CN110508255A - 一种多孔二氧化碳捕集剂的制备方法 - Google Patents

一种多孔二氧化碳捕集剂的制备方法 Download PDF

Info

Publication number
CN110508255A
CN110508255A CN201910740146.2A CN201910740146A CN110508255A CN 110508255 A CN110508255 A CN 110508255A CN 201910740146 A CN201910740146 A CN 201910740146A CN 110508255 A CN110508255 A CN 110508255A
Authority
CN
China
Prior art keywords
porous silica
carbon capture
capture agent
silica carbon
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910740146.2A
Other languages
English (en)
Inventor
张怀红
于琴
杨正莹
蔡晶晶
花丹凤
仓辉
蔡照胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangcheng Institute of Technology
Yancheng Institute of Technology
Original Assignee
Yangcheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangcheng Institute of Technology filed Critical Yangcheng Institute of Technology
Priority to CN201910740146.2A priority Critical patent/CN110508255A/zh
Publication of CN110508255A publication Critical patent/CN110508255A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种多孔二氧化碳捕集剂的制备方法。具体步骤为:步骤1,在有机溶剂中,将1,2,4,5‑四氨基苯和4‑氰基苯甲醛按摩尔比为1:2‑5混合,加入催化剂,调节反应液的pH值,在50‑120℃下搅拌反应30‑300分钟,自然冷却至室温,倒入去离子水中沉淀、过滤,去离子水洗涤,在80℃下真空干燥,得到具有苯并咪唑结构的化合物;步骤2,将苯并咪唑结构的化合物与催化剂ZnCl2混合装入石英管中,抽空密封,放入高温炉中加热反应10‑50小时后,自然冷却后,用去离子水洗涤,真空干燥,得多孔二氧化碳捕集剂。该多孔二氧化碳捕集剂具有极高的化学稳定性,可与二氧化碳实现良好的吸附与分离,具有良好的应用前景。

