CN110506341A - 压电基材、力传感器及致动器 - Google Patents

压电基材、力传感器及致动器 Download PDF

Info

Publication number
CN110506341A
CN110506341A CN201880024682.6A CN201880024682A CN110506341A CN 110506341 A CN110506341 A CN 110506341A CN 201880024682 A CN201880024682 A CN 201880024682A CN 110506341 A CN110506341 A CN 110506341A
Authority
CN
China
Prior art keywords
piezoelectrics
piezoelectricity
piezoelectricity substrate
conductor
conductor lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880024682.6A
Other languages
English (en)
Other versions
CN110506341B (zh
Inventor
吉田光伸
大西克己
谷本一洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of CN110506341A publication Critical patent/CN110506341A/zh
Application granted granted Critical
Publication of CN110506341B publication Critical patent/CN110506341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/60Piezoelectric or electrostrictive devices having a coaxial cable structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G1/00Weighing apparatus involving the use of a counterweight or other counterbalancing mass
    • G01G1/02Pendulum-weight apparatus
    • G01G1/16Means for correcting for obliquity of mounting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/08Chin straps or similar retention devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种压电基材,其具有导体线和压电体,所述导体线具有芯材和配置于所述芯材周围的导体,所述压电体是沿着所述导体线的轴向在一个方向上以螺旋状卷绕在所述导体线的周围的长条状压电体,所述压电体包含具有光学活性的螺旋手性高分子,所述压电体的长度方向与所述压电体所含的螺旋手性高分子的主取向方向大致平行,由X射线衍射测定根据式(a):取向度F=(180°‑α)/180°(式中的α表示来自取向的峰的半峰宽)求得的所述压电体的取向度F在0.5以上且小于1.0的范围,从垂直于所述导体线的轴向的方向观察所述导体线时,从被分割成多个的区域中选择的区域A与位于区域A的相邻位置的区域B的高度之差的最大值ΔDmax与所述压电体的最小厚度tpmin满足式(b):ΔDmax<tpmin的条件。

