全、可贮存、可运输等诸多优点,已普遍被人们认为是一种最理想的新世纪无污染的绿色能源,因此受到了各国的高度重视。太阳能是人类取之不尽,用之不竭的永久性能源,利用太阳能光催化分解水制氢是循环经济,绿色制氢的最有效途径之一。
光解水制氢技术始自1972年,由日本东京大学Fujishima A和Honda K两位教授首次报告发现TiO2单晶电极光催化分解水从而产生氢气这一现象,从而揭示了利用太阳能直接分解水制氢的可能性,开辟了利用太阳能光解水制氢的研究道路。随着电极电解水向半导体光催化分解水制氢的多相光催化的演变和TiO2以外的光催化剂的相继发现,兴起了以光催化方法分解水制氢(简称光解水)的研究,并在光催化剂的合成、改性等方面取得较大进展。
目前针对分解水制氢的光催化剂研究较多,但是制备出的光催化剂普遍存在操作方法繁琐,光催化剂催化效率低等缺陷,如名称为“一种p-n结空心球的制备及在光催化分解水制氢中的应用”(专利申请号:200910023546.8)的中国专利申请文件中记载到如下技术方案:称取适量蔗糖配制成蔗糖水溶液,放入高压反应釜中,165℃温度下水热合成碳纳米球,作为硬模板剂;称取适量Cd(NO3)2·4H2O配制成水溶液;称取适量Na2S·9H2O配制成水溶液;在室温下,将碳纳米球分散在无水乙醇中,进行超声波分散,烘干;将Cd(NO3)2·4H2O的水溶液浸渍于制备的碳纳米球中,室温晾干,制得镉离子包裹的碳纳米球C-Cd,在室温下,将步骤3)中的Na2S·9H2O的水溶液缓慢滴加至所制备的C-Cd中,浸渍,洗涤,烘干,得到硫化镉包裹的碳纳米球C-CdS,称取适量的Ni(NO3)2·6H2O配制成水溶液;将制得的Ni(NO3)2·6H2O水溶液缓慢滴加至制备的C-CdS中浸渍,室温晾干,制得镍离子包覆的硫化镉碳纳米球C-CdS-Ni ,称取适量NaOH配制成水溶液,缓慢滴加至镍离子包覆的硫化镉碳纳米球C-CdS-Ni 中,浸渍过夜,洗涤烘干,即制得碳核上依次包裹硫化镉和NiOH核壳结构的复合材料C-CdS-Ni(OH)2;再将所制备的核壳结构复合材料C-CdS-Ni(OH)2,在马弗炉中于400℃焙烧2h,得到p-n结空心球NiO-CdS纳米复合材料。
上述方法虽然获取得到了p-n结空心球NiO-CdS纳米复合材料,但制备中需要预制备碳纳米球做硬模板,过程繁琐、产量低,制备的空心球NiO-CdS纳米复合材料没有显著的微纳米结构特征,作为可见光催化剂应用于光解水产氢性能较差,有待进一步提升。
发明内容
本发明的目的是提供一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料,产量高、重复性好,原料价廉易得,适合产业化生产,且实现了太阳能的有效利用和绿色能源的清洁生产。
本发明采取的技术方案具体如下:
一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料,为内部中空的球形结构,球壳由各p型氧化镍纳米片组装而成,氧化镍纳米片所处的平面与球壳的厚度方向保持一致,相邻的纳米片之间围合构成孔隙,氧化镍纳米片的表面为介孔结构,n型硫化镉纳米颗粒负载在p型氧化镍纳米片的表面,形成具有p-n结的NiO/CdS复合纳米结构。
硫化镉为六方纤锌矿相结构,纳米颗粒的粒径为10-30nm,氧化镍为立方相结构,中空微球的外直径为0.8-1.2μm,由多孔的厚度为7~9nm的纳米片交叠组装而成。
本发明还提供一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,包括制备NiO-Cd(Tu)x 2+中空微球和将NiO-Cd(Tu)x 2+中空微球进行热处理得到多级p-n结NiO@CdS复合纳米材料。
NiO-Cd(Tu)x 2+中空微球的制备方法具体如下:
将溶液A与溶液B混合进行恒温反应,然后对恒温反应后的产物进行烧焙处理得到NiO中空微球,再将NiO中空微球分散于溶液C中,加入溶液D进行反应处理制得NiO-Cd(Tu)x 2+中空微球。
溶液A为镍源溶液;
溶液B为沉淀剂溶液;
溶液C为镉源溶液;
溶液D为硫源溶液。
热处理为微波处理。
溶液A为氯化镍溶液与氨水混合配制而成,按照每1mol氯化镍加入4mL氨水混合配制而成,氨水的质量浓度为25%-28%。
溶液B为尿素水溶液,溶液A与溶液B按照氯化镍与尿素的摩尔比为1:1~10进行混合反应。
溶液D为硫脲水溶液与乙二胺的混合液,按照每1mol硫脲加入0.1~0.4mL乙二胺的比例混合配制成。
溶液C为醋酸镉水溶液,溶液C与溶液D按照醋酸镉与硫脲的摩尔比为0.1~1:1进行反应。