Description

一种多孔二氧化碳捕集剂的制备方法
技术领域
本发明属于共价有机骨架材料技术领域,具体涉及一种多孔二氧化碳捕集剂的制备方法。
背景技术
当今社会,全球工业化进程的不断加快,造成了CO2的大量排放,导致气候变化以及自然灾害发生;同时CO2也是一种非常重要的碳资源,可利用排放出CO2合成有机化合物。因此,如何实现CO2的高效捕集是目前人类社会可持续发展所面临的最为紧迫的问题之一。在当前CO2的各种捕集方法中,吸附法是一种极具有应用潜力的CO2捕集方法。在这种方法中,高效吸附剂的开发和选用是关键所在,一个捕集性能优越的吸附剂必须符合以下条件:在常温常压下吸附量大,选择性高且可以重复利用。
共价有机骨架材料(Covalent Organic Frameworks)是一种由共价键连接形成的有机多孔聚合物。共价有机骨架材料具有孔道规则、密度低、比表面积高、热稳定性好等特点,在气体吸附、气体分离、荧光传感、异相催化、光电转换和能量储存等领域具有广阔的应用价值。研究表明,多孔材料的微观孔结构和异质氮原子掺杂是影响其捕集性能的两个关键因素:(1)不同孔径的孔对CO2捕集性能有不同的影响,当孔径由微孔向大孔逐渐转变时,多孔性降低,造成吸附性降低甚至不再吸附;(2)异质氮原子和CO2分子由于极性相互作用,能够较大幅度的增加CO2的吸附量和选择性。目前,大多数共价有机骨架材料的化学稳定性较差,尤其是在酸碱体系中的稳定性较差,严重的限制了共价有机骨架材料的进一步发展和应用。基于此,有必要开发兼具有效孔结构和异质氮原子N-掺杂多孔材料来大幅提高CO2的吸附量,选择性以及重复性。
发明内容
针对上述技术问题,本发明提供一种多孔二氧化碳捕集剂的制备方法,该多孔二氧化碳捕集剂具有极高的化学稳定性,可与二氧化碳实现良好的吸附与分离,具有良好的应用前景。
一种多孔二氧化碳捕集剂的制备方法,包括以下步骤:
步骤1,在有机溶剂中,将1,2,4,5-四氨基苯和4-氰基苯甲醛按摩尔比为1:2-5混合,加入催化剂,调节反应液的pH值至4-6,在50-120℃下搅拌反应30-300分钟,然后自然冷却至室温,倒入去离子水中沉淀、过滤,去离子水洗涤,在80℃下真空干燥 24 h,得到苯并咪唑结构的化合物,结构式为:
步骤2,将苯并咪唑结构的化合物与催化剂ZnCl2按摩尔比为1:1-10的混合装入石英管中,抽空密封,放入高温炉中加热至300-600℃,反应10-50小时后,自然冷却至室温,用去离子水洗涤,真空干燥24小时,得多孔二氧化碳捕集剂。
作为改进的是,步骤1中有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或二甲基亚砜。
作为改进的是,步骤1中催化剂为亚硫酸氢钠 NaHSO3、连二亚硫酸钠 Na2S2O4 或焦亚硫酸钠 Na2S2O5 中的一种,pH为 4-6。
有益效果:
与现有技术相比,本发明的优势在于:
1)本发明中的多孔聚合物其合成方法简便、原料易得、且具有高吸附量和高选择性;
2) 本发明采用金属盐作为聚合反应的催化剂,制备得到的多孔聚合物不仅在微孔和介孔范围内都有明显的孔径分布,而且避免了多孔聚合物在应用过程中多孔性明显降低的缺陷。
3) 本发明中的多孔聚合物本身具有高的物理化学稳定性,在应用过程中其孔道不会坍塌,而且具有发达多孔性和一定的氮含量,结合物理吸附和化学吸附,提高附能力、选择性和循环使用稳定性。
附图说明
图1为实施例1所得的多孔二氧化碳捕集剂的表面形貌,其中,(a)为SEM图片,(b)TEM图片;
图2为实施例2所得的多孔二氧化碳捕集剂N2吸附-脱附曲线;
图3为实施例3所得的多孔二氧化碳捕集剂的孔径分布曲线;
图4为实施例2所得的多孔二氧化碳捕集剂的不同温度下的CO2和N2气吸附曲线;
图5为实施例3所得的多孔二氧化碳捕集剂的重复使用次数与吸附量关系曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步描述。
实施例1
一种多孔二氧化碳捕集剂的制备方法,包括以下步骤:
(1)将1,2,4,5-四氨基苯 (1.38g, 10mmol), 4-氰基苯甲醛 (2.62g, 20 mmol), 和亚硫酸氢钠 (1.05 g,10mmol) 溶于 N,N-二甲基甲酰胺(150 mL)中,调节反应液的pH=4,反应温度为50℃, 搅拌反应 30 分钟. 然后冷却至室温,加入300 mL去离子水,沉淀、过滤,用去离子水洗涤,在80℃下真空干燥 24 h, 得到苯并咪唑结构的化合物。
(2)将苯并咪唑结构的化合物与催化剂ZnCl2按摩尔比1:1装入石英管中,抽空密封,放入高温炉中加热300℃,反应10小时后,自然冷却至室温,用去离子水洗涤,真空干燥24小时,得多孔聚合物,即多孔二氧化碳捕集剂。
对所得多孔二氧化碳捕集剂进行性能检测,比表面积达到1900m2/g,孔体积达到1.16cm3/g,最可几孔径为3.0 nm,孔多分布于微孔和介孔之间。其SEM和TEM图片如图1所示,表明制备的材料具有丰富的孔结构。所得的多孔聚合物作为CO2固体吸附剂,在1 bar和0℃下,达到7.8mmol/g,25℃达到5.8mmol/g的吸附量,选择性为CO2/N2为12:1,并且可以多次重复使用。
实施例2
一种多孔二氧化碳捕集剂的制备方法,包括以下步骤:
(1)将1,2,4,5-四氨基苯 (0.276g, 2mmol), 4-氰基苯甲醛 (1.31g, 10 mmol), 和连二亚硫酸钠 Na2S2O4 (1mmol) 溶于 N,N-二甲基乙酰胺(150 mL)中,调节反应液的pH=6,反应温度为120℃, 搅拌反应 300分钟. 然后冷却至室温,加入300 mL去离子水,沉淀、过滤,用去离子水洗涤,在80℃下真空干燥 24 h, 得到苯并咪唑结构的化合物。
(2)将苯并咪唑结构的化合物与催化剂ZnCl2按摩尔比1:10装入石英管中,抽空密封,放入高温炉中加热600℃,反应50小时后,慢慢冷却至室温,用去离子水洗涤,真空干燥24小时,得多孔聚合物,即多孔二氧化碳捕集剂。
对所得多孔二氧化碳捕集剂进行性能检测,比表面积达到2080m2/g,孔体积达到1.21cm3/g,最可几孔径为1.6nm,孔多分布于微孔和介孔之间。所得的多孔聚合物用于CO2固体吸附剂,在1 bar和 0℃下,达到8.25mmol/g,25℃达到6.62mmol/g的吸附量,选择性为CO2/N2为13:1,并且可以多次重复使用。
实施例3
一种多孔二氧化碳捕集剂的制备方法,包括以下步骤:
(1)将1,2,4,5-四氨基苯 (0.138g, 1mmol), 4-氰基苯甲醛 (0.52g, 4 mmol), 和亚硫酸氢钠 (0.105g,1mmol) 溶于 二甲基亚砜(150 mL)中,调节反应液的pH=5,反应温度为80 ℃, 搅拌反应 100分钟. 然后冷却至室温,加入300 mL去离子水,沉淀、过滤,用去离子水洗涤,在80℃下真空干燥 24 h, 得到苯并咪唑结构的化合物。
(2)将苯并咪唑结构的化合物与催化剂ZnCl2按摩尔比1:5装入石英管中,抽空密封,放入高温炉中加热400℃,反应40小时后,慢慢冷却至室温,用去离子水洗涤,真空干燥24小时,得多孔聚合物,即多孔二氧化碳捕集剂。
对所得多孔二氧化碳捕集剂进行性能检测,比表面积达到2107m2/g,孔体积达到1.31cm3/g,最可几孔径为2.1 nm,孔多分布于微孔和介孔之间。所得的多孔聚合物用于CO2固体吸附剂,在1 bar和 0℃下,达到7.25mmol/g,25℃达到5.32mmol/g的吸附量,选择性为CO2/N2为11:1,并且可以多次重复使用。
上述结果显示,随着比表面积值增大,聚合物的CO2吸附量表现出先增大后减小的变化趋势。同样,其对N2吸附与CO2吸附差异性较大,因而其可用于CO2和N2的高效分离,经5次循环使用后,吸附剂对CO2的吸附能力没有明显降低,且再生性能良好。结果表明,影响CO2吸附性能的主要因素是吸附剂的孔隙结构和表面化学官能团。本发明的多孔聚合物具有大孔径、孔隙均匀的特征,可以有效提高反应物在孔道的穿梭和扩散率。而且,结构中的亲二氧化碳分子,如胺基团,则有效地增加吸附量。