Description

压电基材、力传感器及致动器
技术领域
本发明涉及压电基材、力传感器及致动器。
背景技术
近年来,正在研究将包含螺旋手性高分子的压电体应用于传感器、致动器等压电装置。在这样的压电装置中,使用膜形状的压电体。
作为上述压电体中的螺旋手性高分子,正着眼于使用多肽、聚乳酸系高分子等具有光学活性的高分子。其中,已知聚乳酸系高分子仅通过机械性拉伸操作即可呈现出压电性。已知使用了聚乳酸系高分子的压电体不需要进行极化处理,而且压电性历经数年也不会减少。
例如,作为含有聚乳酸系高分子的压电体,报道了压电常数d14大、且透明性优异的压电体(例如,参见专利文献1及2)。
另外,最近也在尝试将具有压电性的材料被覆在导体上进行利用。
例如,已知下述压电电缆(piezo cable),所述压电电缆由从中心向外侧依次以同轴状进行配置的中心导体、压电材料层、外侧导体及外壳构成(例如,参见专利文献3)。专利文献4中记载有用压电性高分子被覆导电性纤维而成的压电元件。
现有技术文献
专利文献
专利文献1:日本专利第4934235号公报
专利文献2:国际公开第2010/104196号
专利文献3:日本特开平10-132669号公报
专利文献4:国际公开第2014/058077号
发明内容
发明要解决的课题
可是,当在凹凸大的位置及变形量大的位置使用膜形状的压电体(例如,专利文献1及2的实施例中的压电体)时(例如,用作可穿戴制品的一部分或全部时),因变形而在压电体中产生弯折、褶皱等损伤,结果存在压电灵敏度(例如,将压电体用作传感器时的传感器灵敏度、及将压电体用作致动器时的动作灵敏度。以下相同。)降低的情况。
对于专利文献3中记载的压电电缆而言,作为压电材料使用的聚偏氟乙烯(PVDF)被观察到压电常数会经时变动,存在压电常数经时降低的情况。另外,PVDF为强电介质,故具有焦电性,因此,存在压电信号输出根据周围的温度变化而发生变动的情况。因此,专利文献3中记载的压电电缆中,存在压电灵敏度的稳定性及压电输出的稳定性(经时稳定性或针对温度变化的稳定性)不足的情况。
专利文献4中记载的压电元件中,没有对在导电性纤维上卷绕压电性高分子的方向进行特别限定,因此,即使因对压电元件整体施加张力而导致在卷绕的压电性高分子中产生剪切应力,从而使得在压电性高分子内产生电荷,但也会出现压电性高分子内产生的电荷的极性相互抵消的情况。因此,专利文献4中记载的压电性元件存在压电灵敏度不足的情况。
进而,导体线(conductive cord)是将芯材的周围用金属箔等导体被覆而成的材料,将在其周围卷绕有压电体而成的结构用作压电基材时,存在设置于压电基材外部的导电性部件(外部导体)与内部导体接触而导致发生短路(short)的情况。
本发明鉴于上述情况,目的在于提供一种压电灵敏度和压电输出的稳定性优异且外部导体与内部导体的短路被抑制的压电基材、力传感器及致动器。
用于解决课题的手段
用于实现上述课题的具体手段如下所述。
<1>一种压电基材,其具有导体线和压电体,所述导体线具有芯材和配置于所述芯材周围的导体,
所述压电体是沿着所述导体线的轴向在一个方向上以螺旋状卷绕在所述导体线的周围的长条状压电体,
所述压电体含有具有光学活性的螺旋手性高分子,
所述压电体的长度方向与所述压电体所含的螺旋手性高分子的主取向方向大致平行,
由X射线衍射测定根据式(a):取向度F=(180°-α)/180°(式中的α表示来自取向的峰的半峰宽)求得的所述压电体的取向度F在0.5以上且小于1.0的范围,
从垂直于所述导体线的轴向的方向观察所述导体线时,从被分割成多个的区域中选择的区域A与位于区域A的相邻位置的区域B的高度之差的最大值ΔDmax与所述压电体的最小厚度tpmin满足式(b):ΔDmax<tpmin的条件。
<2>如<1>所述的压电基材,其中,所述导体线具有所述芯材和沿着所述芯材的轴向在一个方向上以螺旋状卷绕在所述芯材的周围的所述导体。
<3>如<1>或<2>所述的压电基材,其中,所述芯材是单丝(mono-filament)。
<4>如<1>~<3>中任一项所述的压电基材,其中,所述导体是内部导体,所述压电体沿着所述内部导体的外周面在一个方向上以螺旋状卷绕。
<5>如<1>~<4>中任一项所述的压电基材,其中,所述压电基材还具有绝缘体,所述绝缘体被配置于所述压电基材的外周。
<6>如<1>~<4>中任一项所述的压电基材,其中,所述压电基材还具有绝缘体,所述绝缘体被配置于所述导体线与所述压电体之间。
<7>如<1>~<6>中任一项所述的压电基材,其中,所述压电体以相对于所述导体线的轴向保持15°~75°的角度的方式被卷绕。
<8>如<1>~<7>中任一项所述的压电基材,其中,所述压电体具有长条平板形状。
<9>如<8>所述的压电基材,其中,所述具有长条平板形状的压电体的厚度为0.001mm~0.2mm,宽度为0.1mm~30mm,所述宽度相对于所述厚度的比为2以上。
<10>如<1>~<8>中任一项所述的压电基材,其中,所述压电体相对于所述螺旋手性高分子100质量份含有0.01质量份~10质量份稳定剂,所述稳定剂具有选自由碳二亚胺基、环氧基及异氰酸酯基组成的组中的至少1种官能团、且重均分子量为200~60000。
<11>如<1>~<10>中任一项所述的压电基材,其中,所述压电基材还具有功能层。
<12>如<11>所述的压电基材,其中,所述功能层是选自由易粘接层、硬涂层、抗静电层、防粘连(antiblock)层、保护层及电极层组成的组中的至少1种。
<13>如<11>或<12>所述的压电基材,其中,所述功能层包含电极层。
<14>如<13>所述的压电基材,其中,所述压电体与所述功能层为层叠体的状态,所述层叠体的表面层的至少一方为所述电极层。
<15>如<1>~<14>中任一项所述的压电基材,其中,所述导体线与所述压电体之间还具有粘接层。
<16>如<1>~<15>中任一项所述的压电基材,其中,所述压电体所含的所述螺旋手性高分子是包含具有由下述式(1)表示的结构单元的主链的聚乳酸系高分子。
[化学式1]
<17>如<1>~<16>中任一项所述的压电基材,其中,所述压电基材的外周还具有外部导体。
<18>如<17>所述的压电基材,其中,所述外部导体的外周还具有绝缘体。
<19>一种力传感器,其具有<1>~<18>中任一项所述的压电基材。
<20>一种致动器,其具有<1>~<18>中任一项所述的压电基材。
发明的效果
根据本发明的一个方案,能提供压电灵敏度和压电输出的稳定性优异且外部导体与内部导体的短路被抑制的压电基材、力传感器及致动器。
附图说明
[图1]是表示压电基材的具体方式的侧面图。
[图2]是图1所示的压电基材的X-X’线截面图。
[图3]是从垂直于轴向的方向观察导体线时的平面简图。
[图4]是力传感器的平面示意图。
[图5]是表示使用粘合胶带粘贴有平板的压电基材的截面简图。
[图6]是对使用粘合胶带粘贴有平板的压电基材进行按压时的截面简图。
[图7]是使用粘合胶带粘贴有平板的压电基材的一例。
[图8]是使用粘接剂粘贴有平板的压电基材的一例。
[图9]是表示将压电基材配置在帽带的一部分的简图。
具体实施方式
以下,对本发明的实施方式进行说明。本发明并不限定于以下的实施方式。
本说明书中,使用“~”表示的数值范围是指包含记载于“~”前后的数值作为下限值及上限值的范围。
本说明书中,所谓长条平板状的压电体的“主面”,是指与长条平板状的压电体的厚度方向相正交的面(换言之,包含长度方向及宽度方向的面)。对于机织物的“主面”及针织物的“主面”,也同样如此。
本说明书中,只要没有特别说明,构件的“面”是指构件的“主面”。
本说明书中,厚度、宽度及长度如通常的定义,满足厚度<宽度<长度的关系。
本说明书中,2条线段所成的角度以0°以上且90°以下的范围表示。
本说明书中,“膜”是下述概念:不仅包括通常被称为“膜”的物品,而且还包括通常被称为“片材”的物品。
本说明书中,“MD方向”是膜的流动方向(Machine Direction)、即拉伸方向,“TD方向”是与上述MD方向相正交、且与膜的主面相平行的方向(Transverse Direction)。
本说明书中参考附图说明实施方式时,该实施方式的构成并不限定于附图所示的构成。另外,各图中的部件的大小为示意性大小,部件间的大小的相对关系并不限定于此。
〔压电基材〕
本实施方式的压电基材具有:具有芯材和配置于所述芯材周围的导体的导体线(以下也简单称为“导体线”);和,沿着所述导体线的轴向在一个方向上以螺旋状卷绕在所述导体线的周围的长条状压电体(以下也简单称为“压电体”),所述压电体包含具有光学活性的螺旋手性高分子(以下也简单称为“螺旋手性高分子”),所述压电体的长度方向与所述压电体所含的螺旋手性高分子的主取向方向大致平行,由X射线衍射测定根据式(a):取向度F=(180°-α)/180°(式中的α表示来自取向的峰的半峰宽)求出的所述压电体的取向度F在0.5以上且小于1.0的范围,从垂直于所述导体线的轴向的方向观察所述导体线时,从被分割成多个的区域选择的区域A与位于区域A的相邻位置的区域B的高度之差的最大值ΔDmax与所述压电体的最小厚度tpmin满足式(b):ΔDmax<tpmin的条件。
本实施方式的压电基材通过具有上述构成,从而压电灵敏度优异,压电输出的稳定性也优异。更详细而言,首先,压电体含有螺旋手性高分子,压电体的长度方向与螺旋手性高分子的主取向方向大致平行,并且压电体的取向度F为0.5以上且小于1.0,从而呈现优异的压电性。
进而,压电体沿着导体线的轴向在一个方向上以螺旋状卷绕,由此压电输出的稳定性优异。即,压电体被配置成螺旋状,从而在压电基材的长度方向施加张力(应力)时,对压电体所含的螺旋手性高分子施加了剪切力,在压电基材的径向产生螺旋手性高分子的极化。对其极化方向而言,可以将以螺旋状卷绕的压电体视为相对其长度方向可看作是平面的程度的微小区域的集合体。并且,在该构成微小区域的平面,因张力(应力)产生的剪切力被施加于螺旋手性高分子时,与因压电常数d14产生的电场的方向大致一致。
具体而言,关于例如聚乳酸,为分子结构包含左旋螺旋结构的L-乳酸的均聚物(PLLA)的情况下,对将长度方向与PLLA的主取向方向大致平行的压电体相对于导体以左旋螺旋状进行卷绕而得到的构造体施加张力(应力)时,在径向上产生从垂直于张力的圆形截面的圆的中心向外侧方向的电场(极化)。另外,与此相反,对将长度方向与PLLA的主取向方向大致平行的压电体相对于导体以右旋螺旋状进行卷绕而得到的构造体施加张力(应力)时,在径向上产生从垂直于张力的圆形截面的圆的外侧向中心方向的电场(极化)。
另外,例如为分子结构包含右旋螺旋结构的D-乳酸的均聚物(PDLA)的情况下,对将长度方向与PDLA的主取向方向大致平行的压电体相对于导体以左旋螺旋状进行卷绕而得到的构造体施加张力(应力)时,在径向上产生从垂直于张力的圆形截面的圆的外侧向中心方向的电场(极化)。另外,与此相反,对将长度方向与PDLA的主取向方向大致平行的压电体相对于导体以右旋螺旋状进行卷绕而得到的构造体施加张力(应力)时,在径向上产生从垂直于张力的圆形截面的圆的中心向外侧方向的电场(极化)。
由此认为,在压电基材的长度方向上施加张力时,在配置成螺旋状的压电体的各部位中,以相位一致的状态产生与张力成比例的电位差,因此可有效地检测与张力成比例的电压信号。
进而,本申请的发明人研究的结果是,获知在导体线满足式(b)的条件时,芯材的周围的导体与外部导体的短路被抑制。
作为导体线满足式(b)的条件时芯材的周围的导体(内部导体)与外部导体的短路被抑制的理由,认为被卷绕在这种导体线周围的压电体的第n圈与第n+1圈之间难以产生间隙,抑制导体线与外部导体接触。
本申请的发明人研究的结果是,获知:对于作为芯材使用比较柔软的纤维、在其周围一边对导电材料施加张力一边卷绕而制作的导体线而言,纤维的松弛部分、或者因被短纤维的绒毛所卷绕的导电材料所勒拧而导致缓慢松散的部分的体积增大,周期性地形成块状的凸部,具有不满足式(b)的条件的倾向。另外可知,对于在这样的导体线的周围卷绕压电体而制作的压电基材而言,在彼此相邻的压电体间的间隙,导体线与外部导体接触的频率增加。
因此,为了制作外部导体与内部导体的短路被抑制的压电基材,认为适当地选择芯材的种类使导体线满足式(b)的条件、抑制在导体线的表面产生凹凸的方式是有效的。但是,得到满足式(b)的条件的导体线的方法,并不限定于上述方法。
确认本实施方式的压电基材中有无短路时,将压电基材的长度剪裁成1cm~100m等的长度,以内部导体与外部导体间的电阻值为指标来进行确认。长度小于1cm时,难以引出电极用于与电阻测定器进行电连接,所以有可能难以确认短路的存在。
本说明书中,所谓“大致平行”,是指2条线段所成的角度在0°以上且小于30°(优选为0°以上且22.5°以下,更优选为0°以上且10°以下,进一步优选为0°以上且5°以下,尤其优选为0°以上且3°以下)。
压电体的长度方向与螺旋手性高分子的主取向方向大致平行这点具有压电体对在长度方向上的拉伸的抗性强(即,长度方向的抗拉强度优异)的优点。因此,即使将压电体相对于导体在一个方向上以螺旋状卷绕,也变得难以断裂。
进而,压电体的长度方向与螺旋手性高分子的主取向方向大致平行这点在例如将被拉伸的压电膜进行分切得到压电体(例如分切条(slit ribbon))时的生产率方面也是有利的。
本说明书中,所谓螺旋手性高分子的主取向方向,是指螺旋手性高分子的主要取向方向。螺旋手性高分子的主取向方向可以通过测定压电体的取向度F来确认。
另外,对原料进行熔融纺丝后将其拉伸制造压电体时,制造的压电体中的螺旋手性高分子的主取向方向是指主拉伸方向。所谓主拉伸方向,是指拉伸方向。
同样地,在通过对膜进行拉伸及形成经拉伸后的膜的分切体来制造压电体时,制造的压电体中的螺旋手性高分子的主取向方向是指主拉伸方向。此处,所谓主拉伸方向,在单轴拉伸时是指拉伸方向,在双轴拉伸时,是指拉伸倍率高的一方的拉伸方向。
本说明书中,压电体的“取向度F”是表示压电体所含的螺旋手性高分子的取向的程度的指标,是例如通过广角X射线衍射装置(Rigaku公司制RINT2550,附带装置:旋转试样台,X射线源:CuKα,输出:40kV、370mA,检测器:闪烁计数器)测定的c轴取向度。需要说明的是,压电体的取向度F的测定方法的例子如下述的实施例所示。
本说明书中,所谓芯材或导体线的“沿着轴向在一个方向上”,是指从芯材或导体线的轴向的一端侧观察导体或压电基材时,导体或压电体从芯材或导体线的近前侧向远深侧卷绕的方向。具体而言,是指右方向(右旋,即顺时针旋转)或左方向(左旋,即逆时针旋转)。
以下,详细说明本实施方式的压电基材。
对于本实施方式的压电基材而言,长条状的压电体沿着导体线的外周面在一个方向上(右旋或左旋)以螺旋状卷绕。
通过使用导体线,压电体变得容易相对于导体线的轴向保持螺旋角度β在一个方向上以螺旋状被配置。
此处,所谓“螺旋角度β”,是指导体线的轴向与压电体相对于导体线的轴向进行配置的方向(压电体的长度方向)所成的角度。
由此,例如,在压电基材的长度方向上施加张力时,螺旋手性高分子的极化容易在压电基材的径向上产生。结果,可有效地检测与张力成比例的电压信号(电荷信号)。
此外,上述结构的压电基材成为与同轴电缆所具有的内部构造(内部导体及电介质)相同的构造,因此,例如将上述压电基材应用于同轴电缆时,可得到电磁屏蔽性高、耐噪音的构造。
从提高压电基材的压电灵敏度及压电输出的稳定性的观点考虑,压电体优选相对于导体线的轴向保持15°~75°(45°±30°)的角度进行卷绕,更优选保持35°~55°(45°±10°)的角度进行卷绕。