溶液A与溶液B反应在恒温水浴锅中进行,水浴的温度为90℃,反应时间为2.5h,对反应产物进行抽滤、洗涤、干燥、研磨后得到Ni(OH)2中空微球。
焙烧处理是将Ni(OH)2中空微球在马弗炉中进行焙烧得到NiO中空微球,控制焙烧温度为400℃,时间为2小时。
NiO中空微球浸渍于溶液C中后,超声分散10min,加入溶液D混匀,采用PE膜封口,磁力搅拌反应12h,得到吸附镉离子配合物的NiO-Cd(Tu)x 2+中空微球。
微波加热时间为30min,功率800W。
本发明取得的技术效果为:
1)本发明制备的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料,由立方相纳米片交错组装成中部有空腔的多级结构由n-CdS纳米颗粒紧密负载在p-NiO空心微球的表面上构成,CdS纳米颗粒的粒径为10-30nm,为六方纤锌矿相结构,NiO空心微球的外直径为0.8-1.2μm,由厚度约8nm(7~9nm)的NiO纳米片交叠组装而成。此复合材料结构新颖,比表面积大,可促进光生载流子的有效分离,作为可见光催化剂具有优越的光解水制氢性能,能够在CdS含量较低的情形实现较高性能的光解水制氢性能。
2)本发明的一种多级p-n结NiO@CdS中空微球的制备方法,工艺设备简单,操作简便,产量高、重复性好,原料价廉易得,适合产业化生产。
3)制得的多级p-n结NiO@CdS复合纳米材料作为太阳能可见光催化分解水制氢的光催化剂,p-n结耦合作用可以促进光生载流子的有效分离,大幅度提高了光解水制氢产率,且制氢过程绿色环保,实现了太阳能的有效利用和绿色能源的清洁生产。
附图说明
图1为制备多级p-n结NiO@CdS复合纳米材料的技术路线;
图2为实施例1中制备的多级p-n结NiO@CdS复合纳米材料的X射线衍射分析(XRD)谱图;
图3为实施例1制备的多级p-n结NiO@CdS复合纳米材料的低倍场发射扫描电子显微镜(FE-SEM)照片;
图4为实施例1制备的多级p-n结NiO@CdS复合纳米材料的高倍场发射扫描电子显微镜(FE-SEM)照片;
图5为实施例1制备的多级p-n结NiO@CdS复合纳米材料的透射电子显微镜(TEM)照片。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行具体说明。应当理解,以下文字仅仅用以描述本发明的一种或几种具体的实施方式,并不对本发明具体请求的保护范围进行严格限定。
本发明利用廉价的镍源和镉源,采用化学浴沉积法-焙烧热处理法-浸渍吸附法-微波加热法四步工艺路线。在制备方法中,六水合氯化镍的用量为1mmol,氨水(w/w:25~28%)的体积为4mL,尿素的用量为1~10mmol;NiO中空微球的用量是0.1g,二水合醋酸镉的用量为0.1~1mmol,硫脲的用量为1.0mmol,乙二胺的体积为0.1~0.4mL。制备的技术路线如图1所示。
实施例1:
(1)称取1.0mmol六水合氯化镍(NiCl2·6H2O)溶解于30mL去离子水中,磁力搅拌30min后加入4mL氨水,继续搅拌得溶液A;称取2mmol尿素溶解于30mL去离子水,磁力搅拌得溶液B;
(2)将步骤1)中配置的溶液A和B混合均匀后,在90℃的恒温水浴锅中加热2.5小时,自然冷却后,抽滤、洗涤、干燥、研磨,得到Ni(OH)2空心微球;
(3)将步骤2)所制备的Ni(OH)2空心微球,在马弗炉中于400℃焙烧2小时,得到多级结构立方相NiO中空微球;
(4)称取1.0mmol二水合醋酸镉(Cd(Ac)2·2H2O)溶解于30mL去离子水中得溶液C;
(5)称取1.0mmol硫脲溶解于30mL去离子水中,磁力搅拌30min后加入0.4mL乙二胺,得溶液D;
(6)在室温下,称取0.1g步骤3)中的NiO中空微球浸渍于在步骤4)的溶液C中,超声分散10min后,加入步骤5)的溶液D,封上PE膜,磁力搅拌12h,得到吸附镉离子配合物的NiO-Cd(Tu)x 2+中空微球;
(7) 将步骤6)得到的混合悬浊液微波发生器中,启动微波加热30分钟(功率800W,18%),沉淀物经抽滤、洗涤、干燥、研磨,即得到多级p-n结NiO@CdS复合纳米材料。产品的场扫描电子显微镜(FE-SEM) 照片如图3所示,透射电子显微镜(TEM)照片如图4所示。
参见附图1,按实施例1制得的多级p-n结NiO@CdS复合纳米材料的制备技术路线图。该法利用廉价的镍源和镉源,采用化学浴沉积法-焙烧法-浸渍吸附法-微波加热法四步工艺路线,制备出一种多级的p-n结NiO@CdS复合纳米材料,此制备方法工艺设备简单,操作简便,适合产业化生产。