Claims (3)

1.一种多孔二氧化碳捕集剂的制备方法,其特征在于,包括以下步骤:
步骤1,在有机溶剂中,将1,2,4,5-四氨基苯和4-氰基苯甲醛按摩尔比为1:2-5混合,加入催化剂,调节反应液的pH值,在50-120℃下搅拌反应30-300分钟,反应后自然冷却至室温,倒入去离子水中沉淀、过滤,去离子水洗涤,在80℃下真空干燥 24 h,得到苯并咪唑结构的化合物;
步骤2,将苯并咪唑结构的化合物与催化剂ZnCl2按摩尔比为1:1-10混合装入石英管中,抽空密封,放入高温炉中加热至300-600℃,反应10-50小时后,自然冷却至室温,用去离子水洗涤,真空干燥24小时,得多孔二氧化碳捕集剂。
2.根据权利要求1所述的一种多孔二氧化碳捕集剂的制备方法,其特征在于,步骤1中溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或二甲基亚砜。
3.根据权利要求1所述的一种多孔二氧化碳捕集剂的制备方法,其特征在于,步骤1中催化剂为亚硫酸氢钠 NaHSO3、连二亚硫酸钠 Na2S2O4 或焦亚硫酸钠 Na2S2O5 中的一种,pH为 4-6。
CN201910740146.2A 2019-08-12 2019-08-12 一种多孔二氧化碳捕集剂的制备方法 Pending CN110508255A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910740146.2A CN110508255A (zh) 2019-08-12 2019-08-12 一种多孔二氧化碳捕集剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910740146.2A CN110508255A (zh) 2019-08-12 2019-08-12 一种多孔二氧化碳捕集剂的制备方法

Publications (1)

Publication Number Publication Date
CN110508255A true CN110508255A (zh) 2019-11-29

Family

ID=68624523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910740146.2A Pending CN110508255A (zh) 2019-08-12 2019-08-12 一种多孔二氧化碳捕集剂的制备方法

Country Status (1)