压电体可以为包含相对于导体线的轴向右旋以螺旋状卷绕且将一部分压电体左旋以螺旋状卷绕而成的构造体的压电体。将一部分压电体左旋以螺旋状卷绕时,能得到抑制压电灵敏度降低且压电输出的电压极性稳定的压电基材,从这个观点考虑,优选左旋的比例相对于整体(右旋及左旋的总和)小于50%。
另外,本实施方式的压电基材可以是包含相对于导体将压电体左旋以螺旋状卷绕且将一部分压电体右旋以螺旋状卷绕而成的构造体的压电基材。将一部分压电体右旋以螺旋状卷绕时,可以得到抑制压电灵敏度降低且压电输出的电压极性稳定的压电基材,从这方面考虑,优选右旋的比例相对于整体(右旋及左旋的总和)小于50%。
〔压电基材的具体方式〕
对于压电基材的具体方式之一例,参照附图进行说明。
图1是表示压电基材的具体方式的侧面图。图2是图1的X-X’线截面图。
压电基材10具有导体线12A与长条状的压电体14A。
导体线12A具有芯材16A与配置于芯材16A周围的导体18A。
如图1所示,压电体14A沿着导体线12A的外周面,以螺旋角度β1从一端向另一端以没有间隙的方式在一个方向上以螺旋状卷绕。
所谓“螺旋角度β1”,是指导体线12A的轴向G1与压电体14A相对于内部导体12A的轴向的配置方向所成的角度。
另外,压电体14A相对于导体线12A以左旋进行卷绕。具体而言,从导体线12A的轴向的一端侧(图1的情况为右端侧)观察压电基材10时,压电体14A从导体线12A的近前侧向远深侧以左旋进行卷绕。
图1及图2中,压电体14A所包含的螺旋手性高分子的主取向方向用双向箭头E1表示。即,螺旋手性高分子的主取向方向与压电体14A的配置方向(压电体14A的长度方向)为大致平行。
对于压电基材10而言,可以将在长度方向施加张力而产生的电荷(电场)作为电压信号读取。
具体而言,在压电基材10的长度方向施加张力时,对压电体14A所含的螺旋手性高分子施加剪切力,螺旋手性高分子进行极化。该螺旋手性高分子的极化如图2中箭头所示,在压电基材10的径向产生,认为其极化方向是使相位一致而产生的。由此,与张力成比例的电压信号可以被有效地检测。
图3是从垂直于轴向的方向观察压电基材10的导体线12A时的平面简图。对于图3所示的导体线12A而言,作为配置在芯材16A的周围的导体18A,具有沿着芯材16A的轴向在一个方向上以螺旋状卷绕在芯材周围的导体18A。因此,以螺旋状卷绕在芯材的周围的导体以被分割为大致平行四边形的多个区域的方式被观察。
本说明书中,所谓上述区域的“高度”,是指从沿着导体线12A的轴向G1的线画出的垂线与该区域的轮郭线之间的距离的最大值Y。
对于本实施方式的压电基材而言,相当于导体的大致平行四边形的区域A的高度与位于区域A的相邻位置的区域B的高度之差的最大值ΔDmax与压电体的最小厚度tpmin满足式(b):ΔDmax<tpmin的条件。因此,在压电基材间的间隙处导体线与外部电极接触而发生短路的情况能够被抑制。
考察压电基材中的ΔDmax的值的方法没有特别限制,可以通过能够从垂直于导体线的轴向的方向观察导体线的已知的方法来进行。导体线的观察可以在压电体未卷绕导体的周围的状态下进行,也可以在压电体卷绕导体的周围的状态下进行。
本说明书中,压电体的“最小厚度”是任意选择的5点中得到的测定值中最小的值。考察压电体的最小厚度tpmin的方法没有特别限制,可以与ΔDmax的值相同地通过观察来考察,也可以使用未卷绕在导体线上的状态的压电体进行测定。
〔导体线〕
压电基材中的导体线优选为信号线导体。所谓信号线导体,是指用于从压电体有效地检测电信号的导体。更具体而言,是对压电基材施加了张力时用于检测与所施加的张力对应的电压信号(电荷信号)的导体。
导体线具有芯材和配置在所述芯材的周围的导体即可,其具体的结构没有特别限制。例如,可以为具有芯材和沿着芯材的轴向在一个方向上以螺旋状卷绕在芯材周围的导体的结构(这样的结构的导体线也被称为锦丝线);可以为具有芯材和配置在芯材周围的连续的作为被覆的导体的结构;或者,可以为具有芯材和导体的结构,所述导体是线状的、且沿着芯材的轴向编织成编带状;还可以为其他结构。
配置在芯材周围的导体的厚度没有特别限制,可以根据压电基材的所希望的特性进行选择。例如,导体的厚度(厚度不一定时,厚度最小的部分的厚度)优选为0.5μm~10mm,较优选为1μm~5mm,更优选为5μm~3mm。
导体线的截面形状没有特别限制,优选为圆形或接近于圆形的形状。另外,较优选以芯材为中心,导体以环状、同心圆环或与其接近的状态配置在芯材周围。
导体线中,芯材的表面积中与导体接触的部分的面积的比例(芯材被导体覆盖的被覆率)没有特别限制,认为该比例越大,越能有效地检测与张力成比例的电压信号。芯材被导体覆盖的被覆率优选为70%以上,较优选为80%以上,更优选为90%以上。
导体线的长度没有特别限制,可以根据压电基材的用途等进行选择。例如,可以为1mm~10m,优选为5mm~5m,较优选为5mm~1m。导体线的长度为1mm以上时,可以充分发挥其为线状的优点,为10m以下时,同轴线的静电容量变大,因局部拉伸而导致电压输出降低等的问题不易发生。导体线在连续制造后剪裁成所希望的长度进行使用即可。
通过适当选择构成导体线的芯材与导体的种类,可以得到高弯曲性或挠性(例如内装于衣服的可穿戴传感器等用途)合适的压电基材。
作为导体线,具体地可以举出例如以将短纤维加捻而得到的捻丝、长纤维等为芯材、对其周围用金属材料被覆(将金属箔卷绕成螺旋状、形成金属被覆等)得到的线材。使用短纤维的捻丝时,优选短纤维的长度较长的纤维或从捻丝的外侧突出的绒毛少的纤维。
在芯材的周围卷绕金属箔制作导体线时,优选金属箔为矩形线状。对于矩形线状的金属箔而言,可以将金属线进行压制或将金属箔分切成细条来制作。通过将金属箔制成矩形线状,可以减少其与缠绕在导体线周围的压电体之间的空隙,提高对压电体的密合性。其结果是,变得容易检测由压电体产生的电荷变化,进一步提高对于张力的灵敏度。
金属箔为矩形线状时,其截面(优选为矩形截面)中,宽度相对于厚度的比率优选为2以上。
金属箔的材质没有特别限制,优选为铜箔。通过使用电导率高的铜,能降低输出阻抗。因此,对压电基材施加张力时,变得更容易检测与张力对应的电压信号。其结果具有压电灵敏度及压电输出的稳定性进一步提高的倾向。另外,因为铜箔在弯曲变形时处于弹性变形区域的变形,变得难以进行塑性变形,所以不易引起金属疲劳破坏,从而能显著提高耐反复弯曲性。
导体线优选对于反复的弯曲、扭转等的耐性(耐弯曲性)优异。另外,在将导体线缠绕在压电体上时,为了进一步支撑张力,优选使导体线同时具有高弯曲性和刚性。作为其指标,优选导体线的每单位长度的弯曲刚性B为0.1×10-4[N·m2/m]以上。作为导体线的每单位长度的弯曲刚性B的测定方法,通常为使用弯曲试验机(Kato Tech Co.,Ltd.制、KES-FB2)等的测定装置的方法。
导体线的每单位长度的弯曲刚性B的值较优选为0.1×10-4[N·m2/m]~1000×10-4[N·m2/m],更优选为0.5×10-4[N·m2/m]~100×10-4[N·m2/m],特别优选为10×10-4[N·m2/m]~100×10-4[N·m2/m]。
导体线中的芯材具有作为支撑赋予至导体线的张力的构造材料的功能。通过适当选择芯材的材质、截面积等,与赋予至导体线的张力、应变量等的值相匹配的设计成为可能。
芯材的材质没有特别限制,可以根据压电基材的所希望的特性进行选择。从以高水平同时实现弯曲性与强度的观点来看,可以举出天然纤维、合成纤维等纤维(丝)。
芯材的材质没有特别限制。例如可以举出聚酯、聚乙烯、尼龙、丙烯酸、聚丙烯、氯乙烯、聚砜、聚醚、聚氨酯、氟碳、芳族聚酰胺、聚苯硫醚、聚醚亚胺、乙酸酯、人造丝、铜氨(cupra)、棉、麻、丝绸、纸等。
芯材的粗细没有特别限制,可以根据压电基材的所希望的特性进行选择。例如,优选线外径在0.1mm~10mm的范围内。芯材可以为一条纤维(单丝),也可以为由多条纤维构成的复丝。
〔压电体〕
本实施方式中,从提高压电灵敏度及压电输出的稳定性的观点来看,压电体优选具有长条平板形状。作为压电体,通过使用长条平板状压电体,可以增加相对于导体线的密合面,能以电压信号的形式有效地检测通过压电效应产生的电荷。
以下,关于具有长条平板形状的压电体(以下也称为“长条平板状压电体”)的尺寸(厚度、宽度、比(宽度/厚度、长度/宽度)),进一步详细地说明。
长条平板状压电体的厚度优选为0.001mm~0.2mm。长条平板状压电体的厚度为0.001mm以上时,具有能确保足够的强度的倾向。还具有制造适应性也优异的倾向。另一方面,长条平板状压电体的厚度为0.2mm以下时,具有厚度方向的变形的自由度(柔软性)提高的倾向。
长条平板状压电体的宽度优选为0.1mm~30mm。较优选为0.5mm~15mm。长条平板状压电体的宽度为0.1mm以上时,具有能确保足够的强度的倾向。还具有制造适应性(例如在下述的分切工序中的制造适应性)也优异的倾向。另一方面,长条平板状压电体的宽度为30mm以下时,具有变形的自由度(柔软性)提高的倾向。
长条平板状压电体的宽度相对于厚度的比(以下也称为“比〔宽度/厚度〕”)优选为2以上。长条平板状压电体的比〔宽度/厚度〕为2以上时,主面变得明确,因而容易在长条平板状压电体的整个长度方向上朝向一致地形成电极层(例如外部导体)。例如,在主面的至少一个面上容易形成外部导体。
长条平板状压电体的宽度较优选为0.5mm~15mm。长条平板状压电体的宽度为0.5mm以上时,具有强度进一步提高的倾向。进而,可以进一步抑制长条平板状压电体的扭转,所以具有压电灵敏度及其稳定性进一步提高的倾向。另一方面,长条平板状压电体的宽度为15mm以下时,具有长条平板状压电体的变形的自由度(柔软性)进一步提高的倾向。
长条平板状压电体的长度相对于宽度的比(以下也称为比〔长度/宽度〕)优选为10以上。长条平板状压电体的比〔长度/宽度〕为10以上时,变形的自由度(柔软性)进一步提高。
长条平板状压电体的制造方法没有特别限制,可以通过已知的方法来制造。
例如,作为由压电膜制造长条平板状压电体的方法,将原料成型为膜状,得到未拉伸膜,对于所得的未拉伸膜,实施拉伸及结晶化,将所得的压电膜进行分切(将压电膜切成长条状),由此而得到。
另外,可以使用已知的扁丝(Flat yarn)制法来制造压电体。例如,将通过吹胀成型得到的宽度大的膜进行分切,制成宽度小的膜,然后利用加热板拉伸、辊拉伸等进行拉伸及结晶化,由此可以得到压电体。
另外,对通过熔融纺丝(其使用已知的异形截面的模具)而制作的扁平单丝(优选截面形状中宽度相对厚度之比为2以上的扁平单丝)实施拉伸及结晶化,由此也可以得到压电体。
需要说明的是,上述拉伸及结晶化均可以先实施。另外,对于未拉伸膜,可以为依次实施预结晶化、拉伸及结晶化(退火)的方法。拉伸可以为单轴拉伸,也可以为双轴拉伸。双轴拉伸的情况下,优选提高一方(主拉伸方向)的拉伸倍率。
压电膜的制造方法,可以适当参考专利第4934235号公报、国际公开第2010/104196号、国际公开第2013/054918号、国际公开第2013/089148号等已知文献。
(螺旋手性高分子)
压电体包含具有光学活性的螺旋手性高分子。本说明书中,所谓“具有光学活性的螺旋手性高分子”是指分子结构是螺旋结构、具有分子光学活性的高分子。
压电体所含的螺旋手性高分子的含有率从进一步提高压电性的观点来看,优选为压电体整体的80质量%以上。
作为螺旋手性高分子,例如可举出多肽、纤维素衍生物、聚乳酸系高分子、聚环氧丙烷、聚(β-羟基丁酸)等。
作为上述多肽,例如可举出聚(戊二酸γ-苄酯)、聚(戊二酸γ-甲酯)等。
作为上述纤维素衍生物,例如可举出乙酸纤维素、氰基乙基纤维素等。
从提高压电体的压电性的观点考虑,螺旋手性高分子的光学纯度优选为95.00%ee以上,更优选为96.00%ee以上,进一步优选为99.00%ee以上,更进一步优选为99.99%ee以上。期望为100.00%ee。认为通过使螺旋手性高分子的光学纯度在上述范围,从而使得呈现压电性的高分子结晶的堆积性提高,结果压电性提高。
此处,螺旋手性高分子的光学纯度是由下述式算出的值。
光学纯度(%ee)=100×|L体量-D体量|/(L体量+D体量)即,螺旋手性高分子的光学纯度为下述值:
用“螺旋手性高分子的L体的量〔质量%〕与螺旋手性高分子的D体的量〔质量%〕之间的量差(绝对值)”除以(去除以)“螺旋手性高分子的L体的量〔质量%〕与螺旋手性高分子的D体的量〔质量%〕的总量”,将得到的数值乘以(去乘以)“100”而得到的值。
压电体所含的螺旋手性高分子从进一步提高压电性的观点来看,优选由D体或L体形成。
需要说明的是,螺旋手性高分子的L体的量〔质量%〕和螺旋手性高分子的D体的量〔质量%〕使用通过利用了高效液相色谱法(HPLC)的方法而得到的值。关于具体测定的详细内容,在后文叙述。
作为螺旋手性高分子,从提升光学纯度、提高压电性的观点考虑,优选为包含具有由下述式(1)表示的结构单元的主链的高分子。
[化学式2]
作为以由上述式(1)表示的结构单元为主链的高分子,可举出聚乳酸系高分子。
本说明书中,“聚乳酸系高分子”包含下述任一种:(1)聚乳酸(仅包含来源于选自L-乳酸及D-乳酸的单体的结构单元的高分子),(2)L-乳酸或D-乳酸、与可同该L-乳酸或D-乳酸共聚的化合物形成的共聚物,(3)两者的混合物。
聚乳酸系高分子中,优选聚乳酸,较优选L-乳酸的均聚物(PLLA,也简称为“L体”)或D-乳酸的均聚物(PDLA,也简称为“D体”)。
聚乳酸是乳酸通过酯键进行聚合并较长地连接而成的高分子。已知聚乳酸可通过下述方法制造:经由丙交酯的丙交酯法;在溶剂中在减压下加热乳酸,一边除去水一边使其聚合的直接聚合法;等等。
作为聚乳酸,可举出L-乳酸的均聚物、D-乳酸的均聚物、包含L-乳酸及D-乳酸中的至少一方的聚合物的嵌段共聚物、及包含L-乳酸及D-乳酸中的至少一方的聚合物的接枝共聚物。
上述(2)中,作为“可同L-乳酸或D-乳酸共聚的化合物”,可举出羟基乙酸、二甲基羟基乙酸、3-羟基丁酸、4-羟基丁酸、2-羟基丙酸、3-羟基丙酸、2-羟基戊酸、3-羟基戊酸、4-羟基戊酸、5-羟基戊酸、2-羟基己酸、3-羟基己酸、4-羟基己酸、5-羟基己酸、6-羟基己酸、6-羟基甲基己酸、苯乙醇酸等羟基羧酸;乙交酯、β-甲基-δ-戊内酯、γ-戊内酯、ε-己内酯等环状酯;草酸、丙二酸、琥珀酸、戊二酸、己二酸、庚二酸、壬二酸、癸二酸、十一烷二酸、十二烷二酸、对苯二甲酸等多元羧酸及其酐;乙二醇、二乙二醇、三乙二醇、1,2-丙二醇、1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,5-戊二醇、1,6-己二醇、1,9-壬二醇、3-甲基-1,5-戊二醇、新戊二醇、丁二醇、1,4-己烷二甲醇等多元醇;纤维素等多糖类;α-氨基酸等氨基羧酸;等等。
作为“L-乳酸或D-乳酸、与可同该L-乳酸或D-乳酸共聚的化合物形成的共聚物”,可举出具有可生成螺旋结晶的聚乳酸序列的、嵌段共聚物或接枝共聚物。
螺旋手性高分子中的来源于共聚物成分的结构的浓度优选为20mol%以下。
例如,螺旋手性高分子为聚乳酸系高分子时,相对于聚乳酸系高分子中的来源于乳酸的结构和来源于可同乳酸共聚的化合物(共聚物成分)的结构的总摩尔数而言,来源于共聚物成分的结构的浓度优选为20mol%以下。
聚乳酸系高分子可通过例如以下方法进行制造:日本特开昭59-096123号公报、及日本特开平7-033861号公报中记载的将乳酸直接脱水缩合而获得的方法;美国专利2,668,182号及4,057,357号等中记载的使用作为乳酸的环状二聚物的丙交酯进行开环聚合的方法;等等。
此外,为了使利用上述各制造方法得到的聚乳酸系高分子的光学纯度为95.00%ee以上,例如,在利用丙交酯法制造聚乳酸时,优选将已通过晶析操作而使光学纯度提高至95.00%ee以上的光学纯度的丙交酯进行聚合。