参见附图2,按实施例1制得的多级p-n结NiO@CdS复合纳米材料的X-射线粉末衍射分析(XRD)谱图。图中可见用#标示的谱线峰对应于JCPDF标准卡片(47-1049)的衍射晶面,指标为立方相的NiO晶体;用*标示的谱线峰对应于JCPDF标准卡片(41-1049)的衍射晶面,指标为六方纤锌矿相的CdS晶体。CdS晶体衍射峰呈现宽化,表明晶体粒径小;没有发现其他杂质峰,表明样品纯度高。
参见附图3-4,按实施例1制备的多级p-n结NiO@CdS复合纳米材料的场发射扫描电子显微镜(FE-SEM)低倍和高倍照片。从图3中可以看出,由纳米片组装而成的NiO微球分散性较好,粒径相对均匀,外直径介于600-1000nm;大量呈球形的CdS纳米颗粒均匀的附着在NiO微球的表面上。从图4中可进一步看出NiO微球由多孔纳米片组装而成,清晰地显示球壳由多孔纳米片互相交错连接而成,纳米片的平均厚度约8nm,纳米片表面上含有大量的介孔结构,孔径约5-20nm;多数球形CdS纳米颗粒生长在多孔纳米片的表面,少量附着在侧面,CdS纳米晶的粒径约10-30nm。
参见附图5,按实施例1制备的多级p-n结NiO@CdS复合纳米材料的透射电子显微镜(TEM)照片,从图中明显地看出微球内部有较大孔腔,空腔内部直径约400-600nm,具有典型的大孔结构。
实施例2:
(1)称取1.0mmol六水合氯化镍(NiCl2·6H2O)溶解于30mL去离子水中,磁力搅拌30min后加入4mL氨水,继续搅拌得溶液A;称取10mmol尿素溶解于30mL去离子水,磁力搅拌得溶液B;
(2)将步骤1)中配置的溶液A和B混合均匀后,在90℃的恒温水浴锅中加热2.5小时,自然冷却后,抽滤、洗涤、干燥、研磨,得到Ni(OH)2空心微球;
(3)将步骤2)所制备的Ni(OH)2空心微球,在马弗炉中于400℃焙烧2小时,得到多级结构立方相NiO中空微球;
(4)称取0.4mmol二水合醋酸镉(Cd(Ac)2·2H2O)溶解于30mL去离子水中得溶液C;
(5)称取1.0mmol硫脲溶解于30mL去离子水中,磁力搅拌30min后加入0.1mL乙二胺,得溶液D。
(6)在室温下,称取0.1g步骤3)中的NiO中空微球浸渍于在步骤4)的溶液C中,超声分散10min后,加入步骤5)的溶液D,封上PE膜,磁力搅拌12h,得到吸附镉离子配合物的NiO-Cd(Tu)x 2+中空微球。
(7) 将步骤6)得到的混合悬浊液微波发生器中,启动微波加热30分钟(功率800W,18%),沉淀物经抽滤、洗涤、干燥、研磨,即得到多级p-n结NiO@CdS复合纳米材料。
实施例3:(多级p-n结NiO@CdS复合纳米材料的光催化分解水制氢实验)
制备的多级p-n结NiO@CdS复合纳米材料的太阳光催化分解水制氢实验在MC-SPH2O全自动光催化全解水实验测试系统上进行。
在100mLPrex玻璃平底反应器中,分别称取空穴牺牲剂1.25gNa2S和0.75gNa2SO3,用50mL去离子水溶解得溶液;称取实施例1中制备的多级p-n结NiO@CdS复合纳米材料0.1g加入到反应瓶中,在暗处搅拌30min,然后组装到光解水系统中;通入高纯氮气30min,排除反应体系中的溶解氧和管路中的空气;检查系统,打开恒温循环水,启动氙灯光源(功率300W),用CUT400滤去紫外光,检测光照6h后多级p-n结NiO@CdS复合纳米材料的光催化分解水制氢的活性。氢气含量采用联机气相色谱仪在线检测,TCD检测器,TDX-01气相填充柱,光解水产氢结果如表1所示。
表1. 多级p-n结NiO@CdS复合纳米材料的可见光光解水制氢的结果
光照时间(h) 1 2 3 4 5 6
H<sub>2</sub>量(mL/g) 1.6839 3.1825 4.4658 6.083 7.6306 9.2755
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本发明中未具体描述和解释说明的结构、装置以及操作方法,如无特别说明和限定,均按照本领域的常规手段进行实施。

Claims (13)

1.一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料及其制备方法,其特征在于,为内部中空的球形结构,球壳由各p型氧化镍纳米片组装而成,氧化镍纳米片所处的平面与球壳的厚度方向保持一致,相邻的纳米片之间围合构成孔隙,氧化镍纳米片的表面为介孔结构,n型硫化镉纳米颗粒负载在p型氧化镍纳米片的表面,形成具有p-n结的NiO/CdS复合纳米结构。
2.根据权利要求1所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料,其特征在于,硫化镉为六方纤锌矿相结构,纳米颗粒的粒径为10-30nm,氧化镍为立方相结构,中空微球的外直径为0.8-1.2μm,由多孔的厚度为7~9nm的纳米片交叠组装而成。
3.一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,包括制备NiO-Cd(Tu)x 2+中空微球和将NiO-Cd(Tu)x 2+中空微球进行热处理得到多级p-n结NiO@CdS复合纳米材料。
4.根据权利要求3所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,NiO-Cd(Tu)x 2+中空微球的制备方法具体如下:
将溶液A与溶液B混合进行恒温反应,然后对恒温反应后的产物进行烧焙处理得到NiO中空微球,再将NiO中空微球分散于溶液C中,加入溶液D进行反应处理制得NiO-Cd(Tu)x 2+中空微球;
溶液A为镍源溶液;
溶液B为沉淀剂溶液;
溶液C为镉源溶液;
溶液D为硫源溶液。
5.根据权利要求3所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,热处理为微波处理。
6.根据权利要求4所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,溶液A为氯化镍溶液与氨水混合配制而成,按照每1mol氯化镍加入4mL氨水比例进行配置,氨水的质量浓度为25%-28%。
7.根据权利要求4所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,溶液B为尿素水溶液,溶液A与溶液B按照氯化镍与尿素的摩尔比为1:1~10进行混合反应。
8.根据权利要求4所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,溶液D为硫脲水溶液与乙二胺的混合液,按照每1mol硫脲加入0.1~0.4mL乙二胺的比例混合配制成。
9.根据权利要求4所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,溶液C为醋酸镉水溶液,溶液C与溶液D按照醋酸镉与硫脲的摩尔比为0.1~1:1进行反应。
10.根据权利要求4所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,溶液A与溶液B反应在恒温水浴锅中进行,水浴的温度为90℃,反应时间为2.5h,对反应产物进行抽滤、洗涤、干燥、研磨后得到Ni(OH)2中空微球。
11.根据权利要求10所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,焙烧处理是将Ni(OH)2中空微球在马弗炉中进行焙烧得到NiO中空微球,控制焙烧温度为400℃,时间为2小时。
12.根据权利要求4所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,NiO中空微球浸渍于溶液C中后,超声分散10min,加入溶液D混匀,采用PE膜封口,磁力搅拌反应12h,得到吸附镉离子配合物的NiO-Cd(Tu)x 2+中空微球。
13.根据权利要求5所述的用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料的制备方法,其特征在于,微波加热时间为30min,功率800W。
CN201910839006.0A 2019-09-05 2019-09-05 一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料及其制备方法 Pending CN110508293A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910839006.0A CN110508293A (zh) 2019-09-05 2019-09-05 一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910839006.0A CN110508293A (zh) 2019-09-05 2019-09-05 一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110508293A true CN110508293A (zh) 2019-11-29

Family

ID=68631049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910839006.0A Pending CN110508293A (zh) 2019-09-05 2019-09-05 一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110508293A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849738A (zh) * 2022-06-01 2022-08-05 常州大学 一种硫化锰镉@氧化镍复合光催化剂的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204652A (zh) * 2007-12-19 2008-06-25 中国科学院上海硅酸盐研究所 一种高效半导体异质结光催化材料及其制备方法
CN101623645A (zh) * 2009-08-10 2010-01-13 西安建筑科技大学 一种p-n结空心球的制备及在光催化分解水制氢中的应用
CN106542587A (zh) * 2016-11-07 2017-03-29 上海纳米技术及应用国家工程研究中心有限公司 一种分级自组装氧化镍微纳结构的制备方法
CN107200363A (zh) * 2017-05-22 2017-09-26 安徽建筑大学 核壳结构NiO‑CdS同轴纳米纤维及其制备方法
CN108855103A (zh) * 2018-06-01 2018-11-23 安徽建筑大学 一种ZnO玫瑰花球负载纳米NiO的复合物及其制备方法
CN109110825A (zh) * 2018-09-12 2019-01-01 合肥学院 一种具有三级孔结构的氧化镍中空微球及其制备方法
CN109908921A (zh) * 2019-03-11 2019-06-21 三峡大学 一种MoS2/NiO空心微球材料、制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101204652A (zh) * 2007-12-19 2008-06-25 中国科学院上海硅酸盐研究所 一种高效半导体异质结光催化材料及其制备方法
CN101623645A (zh) * 2009-08-10 2010-01-13 西安建筑科技大学 一种p-n结空心球的制备及在光催化分解水制氢中的应用
CN106542587A (zh) * 2016-11-07 2017-03-29 上海纳米技术及应用国家工程研究中心有限公司 一种分级自组装氧化镍微纳结构的制备方法
CN107200363A (zh) * 2017-05-22 2017-09-26 安徽建筑大学 核壳结构NiO‑CdS同轴纳米纤维及其制备方法
CN108855103A (zh) * 2018-06-01 2018-11-23 安徽建筑大学 一种ZnO玫瑰花球负载纳米NiO的复合物及其制备方法
CN109110825A (zh) * 2018-09-12 2019-01-01 合肥学院 一种具有三级孔结构的氧化镍中空微球及其制备方法
CN109908921A (zh) * 2019-03-11 2019-06-21 三峡大学 一种MoS2/NiO空心微球材料、制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHONGHAI DENG ET AL.: "Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation", 《NANO RESEARCH》 *
HANMEI HU ET AL.: "Facile template‑free synthesis of hierarchically porous NiO hollow architectures with high‑efficiency adsorptive removal of Congo red", 《JOURNAL OF POROUS MATERIALS》 *
JIAN LIU ET AL.: "Template-free synthesis of NiO hollow microspheres covered with nanoflakes", 《MATERIALS LETTERS》 *
ZIYAUDDIN KHAN ET AL.: "Hierarchical 3D NiO–CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation", 《JOURNAL OF MATERIALS CHEMISTRY》 *
王曼: "纳米NiO及NiO-CdS复合物的制备和性能研宄", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849738A (zh) * 2022-06-01 2022-08-05 常州大学 一种硫化锰镉@氧化镍复合光催化剂的制备方法及其应用

Similar Documents

Publication Publication Date Title
Zhang et al. Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO 2 reduction
Li et al. In2O3-modified Three-dimensional nanoflower MoSx form S-scheme heterojunction for efficient hydrogen production
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
CN106964339B (zh) 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法
Xin et al. Synthesis of ZnS@ CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method
CN105833885B (zh) 非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用
CN106622293B (zh) 一种H-TiO2/CdS/Cu2-xS纳米带的制备方法
CN110624550B (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN109550493A (zh) 碳量子点负载二氧化钛纳米复合材料的制备及其光催化还原二氧化碳的应用
CN106268902B (zh) 一种g-C3N4量子点、Ag量子点敏化BiVO4光催化剂的制备方法
CN109174145A (zh) 一种碳化二钼/二氧化钛复合光催化剂及其制备方法和应用
CN111250094B (zh) 双Z型Co3O4/NiCo2O4/NiO光催化剂及其制备方法和应用
CN113275041A (zh) 一种cof-316/cat-1复合材料的制备及光催化二氧化碳还原
CN106984337A (zh) CdS‑MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂
Tian et al. Fabrication of alveolate g-C3N4 with nitrogen vacancies via cobalt introduction for efficient photocatalytic hydrogen evolution
CN105885847B (zh) 一种硫硒化镉固溶体量子点及其制备方法和光催化产氢应用
CN109046431A (zh) 球状氮掺杂硫化锌复合碳化钛光催化剂及其制备方法和在光催化分解水制备氢气中的应用
CN109433229A (zh) 一种CdS/CoO纳米异质结构的制备方法
CN112774682B (zh) 一种铝钴复合催化剂及其制备方法与应用
CN110026207B (zh) CaTiO3@ZnIn2S4纳米复合材料及其制备方法与应用
CN104998663B (zh) 一种复合光催化剂CdS‑Pt@CeO2及其制备方法和应用
CN109364949A (zh) 紫外-可见-近红外光响应的PbS/TiO2纳米管团聚微球异质结、其制备方法和用途
CN110508293A (zh) 一种用于光解水制氢的中空多级p-n结NiO@CdS复合纳米材料及其制备方法
CN109759097A (zh) 一种纳米红磷光催化材料及其制备方法和应用
CN111437820B (zh) 一种用于光催化分解水产氢的复合纳米材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191129

RJ01 Rejection of invention patent application after publication