Country Link
CN (1) CN110508255A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105700A (zh) * 2012-03-30 2014-10-15 埃克森美孚研究工程公司 沸石咪唑盐骨架结构材料、其制备方法和其用途
CN104371112A (zh) * 2014-10-17 2015-02-25 中国科学院上海有机化学研究所 一类基于三蝶烯骨架的有机多孔聚合物及其制备和应用
US20150266885A1 (en) * 2012-10-12 2015-09-24 Council Of Scientific & Industrial Research Porous crystalline frameworks, process for the preparation therof and their mechanical delamination to covalent organic nanosheets (cons)
CN105440058A (zh) * 2015-11-04 2016-03-30 兰州大学 一种基于苯并噻唑单元的共价有机框架材料的合成方法
CN105921114A (zh) * 2016-04-26 2016-09-07 盐城工学院 一种百草枯磁性吸附剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105700A (zh) * 2012-03-30 2014-10-15 埃克森美孚研究工程公司 沸石咪唑盐骨架结构材料、其制备方法和其用途
US20150266885A1 (en) * 2012-10-12 2015-09-24 Council Of Scientific & Industrial Research Porous crystalline frameworks, process for the preparation therof and their mechanical delamination to covalent organic nanosheets (cons)
CN104371112A (zh) * 2014-10-17 2015-02-25 中国科学院上海有机化学研究所 一类基于三蝶烯骨架的有机多孔聚合物及其制备和应用
CN105440058A (zh) * 2015-11-04 2016-03-30 兰州大学 一种基于苯并噻唑单元的共价有机框架材料的合成方法
CN105921114A (zh) * 2016-04-26 2016-09-07 盐城工学院 一种百草枯磁性吸附剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIXUAN GUO ET AL.: "A Zn-salen based covalent triazine framework as a promising candidate for CO2 capture", 《MATERIALS LETTERS》 *
JIANFENG DU ET AL.: "Preparation of benzodiimidazole-containing covalent triazine frameworks for enhanced selective CO2 capture and separation", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *

Similar Documents

Publication Publication Date Title
CN110038517B (zh) 一种室温室内甲醛净化的UiO-66基金属有机骨架材料及其应用
CN108751189B (zh) 高比表面积的铝基mof多孔碳材料的制备与应用
Shi et al. Water-based synthesis of zeolitic imidazolate framework-8 for CO 2 capture
CN105233802B (zh) 一种掺杂l‑精氨酸的铜基金属有机骨架材料及其制备方法
CN108816190B (zh) 一种氧化铝-活性炭复合材料及其制备方法
Su et al. Synthesis of DNL‐6 with a High Concentration of Si (4 Al) Environments and its Application in CO2 Separation
CN110773125B (zh) 有机改性分子筛及其制备方法和应用
CN108329484A (zh) 一种优先吸附乙烷的铁基双配体金属有机骨架材料及其制备方法与应用
CN113683740A (zh) 卤素离子功能化有机多孔材料及其制备方法和用途
CN112979985A (zh) 一种复合金属有机骨架材料及其制备方法
CN110639474B (zh) 一种用于分离丙烯和丙烷的吸附剂及其制备方法
Xue et al. Encapsulated HKUST-1 nanocrystal with enhanced vapor stability and its CO2 adsorption at low partial pressure in unitary and binary systems
Hua et al. Adsorption behavior of halogenated anesthetic and water vapor on Cr‐based MOF (MIL‐101) adsorbent. Part I. Equilibrium and breakthrough characterizations
CN109232226B (zh) 一种微孔金属有机骨架材料及其制备方法与应用
CN108355629A (zh) 一种均匀负载碳质颗粒的碳纳米纤维复合材料及其应用
Lan et al. Construction of hierarchically porous metal-organic framework particle by a facile MOF-template strategy
Anbia et al. Synthesis of polyaniline/mesoporous carbon nanocomposites and their application for CO 2 sorption
CN109012591A (zh) 一种膨胀石墨/碳化聚多巴胺复合材料及其制备方法和作为苯气体吸附剂的应用
CN110508255A (zh) 一种多孔二氧化碳捕集剂的制备方法
CN106693932B (zh) 一种多孔碳花吸附材料及其制备方法和应用
CN110773129B (zh) 二元取代苯改性分子筛及其制备方法和应用
CN115558120B (zh) 用于痕量btex吸附的金属有机框架材料及其制备方法
CN115970647A (zh) 一种吸附甲醛的活性炭材料和制备工艺
CN114314584B (zh) 一种性能可重复型孔道多极化纳米碳材料的制备方法和应用
CN109482144A (zh) 一种脱硫除碳吸附剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191129

RJ01 Rejection of invention patent application after publication