-重均分子量-
螺旋手性高分子的重均分子量(Mw)优选为5万~100万。通过使螺旋手性高分子的Mw为5万以上,从而压电体的机械强度提高。上述Mw较优选为10万以上,进一步优选为20万以上。另一方面,通过使螺旋手性高分子的Mw为100万以下,从而利用成型(例如挤出成型、熔融纺丝)得到压电体时的成型性提高。上述Mw较优选为80万以下,进一步优选为30万以下。
另外,从压电体的强度的观点考虑,螺旋手性高分子的分子量分布(Mw/Mn)优选为1.1~5,更优选为1.2~4,进一步优选为1.4~3。
本说明书中,螺旋手性高分子的重均分子量(Mw)及分子量分布(Mw/Mn)是指利用凝胶渗透色谱法(GPC)而测得的值。此处,Mn为螺旋手性高分子的数均分子量。
以下,示出利用GPC测定螺旋手性高分子的Mw及Mw/Mn的方法之一例。
-GPC测定装置-
Waters公司制GPC-100
-柱-
昭和电工公司制,Shodex LF-804
-样品的制备-
于40℃使压电体溶解于溶剂(例如,氯仿)中,准备浓度为1mg/ml的样品溶液。
-测定条件-
在溶剂〔例如,氯仿〕、温度为40℃、流速为1ml/分钟的条件下,将0.1ml的样品溶液导入柱中。
利用差示折射计对经柱分离后的样品溶液中的样品浓度进行测定。
用聚苯乙烯标准试样制作普适校正曲线,算出螺旋手性高分子的重均分子量(Mw)及分子量分布(Mw/Mn)。
关于作为螺旋手性高分子的例子的聚乳酸系高分子,可使用市售的聚乳酸。
作为市售品,例如可举出PURAC公司制的PURASORB(PD,PL)、三井化学公司制的LACEA(H-100,H-400)、NatureWorks LLC公司制的IngeoTM biopolymer等。
使用聚乳酸系高分子作为螺旋手性高分子时,为了使聚乳酸系高分子的重均分子量(Mw)为5万以上,优选利用丙交酯法或直接聚合法来制造聚乳酸系高分子。
压电体可以仅含有一种上述螺旋手性高分子,也可以含有两种以上。
相对于压电体的总量而言,本实施方式的压电体中的螺旋手性高分子的含量(为两种以上时为总含量)优选为80质量%以上。
<稳定剂>
压电体可以含有稳定剂。作为稳定剂,优选在一分子中具有选自由碳二亚胺基、环氧基及异氰酸酯基组成的组中的一种以上官能团、且含有重均分子量为200~60000的稳定剂(以下,也称为“特定稳定剂”)。由此,能够进一步提高耐湿热性。
作为特定稳定剂,例如可以使用国际公开第2013/054918号的第0039~0055段中记载的稳定剂。
作为可用作特定稳定剂的、在一分子中含有碳二亚胺基的化合物(碳二亚胺化合物),可举出单碳二亚胺化合物、聚碳二亚胺化合物、环状碳二亚胺化合物。
作为单碳二亚胺化合物,优选二环己基碳二亚胺、双-2,6-二异丙基苯基碳二亚胺等。
另外,作为聚碳二亚胺化合物,可以使用通过各种方法制造的化合物。可以使用通过现有的聚碳二亚胺的制造方法(例如,美国专利第2941956号说明书、日本特公昭47-33279号公报、J.Org.Chem.28,2069-2075(1963)、Chemical Review 1981,Vol.81No.4、p619-621)制造的化合物。具体而言,也可以使用日本专利4084953号公报中记载的碳二亚胺化合物。
作为聚碳二亚胺化合物,可举出聚(4,4’-二环己基甲烷碳二亚胺)、聚(N,N’-二-2,6-二异丙基苯基碳二亚胺)、聚(1,3,5-三异丙基亚苯基-2,4-碳二亚胺)等。
环状碳二亚胺化合物可基于日本特开2011-256337号公报中记载的方法等进行合成。
作为碳二亚胺化合物,可使用市售品,例如可举出东京化成公司制的B2756(商品名)、Nisshinbo Chemical Inc.制的CARBODILITE LA-1(商品名)、Rhein Chemie公司制的Stabaxol P、Stabaxol P400、Stabaxol I(均为商品名)等。
作为可用作特定稳定剂的、在一分子中含有异氰酸酯基的化合物(异氰酸酯化合物),可举出异氰酸3-(三乙氧基甲硅烷基)丙酯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、间苯二异氰酸酯、对苯二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、2,4’-二苯基甲烷二异氰酸酯、2,2’-二苯基甲烷二异氰酸酯、苯二甲撑二异氰酸酯、氢化苯二甲撑二异氰酸酯、异佛尔酮二异氰酸酯等。
作为可用作特定稳定剂的、在一分子中含有环氧基的化合物(环氧化合物),可举出苯基缩水甘油醚、二乙二醇二缩水甘油醚、双酚A-二缩水甘油醚、氢化双酚A-二缩水甘油醚、苯酚Novolac型环氧树脂、甲酚Novolac型环氧树脂、环氧化聚丁二烯等。
特定稳定剂的重均分子量如上所述,为200~60000,更优选为200~30000,进一步优选为300~18000。若分子量在上述范围内,则特定稳定剂变得更容易移动,能够更有效地发挥耐湿热性改良效果。
特定稳定剂的重均分子量尤其优选为200~900。需要说明的是,重均分子量200~900与数均分子量200~900大致一致。另外,重均分子量为200~900时,存在分子量分布为1.0的情况,在该情况下,也可以将“重均分子量200~900”简称为“分子量200~900”。
压电体含有特定稳定剂时,上述压电体可以仅含有一种特定稳定剂,也可以含有两种以上。
压电体含有特定稳定剂时,相对于100质量份的螺旋手性高分子而言,特定稳定剂的含量优选为0.01质量份~10质量份,更优选为0.01质量份~5质量份,进一步优选为0.1质量份~3质量份,尤其优选为0.5质量份~2质量份。
上述含量为0.01质量份以上时,具有耐湿热性进一步提高的倾向。另外,上述含量为10质量份以下时,具有可进一步抑制透明性的降低的倾向。
作为特定稳定剂的优选方式,可举出并用数均分子量为200~900的稳定剂(B1)和重均分子量为1000~60000的稳定剂(B2)这样的方式,所述稳定剂(B1)具有选自由碳二亚胺基、环氧基及异氰酸酯基组成的组中的一种以上官能团,所述稳定剂(B2)在1分子内具有2个以上选自由碳二亚胺基、环氧基及异氰酸酯基组成的组中的一种以上官能团。需要说明的是,数均分子量为200~900的稳定剂(B1)的重均分子量大致为200~900,稳定剂(B1)的数均分子量与重均分子量成为大致相同的值。
在并用稳定剂(B1)和稳定剂(B2)作为特定稳定剂时,从提高透明性的观点考虑,优选较多地含有稳定剂(B1)。
具体而言,从同时实现透明性和耐湿热性这样的观点考虑,相对于100质量份的稳定剂(B1)而言,稳定剂(B2)优选为10质量份~150质量份的范围,更优选为50质量份~100质量份的范围。
以下示出特定稳定剂的具体例(稳定剂B-1~B-3)。
[化学式3]
以下,针对上述稳定剂B-1~B-3,示出化合物名称、市售品等。
·稳定剂B-1…化合物名称为双-2,6-二异丙基苯基碳二亚胺。重均分子量(在该例子中,仅等同于“分子量”)为363。作为市售品,可举出Rhein Chemie公司制“StabaxolI”、东京化成公司制“B2756”。
·稳定剂B-2…化合物名称为聚(4,4’-二环己基甲烷碳二亚胺)。作为市售品,可举出作为重均分子量约为2000的Nisshinbo Chemical Inc.制“CARBODILITELA-1”。
·稳定剂B-3…化合物名称为聚(1,3,5-三异丙基亚苯基-2,4-碳二亚胺)。作为市售品,可举出作为重均分子量约为3000的Rhein Chemie公司制“Stabaxol P”。另外,可举出作为重均分子量为20000的Rhein Chemie公司制“Stabaxol P400”。
<其他成分>
压电体可根据需要含有其他成分。
作为其他成分,可举出聚偏氟乙烯、聚乙烯树脂、聚苯乙烯树脂等已知的树脂;二氧化硅、羟基磷灰石、蒙脱石等已知的无机填料;酞菁等已知的晶核剂;特定稳定剂以外的稳定剂;等等。作为无机填料及晶核剂,也可举出国际公开第2013/054918号的第0057~0058段中记载的成分。
(取向度F)
如上所述,本实施方式中的压电体的取向度F为0.5以上且小于1.0,优选为0.7以上且小于1.0,更优选为0.8以上且小于1.0。若压电体的取向度F为0.5以上,则在拉伸方向上排列的螺旋手性高分子的分子链(例如聚乳酸分子链)多,结果取向结晶的生成率提高,具有能够呈现更高的压电性的倾向。另一方面,若压电体的取向度F小于1.0,则具有纵向撕裂强度提高的倾向。
(结晶度)
本实施方式中的压电体的结晶度为利用上述的X射线衍射测定(广角X射线衍射测定)而测得的值。压电体的结晶度优选为20%~80%,更优选为25%~70%,进一步优选为30%~60%。
结晶度为20%以上时,具有压电性可维持在高水平的倾向。
另一方面,结晶度为80%以下时,具有压电体的透明性可维持在高水平的倾向。另外,例如利用拉伸来制造用作压电体的原料的压电膜时,不易产生白化、断裂,因此容易制造压电体。另外,例如通过将压电体的原料(例如聚乳酸)熔融纺丝后进行拉伸由此制造时,形成弯曲性高、具有柔软性质的纤维,容易制造压电体。
(透明性(内部雾度))
本实施方式中,对于压电体而言,虽然没有特别要求透明性,但也可以具有透明性。
压电体的透明性可通过测定内部雾度来进行评价。此处,所谓压电体的内部雾度,是指将由压电体的外表面形状所引起的雾度排除在外的雾度。
在要求透明性的情况下,压电体相对于可见光线而言的内部雾度优选为5%以下,从进一步提高透明性及纵向撕裂强度的观点考虑,更优选为2.0%以下,进一步优选为1.0%以下。对于压电体的上述内部雾度的下限值没有特别限定,作为下限值,例如可举出0.01%。
压电体的内部雾度是针对厚度为0.03mm~0.05mm的压电体按照JIS-K7105:1981使用雾度测定机〔(有)东京电色公司制,TC-HIII DPK〕于25℃进行测定时的值。以下示出压电体的内部雾度的测定方法的例子。
首先,准备在2片玻璃板之间仅夹有硅油(信越化学工业株式会社制SHIN-ETSUSILICONE(商标),型号:KF96-100CS)的样品1,测定该样品1的厚度方向的雾度(以下记为雾度(H2))。
接下来,准备在上述2片玻璃板之间无间隙地并列夹有用硅油对表面进行了均匀涂覆的多个压电体而成的样品2,测定该样品2的厚度方向的雾度(以下记为雾度(H3))。
接下来,按照下式求出它们的差,由此得到压电体的内部雾度(H1)。
内部雾度(H1)=雾度(H3)-雾度(H2)
此处,雾度(H2)及雾度(H3)的测定各自在下述测定条件下使用下述装置进行。
测定装置:东京电色公司制,HAZE METER TC-HIIIDPK
试样尺寸:宽度30mm×长度30mm
测定条件:按照JIS-K7105:1981
测定温度:室温(25℃)
〔功能层〕
根据需要,压电基材可以具有功能层。功能层的种类没有特别限制,可以根据用途进行选择。例如优选包含粘接层、硬涂层、抗静电层、防粘连层、保护层及电极层中的至少一种层。压电基材具有功能层,由此变得容易应用到例如压电装置、力传感器、制动器、生物体信息获取装置中。功能层可以仅为一层,也可以为两层以上,具有两层以上的功能层时,可以具有种类不同的功能层。
压电基材具有功能层时,可以是压电体的至少一个主面的一侧设置有功能层的状态。压电体的两个主面设置有功能层时,配置在表面侧的功能层及配置在背面侧的功能层可以是相同的功能层,也可以是不同的功能层。
功能层的膜厚没有特别限定,优选在0.01μm~10μm的范围。上述厚度的上限值较优选为6μm以下,更优选为3μm以下。另外,下限值较优选为0.01μm以上,更优选为0.02μm以上。功能层包含多个功能层时,上述厚度表示多个功能层的厚度的总和。
压电基材优选具有电极层作为功能层。通过压电基材具有电极层,将压电基材用作例如压电装置(压电机织物、压电针织物等)、力传感器、致动器、生物体信息获取装置的构成要素之一时,可以更简易地进行导体线与外部导体的连接。因此,对压电基材施加张力时,变得容易检测与张力对应的电压信号。
作为压电基材具有功能层时的方案,可以举出在压电体的至少一个面配置功能层而成的层叠体的状态。此时,优选包含压电体和1个以上功能层的层叠体的表面层的至少一方是电极层。
压电基材可以在导体线与压电体之间具有粘接层。通过压电体具有粘接层,从而导体线与压电体的相对位置不易发生偏离。因此,变得容易对压电体施加张力,从而容易对压电体所包含的螺旋手性高分子施加剪切应力。因此,能够从导体(优选为信号线导体)中有效地检测与张力成比例的电压输出。另外,通过具有粘接层,从而具有每单位拉伸力的产生电荷量的绝对值进一步增加的倾向。本说明书中“粘接”是包含“粘合”的概念。另外,“粘接层”是包含“粘合层”的概念。
作为形成粘接层的粘接剂的材料,没有特别限制。例如可使用环氧系粘接剂、聚氨酯系粘接剂、乙酸乙烯酯树脂系乳液型粘接剂、(EVA)系乳液型粘接剂、丙烯酸树脂系乳液型粘接剂、苯乙烯·丁二烯橡胶系胶乳型粘接剂、有机硅树脂系粘接剂、α-烯烃(异丁烯-马来酸酐树脂)系粘接剂、氯乙烯树脂系溶剂型粘接剂、橡胶系粘接剂、弹性粘接剂、氯丁二烯橡胶系溶剂型粘接剂、丁腈橡胶系溶剂型粘接剂等、氰基丙烯酸酯系粘接剂等。
对于粘接层而言,弹性模量优选与压电体的弹性模量相同或者高于压电体的弹性模量。此时,对压电基材施加的张力所带来的应变(压电应变)不易在粘接层缓和,变得容易维持应变向压电体的传递效率。因此,将压电基材应用于例如传感器时,传感器的灵敏度被良好地维持。
只要在压电基材与压电体之间不产生空隙、接合强度不降低的范围,则粘接层的厚度越薄越好。通过使接合部位的厚度减小,从而由施加至压电基材的张力所带来的应变不易在粘接剂部分缓和,变得容易维持应变向压电体的传递效率。因此,将压电基材应用于例如传感器时,传感器的灵敏度被良好地维持。
〔外部导体〕
根据需要,压电基材可以具有外部导体。通过压电基材具有外部导体,由此能进行静电屏蔽,可以期待因外部的静电的影响而导致的导体(优选内部导体)的电压变化被抑制的效果。
压电基材具有外部导体时的外部导体优选为接地导体。所谓接地导体,是指检测信号时例如与导体(优选为信号线导体)成对的导体。
对于外部导体的材料没有特别限定,根据截面形状,主要可举出以下的材料。
例如,作为具有矩形截面的接地导体的材料,可使用对圆形截面的铜线进行压制而加工成平板状的铜箔带、或Al箔带等。
例如,作为具有圆形截面的接地导体的材料,可使用铜线、铝线、SUS线、经绝缘被膜被覆的金属线、碳纤维、与碳纤维一体化而得到的树脂纤维、铜箔螺旋地卷绕在纤维上而成的锦丝线。
另外,作为外部导体,可使用以绝缘材料被覆有机导电材料而成的材料。
外部导体的截面形状可应用圆形、椭圆形、矩形、异形等各种截面形状。特别是矩形截面,由于能够增加对于被覆体的密合面,因此能够以电压信号的形式有效地检测利用压电效应而产生的电荷。
为了不与压电基材内部的导体线发生短路,外部导体优选以包覆压电基材的方式进行配置。具体而言,可以选择将铜箔等以螺旋状卷绕压电基材周围的方法、将铜线等制成筒状的编带并在其中包入压电基材的方法等,但并不限定于这些方法。
对于外部导体的配置而言,按照以圆筒状包接压电基材的最小基本构成单元(即,导体线和压电体)的方式配置是优选的方案之一。另外,将压电基材加工成下面描述的由压电针织物或压电机织物形成的片状,在其一面或两面使面状或片状的外部导体靠近进行配置也是优选的方案之一。
〔绝缘体〕
根据需要,压电基材可以具有绝缘体。通过使压电基材具有绝缘体,从而能进行静电屏蔽,从而因外部的静电的影响而导致的导体(优选内部导体)的电压变化被抑制。其结果是,将压电基材用作例如压电装置(压电机织物、压电针织物等)、力传感器、致动器、生物体信息获取装置的构成要素之一时,可以期待能获得针对各种环境变化均稳固、灵敏度不易变动、稳定的输出的效果。
配置绝缘体的位置没有特别限制,可以根据压电基材的用途等进行选择。例如,可以配置在压电基材的导体线与压电体之间,也可以配置在压电基材与外部导体之间,还可以配置在外部导体的外周。
绝缘体例如可以具有长条状的形状,可以为卷绕在导体线、压电基材或外部导体的周围的状态。
绝缘体的材质没有特别限定。例如可举出氯乙烯树脂、聚乙烯树脂、聚丙烯树脂、乙烯·四氟乙烯共聚物(ETFE)、四氟乙烯·六氟丙烯共聚物(FEP)、四氟乙烯树脂(PTFE)、四氟乙烯·全氟丙基乙烯基醚共聚物(PFA)、氟化橡胶、聚酯树脂、聚酰亚胺树脂、聚酰胺树脂、聚对苯二甲酸乙二醇酯树脂(PET)、橡胶(包含弹性体)等。
<压电基材的使用方案>
对于本实施方式的压电基材而言,通过施加拉伸力,与拉伸力成比例的剪切应变被施加至螺旋手性高分子,以电压信号(电荷信号)的形式从导体中被检测。作为对压电基材施加拉伸力的方法,有各种方法:对压电基材直接施加张力的方法;或者如图5及图6所示,可以使用粘合胶带51将压电基材10粘贴于平板52,从而制成带平板的压电基材50,对平板52施加按压力,介由平板52中产生的挠曲变形对压电基材10施加张力,从而检测电压信号。需要说明的是,图5为表示使用粘合胶带51而粘贴有平板52的压电基材10(带平板的压电基材50)的截面简图,图6为对使用粘合胶带51而粘贴有平板52的压电基材10(带平板的压电基材50)进行按压时的截面简图。
作为用于将压电基材10粘贴于平板52而使其机械一体化的方法,可举出各种方法。例如可举出:如图7所示,使用透明胶带、胶带(gummed tape)等粘合胶带51将压电基材10的一部分粘贴于平板52的方法;如图8所示,使用环氧树脂等热固性粘接剂、热熔粘接剂等热塑性粘接剂等粘接剂61将压电基材10的一部分粘贴于平板52的方法;等等。
图7的带平板的压电基材60中,使用粘合胶带51将压电基材10的一部分粘贴于平板52,在平板52上配置有FPC(柔性印刷基板)54,FPC54上配置有与压电基材10导通的铜箔53。另外,带平板的压电基材60具有信号处理电路单元55,所述信号处理电路单元55对向压电基材10施加拉伸力而检测得到的压电信号进行检测并处理。另外,图8的带平板的压电基材70中,代替粘合胶带51而使用粘接剂61将压电基材10的一部分粘贴于平板52,除此之外,与上述的带平板的压电基材60同样。
另外,作为粘贴压电基材的对象,除了上述平板以外,还可以粘贴于由曲面等构成的电子电路的壳体的内侧或外侧等。
另外,如图9所示,可以将压电基材10配置于头盔(或帽子)57的帽带58的一部分,以电压信号的方式检测与咀嚼等下颚运动相伴的帽带的张力变化。由此,以电压信号的形式检测咀嚼强度、咀嚼次数等,能够实现监测。
<压电基材的用途>
本实施方式的压电基材例如可用作传感器用途(落座传感器等力传感器、压力传感器、位移传感器、变形传感器、振动传感器、超声波传感器、生物体传感器、球拍、高尔夫球杆、球棒等各种球类用运动用具的击打时的加速度传感器或撞击传感器等、布制玩具的触摸·冲击传感器、床的监护传感器、玻璃或窗框等的安全传感器等)、致动器用途(座椅搬送用装置等)、能量采集用途(发电衣服、发电鞋等)、健康照顾相关用途(在T恤、运动服、鞋罩、袜子等各种衣物、护具、石膏、尿布、婴幼儿用手推车的座椅、轮椅座椅、医疗用保育器的垫子、鞋、鞋垫、手表等中设置有该传感器的可穿戴传感器等)等。
另外,本实施方式的压电基材配设于各种衣料(衬衫、西服、运动上衣(blazer)、女衬衫、上衣、夹克、甲克衫(blouson)、宽松切克衫(jumper)、背心、连衣裙、裤子、短裤、内衣(长衬裙(slip)、衬裙(petticoat)、女背心(camisole)、胸罩)、袜子、手套、和服、带子料、金线织花的锦缎、冷感面料、领带、手帕、围巾、女用头巾、女用披肩、眼罩)、护具(颈部用护具、肩部用护具、胸部用护具、腹部用护具、腰部用护具、臂用护具、脚部用护具、肘部用护具、膝用护具、手腕用护具、脚踝用护具)、鞋类(胶底鞋、长筒靴、凉鞋、帆布鞋、穆勒鞋、拖鞋、芭蕾舞鞋、功夫鞋)、鞋内底、毛巾、帆布背包、帽子(有檐帽、无檐帽、大盖帽、鸭舌帽、宽边的高呢帽、郁金香帽、遮阳帽、贝雷帽)、帽子帽带、头盔、头盔帽带、头巾、带体、座套、床单、坐垫、靠垫、被褥、被套、毛毯、枕头、枕套、沙发、椅子、书桌、工作台、座椅、座位、马桶座、按摩休闲椅、床、床垫、地毯、篮子、口罩、绷带、绳索、布制玩具、各种网、浴缸、壁材、地板材料、窗户材料、窗框、门、门把手、电脑、鼠标、键盘、打印机、壳体、机器人、乐器、假手、假脚、自行车、滑板、旱冰鞋、橡胶球、羽毛球、手柄、踏板、钓竿、钓鱼用浮漂、钓鱼用绕线轮、钓竿支架、诱饵、开关、保险柜、围栏、ATM、扶手、拨号盘、桥梁、建筑物、构造物、隧道、化学反应容器及其配管、空压机及其配管、油压机及其配管、蒸汽压机及其配管、马达、电磁螺线管、汽油机等各种物品中,用于传感器、致动器、能量采集用途中。
作为配设方法,例如可举出将压电基材缝入对象物、用对象物夹持、用粘接剂固定于对象物等各种方法。
例如,作为下述的压电机织物、压电针织物及压电装置,可适用于这些用途中。
上述用途中,本实施方式的压电基材优选用作传感器用途或致动器用途。
具体而言,本实施方式的压电基材优选搭载于力传感器中进行利用或者搭载于致动器中进行利用。
另外,对于上述的压电基材、压电机织物、压电针织物及压电装置而言,通过将由应力产生的电压施加至场效应晶体管(FET)的栅极/源极之间,从而可实现FET的开关,也可以作为利用应力实现ON-OFF的开关进行使用。
本实施方式的压电基材也可以在除上述用途以外的其他用途中使用。
作为其他用途,可举出用于检测翻身的寝具、用于检测移动的地毯、用于检测移动的鞋内底、用于检测呼吸的胸带、用于检测呼吸的口罩、用于检测应变(straining)的腕带、用于检测应变的足带、用于检测落座的落座座椅、能够判别接触状态的布制玩具、布制玩具型社交机器人等。在能够判别接触状态的布制玩具、布制玩具型社交型机器人等中,例如可通过在布制玩具等中局部配置的接触传感器来检测压力变化,并判别人对布制玩具等进行了“抚摸”还是“敲打”还是“拉扯”等各种动作。
另外,本实施方式的压电基材特别适合于例如车载用途;利用振动/声音感应来检测汽车方向盘把持的用途;基于利用振动/声音感应的共振频谱的车载机器操作系统用途;车载显示器的触摸传感器用途;振动体用途;检测被汽车车门及汽车车窗夹住的传感器用途;车体振动传感器用途等。
在本实施方式的压电基材上可接合已知的引出电极。作为引出电极,可举出连接件等电极部件、压接端子等。电极部件可以通过软钎焊(soldering)等钎焊(brazing)、导电性接合剂等与压电基材接合。
〔压电机织物〕
本实施方式的压电机织物具有上述压电基材。
本说明书中,所谓“压电机织物”,是指因外部刺激(例如物理力)而呈现出压电效应的机织物。所谓“机织物”,是指通过使纱交错而形成机织物结构体并加工成片或膜形状的所有物质。
本实施方式的压电机织物具有压电基材的方案没有特别限制。例如,构成压电机织物的经纱与纬纱的至少一方的至少一部分是压电基材,或者可以包含压电基材。
对压电机织物而言,在经纱与纬纱的两方包含压电基材的方案的情况下,从提高压电灵敏度及压电输出的稳定性的观点考虑,优选的是,经纱所含的压电体的卷绕方向与纬纱所含的压电体的卷绕方向彼此不同,并且,经纱所含的螺旋手性高分子的手性、与纬纱所含的螺旋手性高分子的手性相同。
或者,优选的是,经纱所含的压电体的卷绕方向与纬纱所含的压电体的卷绕方向相同,并且,经纱所含的螺旋手性高分子的手性、与纬纱所含的螺旋手性高分子的手性彼此不同。
构成压电机织物的纱的材质没有特别限制。例如,可以为包含高分子的纱。作为高分子,可举出聚酯、聚烯烃等通常的高分子,另外,也可举出上述的螺旋手性高分子等螺旋手性高分子。
另外,包含高分子的纱的概念中还包括本实施方式的压电基材。
本实施方式的压电机织物中的机织物结构体的方案没有特别限制。可举出平纹组织(plain weave)、斜纹组织(twill weave)、缎纹组织(satin weave)等基本结构体。
本实施方式的压电机织物可以为具有三维结构的机织物。本说明书中,所谓“具有三维结构的机织物”,是指除了二维结构以外还在机织物的厚度方向上也编入纱(经纱、纬纱),由此以立体方式加工得到的机织物。具有三维结构的机织物的例子,例如记载于日本特表2001-513855号公报中。
压电机织物可以适用于至少一部分要求压电性的所有用途。作为压电机织物的用途的具体例,可举出各种衣料(衬衫、西服、运动上衣、女衬衫、上衣、夹克、甲克衫、宽松切克衫、背心、连衣裙、裤子、裙子、短裤、内衣(长衬裙、衬裙、女背心、胸罩)、袜子、手套、和服、带子料、金线织花的锦缎、冷感面料、领带、手帕、围巾、女用头巾、女用披肩、眼罩)、桌布、鞋类(胶底鞋、长筒靴、凉鞋、帆布鞋、穆勒鞋、拖鞋、芭蕾舞鞋、功夫鞋)、毛巾、袋子、包(大手提包、挎包、手提包、小型手提包、购物袋、环保袋、帆布背包、小背包、运动包、波士顿包、腰包、腰袋、小手提包、女用无带提包、小化妆箱、饰品袋、妈妈袋、派对包、和服包)、袋·盒(化妆袋、面纸盒、眼镜盒、笔盒、书皮、游戏袋、钥匙盒、证件套)、钱包、帽子(有檐帽、无檐帽、大盖帽、鸭舌帽、宽边的高呢帽、郁金香帽、遮阳帽、贝雷帽)、头盔、头巾、带体、围裙、缎带、胸衣、胸针、窗帘、壁布、座套、床单、被褥、被套、毛毯、枕头、枕套、沙发、床、篮子、各种包装材料、室内装饰品、汽车用品、人造花、口罩、绷带、绳索、各种网、鱼网、水泥增强材料、丝网印刷用网格、各种过滤器(汽车用、家电用)、各种网格、褥单(农业用,休闲垫)、土木工程用机织物、建筑工程用机织物、过滤布等。
需要说明的是,可由本实施方式的压电机织物来构成上述具体例的整体,也可以由本实施方式的压电机织物仅构成要求压电性的部位。
作为本实施方式的压电机织物的用途,特别合适的是穿在身上的可穿戴制品。
〔压电针织物〕
本实施方式的压电针织物具有上述压电基材。
本说明书中,所谓“压电针织物”,是指在外部刺激(例如物理力)下呈现压电效应的针织物。所谓“针织物”,是指包含用纱边制作环边编织而形成的所有针织物结构体。
本实施方式的压电针织物具有压电基材的方案没有特别限制。例如,构成压电针织物的经纱与纬纱的至少一方的至少一部分可以是压电基材或者可以包含压电基材。
构成压电针织物的纱的材质没有特别限制。作为纱,可以举出例如包括高分子的纱。作为高分子,可以举出聚酯、聚烯烃等通常的高分子,另外,也可以举出上述螺旋手性高分子等螺旋手性高分子。
另外,在包含高分子的纱的概念中也包含本实施方式的压电基材。
本实施方式的压电针织物中的针织物结构体的方案没有特别限制。例如可举出纬编(横编)、经编(纵编)等。纬编中,有平针编织(plain knitting)、罗纹编织(ribknitting)、双面编织(double knitting)、双反面针织(purl knitting)、圆形针织(circular knitting)等。另外,经编中,可举出特里科经编织(tricot knitting)、阿特拉斯针织(atlas knitting)、菱形针织(diamond knitting)、米兰尼斯针织(milaneseknitting)等。
本实施方式的压电针织物可以为具有三维结构的针织物。本说明书中,所谓“具有三维结构的针织物”,是指除了二维结构以外还在针织物的厚度方向上也编入纱,由此以立体方式加工得到的针织物。
压电针织物可以适用于至少一部分要求压电性的所有用途。作为压电针织物的用途的具体例,可以举出作为压电机织物的用途的具体例所列举的用途。
需要说明的是,可以由本实施方式的压电针织物构成上述具体例的整体,也可以仅要求压电性的部位由本实施方式的压电针织物构成。
作为本实施方式的压电针织物的用途,穿戴在身体上的可穿戴制品特别适合。
〔压电装置〕
本实施方式的压电装置具有上述实施方式的压电基材。
本说明书中,所谓“压电装置”,是指在外部刺激(例如物理力)下呈现压电效应的所有装置。
压电装置具有压电基材的方案没有特别限制。例如,可以具有压电基材作为上述压电机织物或压电针织物。
压电装置可以进一步具有外部导体。
压电装置具有外部导体的方案没有特别限制。例如,可以为具有具备压电基材的压电机织物或压电针织物和外部导体的物质,所述外部导体配置在与压电机织物或压电针织物的主面相对的位置。
压电装置具有外部导体时,优选外部导体为接地导体。接地导体的材质没有特别限制,例如可以举出作为上述压电基材所具有的外部导体的材质所列举的材质。
作为压电装置所具有的外部导体,也可以使用通常使用的电极材料。作为电极材料,可举出金属(Al等),除此之外,例如还可举出Ag、Au、Cu、Ag-Pd合金、Ag糊剂、Cu糊剂、炭黑、ITO(结晶化ITO及非晶ITO)、ZnO、IGZO、IZO(注册商标)、导电性聚合物(聚噻吩,PEDOT)、Ag纳米线、碳纳米管、石墨烯等。压电装置所具有的外部导体的材质可以与用于压电基材的外部导体相同,也可以与用于压电基材的外部导体不同。
压电装置所具有的外部导体的形状没有特别限制,可以根据目的进行选择。
本实施方式的压电装置可以具有具备压电基材的压电机织物或压电针织物、配置在与压电机织物或压电针织物的主面相对的位置的外部导体、和配置在压电机织物或压电针织物与外部导体之间的绝缘体。通过使压电装置具有绝缘体,由此形成容易抑制压电基材所含的导体线与外部导体间的电短路的发生的结构。
压电装置所具有的绝缘体的材质没有特别限制。例如可以举出作为上述压电基材所具有的绝缘体的材质所列举的材质。
压电装置所具有的绝缘体的形状没有特别限制,可以根据目的进行选择。
压电装置可以应用于至少一部分要求压电性的所有用途。作为压电装置的用途的具体例,可以举出作为压电机织物的用途的具体例所列举的用途。
需要说明的是,可以由本实施方式的压电装置构成上述具体例的整体,也可以仅要求压电性的部位由本实施方式的压电装置构成。
作为本实施方式的压电装置的用途,穿戴在身上的可穿戴制品特别适合。
〔力传感器〕
本实施方式的力传感器具有上述实施方式的压电基材。以下,关于具有本实施方式的压电基材的力传感器的具体方案,参照附图进行说明。
图4是力传感器的截面简图。力传感器40具有作为第2绝缘体的圆柱形状的橡胶系热收缩管(以下也简称为“收缩管”)44、配置于收缩管44的内部的压电基材10D、和配置于收缩管44的两端部的一对压接端子(引出电极)46。一对压接端子46包含主体部46a和压接部46b,在中央部具有贯通孔46c。压电基材10D具有相当于内部导体的导体线12C、在导体线12C的周围在一个方向上卷绕成螺旋状的压电体14D、和沿压电体14D的外周面在一个方向上卷绕成螺旋状的外部导体42(接地导体)。
压电基材10D中,导体线12C的一端(图4的右端)延伸至收缩管44的外侧,在压接部46b被压接,与压接端子46电连接。另一方面,外部导体42从导体线12C的一端侧向另一端侧卷绕后,越过导体线12C的另一端(图4的左端)而延伸,该延伸部分在收缩管44内形成应力缓和部42a。
外部导体42在经过该应力缓和部42a后,延伸至收缩管44的更外侧(图4的左端),在压接部46b被压接,与压接端子46电连接。
如图4所示,应力缓和部42a由松弛状态的外部导体42形成。对力传感器40施加张力(应力)时,应力缓和部42a中松弛的部分抻长,由此抑制压电体14D被负载过度的力。
压电体14D具有长条平板形状,在两面上设置有铝蒸镀膜(未图示)作为功能层。需要说明的是,一对压接端子46与对力传感器40的输出信号进行处理的外部电路等(未图示)连接。
图4所示的实施方式中,配置有松弛的外部导体42作为应力缓和部42a,但本发明的实施方式并不限定于此,可以利用粘接、打结等方法等,以使张力传递的方式,将线状的应力缓和部配置于压电基材10D的至少一方的端部或两端部,由此向力传感器40赋予缓和应力的功能。
上述情况下,线状的应力缓和部不存在电连接功能,但对于电连接功能而言,可以与应力缓和部相独立地,将导体线及外部导体从压电基材的端部与同轴电缆等连接,由此检测应力、应变的电压信号。
上述情况下,对于应力缓和部的材料及形态没有特别限定,例如可举出由天然橡胶、硅橡胶、聚氨酯橡胶等具有伸缩性的弹性材料形成的纱、绳、管等线状物;由磷青铜等金属材料、线性聚合物等形成的弹簧;等等。
通过将应力缓和部和电连接部各自独立地配置于不同的部位,从而由电连接部的最大伸长量所导致的对应力缓和部的应变量的限制将不存在,能够使作为张力传感器的最大应变量增大。
需要说明的是,上述图9所示的在头盔(或帽子)57的帽带58的一部分配置有压电基材10的例子中,帽带58作为应力缓和部发挥功能。
以下,对本实施方式的力传感器40的作用进行说明。
对力传感器40施加张力(应力)时,压电基材10D被施加了张力,压电基材10D的压电体14D所含的螺旋手性高分子被施加了剪切力,通过该剪切力,从而在压电基材10D的径向上产生螺旋手性高分子的极化。极化方向为压电基材10D的径向。由此,产生与张力成比例的电荷(电场),产生的电荷以电压信号(电荷信号)的形式被检测。需要说明的是,电压信号在与压接端子46连接的外部电路等(未图示)中被检测。
另外,对于本实施方式的力传感器40而言,由于具有形成了与同轴电缆所具有的内部构造为同一构造的压电基材10D,因此可形成电磁屏蔽性高、耐噪音的构造。此外,由于构造简单,因此可作为例如可穿戴传感器而装在身体的一部分上进行使用。
力传感器并不限定于将对压电基材施加张力时产生的电荷(电场)以电压信号的形式取出的结构,例如,还可以为将对压电基材施加扭转力时产生的电荷(电场)以电压信号的形式取出的结构。
〔生物体信息获取装置〕
本实施方式的生物体信息获取装置包含上述实施方式的压电基材。
作为本实施方式的压电基材、本实施方式的压电机织物及本实施方式的压电针织物的用途,也优选生物体信息获取装置。
即,本实施方式的生物体信息获取装置包含本实施方式的压电基材、本实施方式的压电机织物或本实施方式的压电针织物。
本实施方式的生物体信息获取装置是用于通过利用上述压电基材、上述压电机织物或上述压电针织物检测受试者或受试动物(以下也将他们总称为“受试体”)的生物体信号从而获得受试体的生物体信息的装置。
作为此处所谓的生物体信号,可举出脉搏信号(心率信号)、呼吸信号、体动信号、心冲击、生物体震颤等。
所谓生物体震颤,是指身体部位(手指、手、前臂、上肢等)的有规律的无意识运动。
另外,上述心冲击的检测也包括由身体的心功能所带来的力效应的检测。
即,当心脏将血液泵送至大动脉及肺动脉时,身体在与血流相反的方向上受到反作用力。该反作用力的大小及方向随心脏的功能性阶段而发生变化。该反作用力可通过感应身体外侧的心冲击来检测。
上述生物体信息获取装置配设于各种衣料(衬衫、西服、运动上衣、女衬衫、上衣、夹克、甲克衫、宽松切克衫、背心、连衣裙、裤子、短裤、内衣(长衬裙、衬裙、女背心、胸罩)、袜子、手套、和服、带子料、金线织花的锦缎、冷感面料、领带、手帕、围巾、女用头巾、女用披肩、眼罩)、护具(颈部用护具、肩部用护具、胸部用护具、腹部用护具、腰部用护具、臂用护具、脚部用护具、肘部用护具、膝用护具、手腕用护具、脚踝用护具)、鞋类(胶底鞋、长筒靴、凉鞋、帆布鞋、穆勒鞋、拖鞋、芭蕾舞鞋、功夫鞋)、鞋内底、毛巾、帆布背包、帽子(有檐帽、无檐帽、大盖帽、鸭舌帽、宽边的高呢帽、郁金香帽、遮阳帽、贝雷帽)、头盔、头盔帽带、头巾、带体、座套、床单、坐垫、靠垫、被褥、被套、毛毯、枕头、枕套、沙发、椅子、书桌、工作台、座椅、座位、马桶座、按摩休闲椅、床、床垫、地毯、篮子、口罩、绷带、绳索、各种网、浴缸、地板材料、壁材、电脑、鼠标等各种物品中进行使用。
作为配设生物体信息获取装置的物品,优选为鞋类、鞋内底、床单、坐垫、靠垫、被褥、被套、枕头、枕套、沙发、椅子、座椅、座位、马桶座、床、地毯、浴缸、地板材料等承受受试体的体重的物品。更具体而言,婴幼儿用手推车的座椅、座位部、车轮、用于防止婴幼儿跌落的制动器等;轮椅座椅、座位部等;医疗用保育器的垫子;等等。
以下,对生物体信息获取装置的动作的一例进行说明。
生物体信息获取装置配设于例如床上或椅子的座面上等。在该生物体信息获取装置上,受试体横卧、落座或起立。在该状态下,通过从受试体发出的生物体信号(体动、周期性的振动(脉搏、呼吸等)、因人的“可爱”、“害怕”等感性而变化的心率数等),从而对生物体信息获取装置的压电基材、压电机织物或压电针织物赋予张力时,在这些压电基材、压电机织物、或压电针织物所含的螺旋手性高分子中产生极化,产生上述与张力成比例的电位。该电位随着受试体发出的生物体信号而经时变化。例如,当从受试体发出的生物体信号为脉搏、呼吸等周期性振动时,在压电基材、压电机织物或压电针织物中产生的电位也周期性地变化。
通过测定模块,以电压信号的方式,取得与向上述压电基材、压电机织物或压电针织物赋予张力相伴而产生的电位的经时变化。取得的电位的经时变化(压电信号)为多个生物体信号(脉搏信号(心率信号)、呼吸信号、体动信号)的合成波。通过傅里叶变换将该合成波按各频率进行分离,从而生成分离信号。通过对生成的各分离信号进行傅里叶逆变换,分别获得对应于各分离信号的生物体信号。
实施例
以下,通过实施例更具体地对本发明进行说明,本发明只要不超出其主旨即可,并不限定于以下的实施例。
<压电体的制作>
在作为螺旋手性高分子的NatureWorks LLC公司制聚乳酸(商品名:IngeoTMbiopolymer,商品名称:4032D)100质量份中,添加1.0质量份稳定剂〔Rhein Chemie公司制Stabaxol P400(10质量份)、Rhein Chemie公司制Stabaxol I(70质量份)、及NisshinboChemical Inc.制CARBODILITE LA-1(20质量份)的混合物〕,并进行干混,制作原料。
将制作的原料放入挤出成型机进料斗中,一边加热至210℃一边从T模挤出,使其与50℃的浇铸辊接触0.3分钟,制成厚度为150μm的预结晶化片材(预结晶化工序)。对上述预结晶化片材的结晶度进行测定,结果为6%。
一边将得到的预结晶化片材加热至70℃,一边以辊对辊方式以10m/分钟的拉伸速度开始拉伸,沿MD方向单轴拉伸至3.5倍(拉伸工序)。得到的膜的厚度为49.2μm。
然后,以辊对辊方式,使上述单轴拉伸膜在已加热至145℃的辊上接触15秒而进行退火处理,然后进行骤冷,制作压电膜(退火处理工序)。
然后,使用分切加工机,以分切的方向与压电膜的拉伸方向大致平行的方式,对压电膜进行分切。由此,得到宽度为0.39mm、厚度为50μm的带状压电体(分切带)。需要说明的是,得到的压电体的截面形状为矩形。
(3)压电体的物性测定
关于以上述方式得到的带状压电体,进行以下的物性测定。将结果示于表1。
测定如下进行:使用广角X射线衍射装置(Rigaku公司制RINT2550,附带装置:旋转试样台,X射线源:CuKα,输出:40kV370mA,检测器:闪烁计数器),将样品(压电体)固定于支持台上,对结晶面峰[(110)面/(200)面]的方位角分布强度进行测定。
在得到的方位角分布曲线(X射线衍射图)中,由结晶度及峰的半峰宽(α)并利用下式算出聚乳酸的取向度F(C轴取向度),进行评价。其结果是,结晶度为45%,取向度F为0.97。
取向度(F)=(180°-α)/180°
(α为来自取向的峰的半峰宽)
〔实施例1〕
<压电基材的制作>
利用以下所示的方法制作在与图1所示的压电基材10相同结构的压电基材上进一步具有铜箔带作为外部导体(接地导体)的压电基材。
作为导体线的芯材,准备Gosen株式会社制的聚酯单丝(SUPER HONTERON GP,线外径0.128mm,长度250mm)。以芯材不露出的方式将作为内部导体的压制铜箔(宽度0.3mm×厚度0.018mm)以S卷绕并以螺旋状卷绕(层数为1)在该芯材的周围,制作导体线。需要说明的是,所谓“S卷绕”,是指从导体线的轴向的一端(图1的情况为右端侧)观察时,带状压电体以左旋(逆时针)从导体线的近前侧向远深侧卷绕。在导体线的两端铆接设置压接端子作为电连接部及机械连接部。
使用纯弯曲试验机(Kato Tech Co.,Ltd.制、KES-FB2)测定制作的导体线的每单位长度的弯曲刚性B的值。测定以纤维的测定长度d=0.12mm来进行。测定的结果是每单位长度的弯曲刚性B的值为10.2×10-4[N·m2/m]。
然后,将上述得到的压电体以左旋并以导体线的表面不露出的方式以螺旋状卷绕在导体线的周围,得到压电基材。压电体卷绕时,朝向相对于导体线的轴向为大致45°的方向(螺旋角度45°)。
然后,作为外部导体,准备宽度0.32mm、厚度0.018mm的压制铜箔带。将该铜箔带按照与压电体相同的方法以压电基材的表面不露出的方式没有间隙地以S卷绕的方式卷绕在压电基材的周围。
<评价>
使用得到的实施例1的压电基材,测定对压电基材施加拉伸力时产生的电荷量(产生电荷量),从产生电荷量算出每单位拉伸力的产生电荷量。将结果示于表1。
(每单位拉伸力的产生电荷量)
将实施例1的压电基材作为样品夹持在将夹头间距离设为200mm的拉伸试验机(A&D Company株式会社制,Tensilon RTG1250)上。
然后,在1.5N~4.5N的应力范围以0.2Hz周期性地对样品反复施加三角波形的张力,用静电计(Keithley公司制617)对此时在样品的正反面产生的电荷量进行测定。将测得的产生电荷量Q[C]作为Y轴,将样品的拉伸力F[N]作为X轴,根据此时的散点图的相关直线的斜率,算出每单位拉伸力的产生电荷量。
(形状的评价)
使用Keyence公司制的实体显微镜VHX5000从垂直于压电基材的导体线的轴向的方向观察压电基材,考察其形状是否满足式(b):Dmax<tpmin的条件。满足该条件时作为“TRUE”、不满足时作为“FALSE”,将结果示于表1。
(形状保持性的评价)
为了评价压电基材对塑性变形的耐性(形状保持性),将压电基材在直径1cm的包含酚醛树脂(bakelite)的圆柱上卷绕2周,卷绕后将圆柱拔出,通过目视观察,对是否保持圆形的形状进行评价。
对于压电基材,将除去圆柱后保持圆形形状、几乎没有经时变化的情况评价为形状保持性“无”,对于因弹性发生回弹而未保持圆形形状、并恢复至初始状态的情况而言,被认为对塑性变形的耐性高,评价为形状保持性“有”。将结果示于表1。
(导通不良率(conduction failure rate)的评价)
准备20条将实施例1的压电基材切成长度为20cm而成的试样。使用LCR计(HP4284A)测定导体线与外部导体的导通。测定中,将测定端子连接在导体线和外部导体,测定导体间的电阻值,以电阻值小于1MΩ的情况作为短路,检查有无短路,以发生短路的情况作为B,以未发生短路的情况作为A。将20条试样内发生短路的情况(B)的比例作为导通不良率记载于表1。
〔实施例2〕
将芯材的粗细设定为0.205mm,将压电体的宽度设定为0.67mm,除此以外,进行与实施例1相同的操作。将结果示于表1。
〔实施例3〕
将芯材的粗细设定为0.285mm,将压电体的宽度设定为0.67mm,将外部导体的宽度设定为0.6mm,除此以外,进行与实施例1相同的操作。将结果示于表1。
〔实施例4〕
除了将芯材变更为氟碳制的纱(东丽(株)制的TOYOFLON SUPER HARD L,线外径0.205mm,长度200mm)以外,进行与实施例2相同的操作。将结果示于表1。
〔实施例5〕
将芯材的粗细设定为0.285mm,将外部导体的宽度设定为0.6mm,除此以外,进行与实施例4相同的操作。将结果示于表1。
〔实施例6〕
除了将芯材变更为尼龙制的纱(东丽(株)制的银鳞,线外径0.205mm,长度200mm)以外,进行与实施例2相同的操作。将结果示于表1。
〔实施例7〕
将芯材的粗细设定为0.285mm,将外部导体的宽度设定为0.6mm,除此以外,进行与实施例6相同的操作。将结果示于表1。
〔实施例8〕
将芯材变更为形状保持性高的聚乙烯制的纱(三井化学(株)制的Tekno RoteW1000,线外径0.36mm,长度200mm),将压电体的宽度设定为0.67mm,将卷绕内部导体和外部导体的方向变更为Z方向,将内部导体的层数变更为2,将外部导体的宽度设定为0.3mm,除此以外,进行与实施例1相同的操作。将结果示于表1。
〔实施例9〕
将芯材变更为由对位系芳纶树脂(para-aramid resin)的长纱形成的复丝(帝人株式会社制的Technora,纤度220dtex×1条,无捻,长度200mm),将粗细设定为0.2mm,将压电体的宽度设定为0.67mm,将卷绕内部导体和外部导体的方向变更为Z方向,将内部导体的层数变更为2,将外部导体的宽度设定为0.3mm,除此以外,进行与实施例1相同的操作。将结果示于表1。
〔实施例10〕
将芯材变更为由聚酯树脂的长纱形成的复丝(Gosen株式会社制的#50支×三捻,长度200mm),将粗细设定为0.3mm,将压电体的宽度设定为0.67mm,将卷绕内部导体和外部导体的方向变更为Z方向,将内部导体的层数变更为2,将外部导体的宽度设定为0.3mm,除此以外,进行与实施例1相同的操作。将结果示于表1。
〔实施例11〕
将芯材变更为由聚苯硫醚(PPS)树脂的长纱形成的复丝((株)KB Seiren制的纤度110dtex×两捻,长度200mm),将粗细设定为0.3mm,将压电体的宽度设定为0.67mm,将卷绕内部导体和外部导体的方向变更为Z方向,将内部导体的层数变更为2,将外部导体的宽度设定为0.3mm,除此以外,进行与实施例1相同的操作。将结果示于表1。
〔实施例12〕
将芯材变更为由PPS树脂的长纱形成的复丝((株)KB Seiren制,纤度70dtex×三捻,长度200mm),将粗细设定为0.3mm,将压电体的宽度设定为0.67mm,将卷绕内部导体和外部导体的方向变更为Z方向,将内部导体的层数变更为2,将外部导体的宽度设定为0.3mm,除此以外,进行与实施例1相同的操作。将结果示于表1。
〔比较例1〕
将芯材变更为由间位系芳纶树脂的短纤维纱(Spun yarn)形成的复丝(帝人(株)制的Conex,40支两捻,长度200mm),将粗细设定为0.36mm,将压电体的宽度设定为0.67mm,将卷绕内部导体和外部导体的方向变更为Z方向,将内部导体的层数变更为2,将外部导体的宽度设定为0.3mm,除此以外,进行与实施例1相同的操作。将结果示于表1。
使用纯弯曲试验机(Kato Tech Co.,Ltd.制,KES-FB2)测定制作的导体线的每单位长度的弯曲刚性B的值。测定以纤维的测定长度d=0.3mm来进行。测定的结果是每单位长度的弯曲刚性B的值为3.27×10-4[N·m2/m]。
[表1]
如表1所示,对于满足式(b)的条件的实施例的压电基材而言,每单位拉伸力的产生电荷量大,压电灵敏度良好。另外,导通不良率为0%。另一方面,对于不满足式(b)的条件的比较例1的压电基材而言,内部导体与外部导体部之间局部存在导通部位,所以因张力而产生的电荷在内部导体与外部导体间发生短路,无法测定每单位拉伸力的产生电荷量,导通不良率也比实施例高。
日本专利申请第2017-083942号公开的所有内容作为参考被并入本说明书中。
本说明书中记载的全部文献、专利申请及技术标准,与各文献、专利申请及技术标准具体且分别地作为参考被并入的情况相同程度地被引用而并入本说明书中。

Claims (20)

1.一种压电基材,其具有导体线和压电体,所述导体线具有芯材和配置于所述芯材周围的导体,
所述压电体是沿着所述导体线的轴向在一个方向上以螺旋状卷绕在所述导体线的周围的长条状压电体,
所述压电体包含具有光学活性的螺旋手性高分子,
所述压电体的长度方向与所述压电体所含的螺旋手性高分子的主取向方向大致平行,
由X射线衍射测定根据式(a):取向度F=(180°-α)/180°求得的所述压电体的取向度F在0.5以上且小于1.0的范围,式中的α表示来自取向的峰的半峰宽,
从垂直于所述导体线的轴向的方向观察所述导体线时,从被分割成多个的区域中选择的区域A与位于区域A的相邻位置的区域B的高度之差的最大值ΔDmax与所述压电体的最小厚度tpmin满足式(b):ΔDmax<tpmin的条件。
2.如权利要求1所述的压电基材,其中,所述导体线具有所述芯材和沿着所述芯材的轴向在一个方向上以螺旋状卷绕在所述芯材的周围的所述导体。
3.如权利要求1或2所述的压电基材,其中,所述芯材是单丝。
4.如权利要求1~3中任一项所述的压电基材,其中,所述导体是内部导体,所述压电体沿着所述内部导体的外周面在一个方向上以螺旋状卷绕。
5.如权利要求1~4中任一项所述的压电基材,其中,所述压电基材还具有绝缘体,所述绝缘体被配置于所述压电基材的外周。
6.如权利要求1~4中任一项所述的压电基材,其中,所述压电基材还具有绝缘体,所述绝缘体被配置于所述导体线与所述压电体之间。
7.如权利要求1~6中任一项所述的压电基材,其中,所述压电体以相对于所述导体线的轴向保持15°~75°的角度的方式被卷绕。
8.如权利要求1~7中任一项所述的压电基材,其中,所述压电体具有长条平板形状。
9.如权利要求8所述的压电基材,其中,所述具有长条平板形状的压电体的厚度为0.001mm~0.2mm,宽度为0.1mm~30mm,所述宽度相对于所述厚度的比为2以上。
10.如权利要求1~8中任一项所述的压电基材,其中,所述压电体相对于所述螺旋手性高分子100质量份含有0.01质量份~10质量份稳定剂,所述稳定剂具有选自由碳二亚胺基、环氧基及异氰酸酯基组成的组中的至少1种官能团、且重均分子量为200~60000。
11.如权利要求1~10中任一项所述的压电基材,其中,所述压电基材还具有功能层。
12.如权利要求11所述的压电基材,其中,所述功能层是选自由易粘接层、硬涂层、抗静电层、防粘连层、保护层及电极层组成的组中的至少1种。
13.如权利要求11或12所述的压电基材,其中,所述功能层包含电极层。
14.如权利要求13所述的压电基材,其中,所述压电体与所述功能层为层叠体的状态,所述层叠体的表面层的至少一方为所述电极层。
15.如权利要求1~14中任一项所述的压电基材,其中,所述导体线与所述压电体之间还具有粘接层。
16.如权利要求1~15中任一项所述的压电基材,其中,所述压电体所含的所述螺旋手性高分子是包含具有由下述式(1)表示的结构单元的主链的聚乳酸系高分子,
[化学式1]
17.如权利要求1~16中任一项所述的压电基材,其中,所述压电基材的外周还具有外部导体。
18.如权利要求17所述的压电基材,其中,所述外部导体的外周还具有绝缘体。
19.一种力传感器,其具有权利要求1~18中任一项所述的压电基材。
20.一种致动器,其具有权利要求1~18中任一项所述的压电基材。
CN201880024682.6A 2017-04-20 2018-04-20 压电基材、力传感器及致动器 Active CN110506341B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-083942 2017-04-20
JP2017083942 2017-04-20
PCT/JP2018/016380 WO2018194180A1 (ja) 2017-04-20 2018-04-20 圧電基材、力センサー及びアクチュエータ

Publications (2)

Publication Number Publication Date
CN110506341A true CN110506341A (zh) 2019-11-26
CN110506341B CN110506341B (zh) 2023-01-17

Family

ID=63855794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880024682.6A Active CN110506341B (zh) 2017-04-20 2018-04-20 压电基材、力传感器及致动器

Country Status (7)

Country Link
US (1) US11367827B2 (zh)
EP (1) EP3614445B1 (zh)
JP (1) JP6829760B2 (zh)
KR (1) KR102323954B1 (zh)
CN (1) CN110506341B (zh)
TW (1) TWI745584B (zh)
WO (1) WO2018194180A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011775B2 (ja) * 2017-12-18 2022-01-27 日立金属株式会社 感圧センサの製造方法、及び感圧センサの製造装置
EP3650956A1 (fr) * 2018-11-07 2020-05-13 Tissot S.A. Procede de diffusion d'un signal acoustique
KR102302756B1 (ko) * 2019-06-27 2021-09-15 한국원자력연구원 압전 액추에이터

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568851A (en) * 1984-09-11 1986-02-04 Raychem Corporation Piezoelectric coaxial cable having a helical inner conductor
CN102349170A (zh) * 2009-03-13 2012-02-08 三井化学株式会社 高分子压电材料及其制造方法以及压电元件
CN103492832A (zh) * 2011-04-08 2014-01-01 株式会社村田制作所 位移传感器、位移检测装置以及操作设备
JP2014093487A (ja) * 2012-11-06 2014-05-19 Mitsui Chemicals Inc 高分子圧電材料、およびその製造方法
JP2015201609A (ja) * 2014-04-04 2015-11-12 三井化学株式会社 高分子圧電材料
WO2016175321A1 (ja) * 2015-04-30 2016-11-03 帝人株式会社 圧電素子およびそれを用いたデバイス
CN106537623A (zh) * 2014-04-16 2017-03-22 帝人株式会社 使用了纤维的将电信号作为输出或输入的换能器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668182A (en) 1950-07-13 1954-02-02 William T Miller Polyunsaturated fluoroolefins
US2941956A (en) 1956-08-15 1960-06-21 Socony Mobil Oil Co Inc Regeneration of contact material
JPS4733279B1 (zh) 1968-12-20 1972-08-24
JPS4934235B1 (zh) 1969-12-26 1974-09-12
FR2145099A5 (zh) * 1971-07-08 1973-02-16 Inst Francais Du Petrole
US4057357A (en) 1975-11-24 1977-11-08 Mueller Co. Chipless shell cutter for large diameter plastic pipe
JPS5996123A (ja) 1982-11-25 1984-06-02 Showa Highpolymer Co Ltd 高分子量ポリラクタイドの製造方法
JP3347406B2 (ja) 1993-07-22 2002-11-20 三井化学株式会社 ポリヒドロキシカルボン酸の製造方法
JPH10132669A (ja) 1996-10-30 1998-05-22 Whitaker Corp:The ピエゾケーブル及びそれを用いたワイヤハーネス
JP3930913B2 (ja) 1997-03-03 2007-06-13 ビテアム アクチボラゲット 網状構造様の3次元織物
DE10209906A1 (de) * 2002-03-07 2003-10-09 Eads Deutschland Gmbh Torsionselement und hieraus aufgebauter Torsionsaktor
JP4084953B2 (ja) 2002-04-18 2008-04-30 日清紡績株式会社 生分解性プラスチック組成物とその成形品及び生分解速度制御方法
JP5607431B2 (ja) 2010-06-11 2014-10-15 帝人株式会社 再生ポリエステルの製造方法およびそれを用いた成形体
EP2469618A4 (en) 2010-08-25 2017-01-25 Mitsui Chemicals, Inc. Macromolecular piezoelectric material and manufacturing method therefor
KR101467721B1 (ko) 2011-10-13 2014-12-01 미쓰이 가가쿠 가부시키가이샤 고분자 압전 재료 및 그의 제조방법
US20140051825A1 (en) 2011-12-13 2014-02-20 Mitsui Chemicals, Inc. Polymeric piezoelectric material, and process for producing the same
IN2015DN03014A (zh) 2012-10-12 2015-10-02 Teijin Ltd
US11171282B2 (en) * 2015-10-06 2021-11-09 Mitsui Chemicals, Inc. Elongated plate-form piezoelectric body and production method therefor, layered body and production method therefor, fabric, garment, and biological information acquisition device
JP2017083942A (ja) 2015-10-23 2017-05-18 日本写真印刷株式会社 押圧検出機能付表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4568851A (en) * 1984-09-11 1986-02-04 Raychem Corporation Piezoelectric coaxial cable having a helical inner conductor
CN102349170A (zh) * 2009-03-13 2012-02-08 三井化学株式会社 高分子压电材料及其制造方法以及压电元件
CN103492832A (zh) * 2011-04-08 2014-01-01 株式会社村田制作所 位移传感器、位移检测装置以及操作设备
JP2014093487A (ja) * 2012-11-06 2014-05-19 Mitsui Chemicals Inc 高分子圧電材料、およびその製造方法
JP2015201609A (ja) * 2014-04-04 2015-11-12 三井化学株式会社 高分子圧電材料
CN106537623A (zh) * 2014-04-16 2017-03-22 帝人株式会社 使用了纤维的将电信号作为输出或输入的换能器
WO2016175321A1 (ja) * 2015-04-30 2016-11-03 帝人株式会社 圧電素子およびそれを用いたデバイス

Also Published As

Publication number Publication date
KR102323954B1 (ko) 2021-11-08
KR20190122871A (ko) 2019-10-30
JP6829760B2 (ja) 2021-02-10
CN110506341B (zh) 2023-01-17
EP3614445B1 (en) 2022-04-13
EP3614445A4 (en) 2020-12-30
TW201843207A (zh) 2018-12-16
EP3614445A1 (en) 2020-02-26
TWI745584B (zh) 2021-11-11
US11367827B2 (en) 2022-06-21
WO2018194180A1 (ja) 2018-10-25
JPWO2018194180A1 (ja) 2020-03-05
US20210119106A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP6768910B2 (ja) 圧電基材、圧電織物、圧電編物、圧電デバイス、力センサー、アクチュエータ、及び生体情報取得デバイス
CN109314179B (zh) 压电基材、压电机织物、压电针织物、压电设备、力传感器及促动器
JP6934314B2 (ja) 圧電基材、力センサー、及びアクチュエータ
CN109964326B (zh) 压电基材、传感器、执行元件、生物体信息获取设备、及压电纤维结构体
TWI714626B (zh) 長平板狀的壓電體及其製造方法、積層體及其製造方法、織物、衣類,以及生物訊息取得裝置
CN110506341A (zh) 压电基材、力传感器及致动器
JP2019067871A (ja) 同軸コネクタユニット、力センサー、及びアクチュエータ
JP2019067969A (ja) ケーブル構造体、力センサー、及びアクチュエータ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant