CN110504167A - 绝缘栅双极型晶体管及其制造方法 - Google Patents

绝缘栅双极型晶体管及其制造方法 Download PDF

Info

Publication number
CN110504167A
CN110504167A CN201810475934.9A CN201810475934A CN110504167A CN 110504167 A CN110504167 A CN 110504167A CN 201810475934 A CN201810475934 A CN 201810475934A CN 110504167 A CN110504167 A CN 110504167A
Authority
CN
China
Prior art keywords
insulated gate
bipolar transistor
gate bipolar
manufacturing
doped layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810475934.9A
Other languages
English (en)
Inventor
王学良
刘建华
郎金荣
闵亚能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Advanced Semiconductor Manufacturing Co Ltd
Original Assignee
Shanghai Advanced Semiconductor Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Advanced Semiconductor Manufacturing Co Ltd filed Critical Shanghai Advanced Semiconductor Manufacturing Co Ltd
Priority to CN201810475934.9A priority Critical patent/CN110504167A/zh
Priority to PCT/CN2019/087352 priority patent/WO2019219071A1/zh
Priority to US17/055,787 priority patent/US11605725B2/en
Publication of CN110504167A publication Critical patent/CN110504167A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种绝缘栅双极型晶体管及其制造方法,其中绝缘栅双极型晶体管的制造方法,包括以下步骤:从绝缘栅双极型晶体管的衬底的背面向衬底内注入氢离子,或铝离子,或镓离子,以形成反向导通二极管的n型重掺杂层,反向导通二极管为绝缘栅双极型晶体管内置的反向导通二极管。本发明的制造方法和获得的绝缘栅双极型晶体管在反向导通二极管的n+结中形成复合中心,从而加速该内置的反向导通二极管的反向恢复速度,缩短其反向恢复时间,提高该绝缘栅双极型晶体管的性能。

Description

绝缘栅双极型晶体管及其制造方法
技术领域
本发明属于半导体器件及制造工艺技术领域,尤其涉及一种绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)及其制造方法。
背景技术
IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET(Metal-Oxide-Semiconductor Field-EffectTransistor,金属-氧化物半导体场效应晶体管)的高输入阻抗和GTR(Giant Transistor,电力晶体管)的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V(伏特)及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
一些特定结构的IGBT中,会内置反向导通二极管(reverse conduction diode),该反向导通二极管的作用为续流二极管(flyback diode,亦称“飞轮二极管”(freewheeldiode))。图1示出了一种包括内置反向导通二极管的绝缘栅双极型晶体管的半导体器件结构,图中采用虚线示出了反向导通二极管D的等效电路。参照图1,该绝缘栅双极型晶体管包括第一p型重掺杂层104(作为集电极)、第一n型重掺杂层102、第二n型重掺杂层105、n型轻掺杂层101、第二p型重掺杂层108、第三p型重掺杂层114、第三n型重掺杂层109、第四n型重掺杂层112、第五n型重掺杂层111、第六n型重掺杂层110、栅氧化层106、栅极107、发射极113。其中,第二p型重掺杂层108、n型轻掺杂层101、第二n型重掺杂层105、第一n型重掺杂层102构成内置的反向导通二极管D。其中,第一n型重掺杂层102即为反向导通二极管D的n型重掺杂层,也即反向导通二极管D的n+结。
在制作该反向导通二极管的n+结的过程中,需要在衬底中进行离子注入,形成n型重掺杂层(第一n型重掺杂层102)。现有技术中,衬底中进行离子注入以形成该反向导通二极管的n+结的流程中,往往采用注磷推扩技术。具体参照图1所示,从半导体衬底的背面,沿Dr方向在半导体衬底中注入浓度适宜的磷离子,在半导体衬底背面区域内形成n型重掺杂层,该n型重掺杂层作为IGBT中内置的反向导通二极管的n+结。但采用该方法得到的反向导通二极管,其反向恢复速度较慢,导致该IGBT的性能不佳。
发明内容
本发明要解决的技术问题是克服现有技术中的IGBT中的反向导通二极管的反向恢复速度较慢的缺陷,提供一种绝缘栅双极型晶体管及其制造方法。
本发明通过以下技术方案解决上述技术问题:
一种绝缘栅双极型晶体管的制造方法,包括以下步骤:
从绝缘栅双极型晶体管的衬底的背面向衬底内注入氢离子,或铝离子,或镓离子,以形成绝缘栅双极型晶体管的反向导通二极管的n型重掺杂层。。
较佳地,在从绝缘栅双极型晶体管的衬底的背面向衬底内注入氢离子,以形成反向导通二极管的n型重掺杂层的步骤之后,绝缘栅双极型晶体管的制造方法还包括以下步骤:
对反向导通二极管的n型重掺杂层退火,以在反向导通二极管的n型重掺杂层内形成复合中心。
较佳地,退火步骤采用炉管退火,退火温度为200-400摄氏度,退火时间为1-5小时。
较佳地,退火步骤采用激光退火。
较佳地,在从绝缘栅双极型晶体管的衬底的背面向衬底内注入氢离子,或铝离子,或镓离子,以形成反向导通二极管的n型重掺杂层的步骤之前,绝缘栅双极型晶体管的制造方法还包括以下步骤:
在衬底的背面设置掩膜,掩膜包括阻挡区和透射区,阻挡区用于阻挡氢离子或铝离子或镓离子注入衬底;透射区用于供氢离子或铝离子或镓离子穿过,以注入衬底。
较佳地,掩膜采用聚酰亚胺树脂(polyimide,PI)材料制成。
较佳地,掩膜采用铝材料制成。
较佳地,掩膜采用氮化硅(SiN)材料制成。
较佳地,掩膜的厚度为2-100微米。
本发明还提供一种绝缘栅双极型晶体管,绝缘栅双极型晶体管利用本发明的绝缘栅双极型晶体管的制造方法制造。
本发明的积极进步效果在于:本发明的绝缘栅双极型晶体管的制造方法中,在制作IGBT的反向导通二极管的n+结的步骤中,采用氢离子(或铝离子、镓离子)注入工艺,取代现有技术中的磷离子注入工艺,再经退火激活,使得氢离子在该n型重掺杂层中形成复合中心,从而加速该内置的反向导通二极管的反向恢复速度,缩短其反向恢复时间,提高该IGBT的性能。相应地,本发明的绝缘栅双极型晶体管采用本发明的绝缘栅双极型晶体管的制造方法制造,其内置的反向导通二极管的反向恢复时间短,IGBT的性能得到提高。
附图说明
图1为现有技术的绝缘栅双极型晶体管的结构示意图。
图2为本发明的一较佳实施例的绝缘栅双极型晶体管的制造方法的流程图。
图3为本发明的一较佳实施例的绝缘栅双极型晶体管的制造方法的第一种可选的实施方式的绝缘栅双极型晶体管的结构示意图。
图4为本发明的一较佳实施例的绝缘栅双极型晶体管的制造方法的制作完成第一p型重掺杂层的绝缘栅双极型晶体管的状态示意图。
图5为本发明的一较佳实施例的绝缘栅双极型晶体管的制造方法的制作完成第一n型重掺杂层的绝缘栅双极型晶体管的状态示意图。
图6为本发明的一较佳实施例的绝缘栅双极型晶体管的制造方法的第二种可选的实施方式的绝缘栅双极型晶体管的结构示意图。
具体实施方式
下面通过一较佳实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
本实施例的绝缘栅双极型晶体管的制造方法,如图2所示,包括以下步骤:
步骤S402、从衬底的背面向衬底内注入氢离子,以形成反向导通二极管的n型重掺杂层,反向导通二极管为绝缘栅双极型晶体管内置的反向导通二极管。
为了将该n型重掺杂层中的氢离子激活,本实施例的绝缘栅双极型晶体管的制造方法,如图2所示,还包括以下步骤:
步骤S403、对反向导通二极管的n型重掺杂层退火。
经过退火工艺,可以将该n型重掺杂层中的氢离子激活,从而在反向导通二极管的n型重掺杂层内形成复合中心。
在进行退火步骤时,在半导体衬底的正面已经制作了该绝缘栅双极型晶体管的部分结构,为了避免退火步骤中的高温等因素对已经制作的结构产生不良影响,并获得较佳的退火效果,退火步骤采用激光退火。在本发明的绝缘栅双极型晶体管的制造方法的其他可选的实施方式中,退火步骤采用炉管退火,退火温度较佳为200-400摄氏度,退火时间为1-5小时。
为了进行准确的离子注入,放置离子向其他区域扩散,在步骤S402之前,参照图2,本实施例的绝缘栅双极型晶体管的制造方法还包括以下步骤:
步骤S401、在衬底的背面设置掩膜,掩膜包括阻挡区和透射区,阻挡区用于阻挡氢离子注入衬底;透射区用于供氢离子穿过,以注入衬底。
该掩膜采用聚酰亚胺树脂材料、或铝材料、或氮化硅材料制成。该聚酰亚胺树脂材料、或铝材料、或氮化硅材料均为市售可得。根据实验数据,在氢离子注入过程中,1微米厚的铝材料掩膜的阻挡效率为1微米,即,假设铝材料掩膜的厚度为5微米,进行氢离子注入时,氢离子注入至透射区下5微米的区域时,阻挡区下没有氢离子注入,全部被阻挡。根据实验数据,1微米厚的聚酰亚胺树脂掩膜的阻挡效率为0.7微米。在本实施例的绝缘栅双极型晶体管的制造方法中,聚酰亚胺树脂掩膜的厚度为2-100微米,铝材料掩膜的厚度为2-100微米。现有技术中,往往采用二氧化硅掩膜,而二氧化硅掩膜因张力、应力因素,当达到一定厚度时,容易发生翘曲,会影响IGBT的可靠性。因此,二氧化硅掩膜无法达到较大的厚度。而聚酰亚胺树脂掩膜、铝材料掩膜均可以达到较大的厚度,依然不会发生翘曲,可以保证IGBT的可靠性。
在本发明的绝缘栅双极型晶体管的制造方法的第一种可选的实施方式中,该绝缘栅双极型晶体管的制造方法可以用于制造如图3所示的绝缘栅双极型晶体管,具体为用于制造该绝缘栅双极型晶体管内置的反向导通二极管的n+结。图3示出了该种包括内置反向导通二极管的绝缘栅双极型晶体管的半导体器件结构,图中采用虚线示出了反向导通二极管D的等效电路,该绝缘栅双极型晶体管采用本实施例的绝缘栅双极型晶体管的制造方法制造。参照图3,该绝缘栅双极型晶体管包括第一p型重掺杂层104(作为集电极)、第一n型重掺杂层202、第二n型重掺杂层105、n型轻掺杂层101、第二p型重掺杂层108、第三p型重掺杂层114、第三n型重掺杂层109、第四n型重掺杂层112、第五n型重掺杂层111、第六n型重掺杂层110、栅氧化层106、栅极107、发射极113。其中,第二p型重掺杂层108、n型轻掺杂层101、第二n型重掺杂层105、第一n型重掺杂层202构成内置的反向导通二极管D。其中,第一n型重掺杂层202即为反向导通二极管D的n型重掺杂层,该n型重掺杂层作为绝缘栅双极型晶体管中内置的反向导通二极管的n+结。
在制造该绝缘栅双极型晶体管的过程中,为了形成反向导通二极管D的n+结,首先,参照图4(半导体衬底上已经制作完成的其他结构未示出),在半导体衬底的背面沿Dr方向向半导体衬底中注入离子,形成第一p型重掺杂层104,并对第一p型重掺杂层104进行退火操作。然后,参照图5(半导体衬底上已经制作完成的其他结构未示出),在半导体衬底的背面沿Dr方向向第一p型重掺杂层104中注入适当浓度的氢离子,形成一n型重掺杂层,即第一n型重掺杂层202,该n型重掺杂层作为绝缘栅双极型晶体管中内置的反向导通二极管的n+结。然后,对第一n型重掺杂层202进行退火操作,以激活第一n型重掺杂层202中的氢离子,从而形成复合中心。图3所示的绝缘栅双极型晶体管的其他结构,均采用现有技术中的制作工艺制造。
在本发明的绝缘栅双极型晶体管的制造方法的其他可选的实施方式中,在制作第一n型重掺杂层的步骤中,可以从半导体衬底的背面沿Dr方向向半导体衬底内注入铝离子或镓离子,以形成第一n型重掺杂层。
图3示出了包括内置反向导通二极管的绝缘栅双极型晶体管的一种典型结构,本领域技术人员能够理解,包括内置反向导通二极管的绝缘栅双极型晶体管的存在多种不同的结构。本发明的绝缘栅双极型晶体管的制造方法可以应用于各种包括内置反向导通二极管的绝缘栅双极型晶体管的制造。本发明的绝缘栅双极型晶体管的制造方法在制作该反向导通二极管的n+结的过程中,采用氢离子(或铝离子,或镓离子)注入工艺,取代现有技术的磷离子注入工艺,在形成反向导通二极管的n+结的同时,在反向导通二极管的n+结中形成复合中心,从而加速该内置的反向导通二极管的反向恢复速度,缩短其反向恢复时间,提高该绝缘栅双极型晶体管的性能。
本实施例还提供一种绝缘栅双极型晶体管,其结构如图3所示,包括第一p型重掺杂层104(作为集电极)、第一n型重掺杂层202、第二n型重掺杂层105、n型轻掺杂层101、第二p型重掺杂层108、第三p型重掺杂层114、第三n型重掺杂层109、第四n型重掺杂层112、第五n型重掺杂层111、第六n型重掺杂层110、栅氧化层106、栅极107、发射极113。其中,第二p型重掺杂层108、n型轻掺杂层101、第二n型重掺杂层105、第一n型重掺杂层202构成内置的反向导通二极管D。其中,第一n型重掺杂层202即为反向导通二极管D的n型重掺杂层,该n型重掺杂层作为绝缘栅双极型晶体管中内置的反向导通二极管的n+结。绝缘栅双极型晶体管。该绝缘栅双极型晶体管采用本实施例的绝缘栅双极型晶体管的制造方法制造,具体流程不再赘述。因为在制作该绝缘栅双极型晶体管的反向导通二极管的n+结的步骤中,采用氢离子注入工艺,取代现有技术中的磷离子注入工艺,再经退火激活,使得氢离子在该n型重掺杂层中形成复合中心,可以加速该内置的反向导通二极管的反向恢复速度,缩短其反向恢复时间,因此,该绝缘栅双极型晶体管的性能较佳。
在本发明的绝缘栅双极型晶体管的制造方法的第二种可选的实施方式中,本实施例的绝缘栅双极型晶体管的制造方法还可以用于制造如图6所示的绝缘栅双极型晶体管,具体为用于制造该绝缘栅双极型晶体管内置的反向导通二极管的n+结。该绝缘栅双极型晶体管包括集电极503(集电极503为金属阳极,metal anode)、第一p型重掺杂层104、第一n型重掺杂层202、n型漂移区(drift region)505、p阱506、第二n型重掺杂层507、发射极501(发射极501为金属阴极,metal cathode)、栅氧化层504、栅极508。p阱506、n型漂移区505、第一n型重掺杂层202形成反向导通二极管D1,图6中采用虚线示出了该反向导通二极管D1的等效电路,其中,第一n型重掺杂层202即为反向导通二极管D1的n型重掺杂层,该n型重掺杂层作为绝缘栅双极型晶体管中内置的反向导通二极管的n+结。
在制造该绝缘栅双极型晶体管的过程中,为了形成反向导通二极管D1的n+结,首先,参照图4(半导体衬底上已经制作完成的其他结构未示出),在半导体衬底的背面沿Dr方向向半导体衬底中注入离子,形成第一p型重掺杂层104,并对第一p型重掺杂层104进行退火操作。然后,参照图5(半导体衬底上已经制作完成的其他结构未示出),在半导体衬底的背面沿Dr方向向第一p型重掺杂层104中注入适当浓度的氢离子,形成一n型重掺杂层,即第一n型重掺杂层202,该n型重掺杂层作为绝缘栅双极型晶体管中内置的反向导通二极管的n+结。然后,对第一n型重掺杂层202进行退火操作,以激活第一n型重掺杂层202中的氢离子,从而形成复合中心。图6所示的绝缘栅双极型晶体管的其他结构,均采用现有技术中的制作工艺制造。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (10)

1.一种绝缘栅双极型晶体管的制造方法,其特征在于,包括以下步骤:
从所述绝缘栅双极型晶体管的衬底的背面向所述衬底内注入氢离子,或铝离子,或镓离子,以形成所述绝缘栅双极型晶体管的反向导通二极管的n型重掺杂层。
2.如权利要求1所述的绝缘栅双极型晶体管的制造方法,其特征在于,在所述从绝缘栅双极型晶体管的衬底的背面向所述衬底内注入氢离子,或铝离子,或镓离子,以形成反向导通二极管的n型重掺杂层的步骤之后,所述绝缘栅双极型晶体管的制造方法还包括以下步骤:
对所述反向导通二极管的n型重掺杂层退火,以在所述反向导通二极管的n型重掺杂层内形成复合中心。
3.如权利要求2所述的绝缘栅双极型晶体管的制造方法,其特征在于,所述退火步骤采用炉管退火,退火温度为200-400摄氏度,退火时间为1-5小时。
4.如权利要求1所述的绝缘栅双极型晶体管的制造方法,其特征在于,在所述从绝缘栅双极型晶体管的衬底的背面向所述衬底内注入氢离子,或铝离子,或镓离子,以形成反向导通二极管的n型重掺杂层的步骤之前,所述绝缘栅双极型晶体管的制造方法还包括以下步骤:
在所述衬底的背面设置掩膜,所述掩膜包括阻挡区和透射区,所述阻挡区用于阻挡所述氢离子或铝离子或镓离子注入所述衬底;所述透射区用于供氢离子或铝离子或镓离子穿过,以注入所述衬底。
5.如权利要求4所述的绝缘栅双极型晶体管的制造方法,其特征在于,所述掩膜采用聚酰亚胺树脂材料制成。
6.如权利要求4所述的绝缘栅双极型晶体管的制造方法,其特征在于,所述掩膜采用铝材料制成。
7.如权利要求4所述的绝缘栅双极型晶体管的制造方法,其特征在于,所述掩膜采用氮化硅材料制成。
8.如权利要求5-7中任意一项所述的绝缘栅双极型晶体管的制造方法,其特征在于,所述掩膜的厚度为2-100微米。
9.如权利要求2所述的绝缘栅双极型晶体管的制造方法,其特征在于,所述退火步骤采用激光退火。
10.一种绝缘栅双极型晶体管,其特征在于,所述绝缘栅双极型晶体管利用如权利要求1-9中任意一项所述的绝缘栅双极型晶体管的制造方法制造。
CN201810475934.9A 2018-05-17 2018-05-17 绝缘栅双极型晶体管及其制造方法 Pending CN110504167A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810475934.9A CN110504167A (zh) 2018-05-17 2018-05-17 绝缘栅双极型晶体管及其制造方法
PCT/CN2019/087352 WO2019219071A1 (zh) 2018-05-17 2019-05-17 绝缘栅双极型晶体管及其制造方法
US17/055,787 US11605725B2 (en) 2018-05-17 2019-05-17 Insulated gate bipolar transistor and fabrication method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810475934.9A CN110504167A (zh) 2018-05-17 2018-05-17 绝缘栅双极型晶体管及其制造方法

Publications (1)

Publication Number Publication Date
CN110504167A true CN110504167A (zh) 2019-11-26

Family

ID=68539538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810475934.9A Pending CN110504167A (zh) 2018-05-17 2018-05-17 绝缘栅双极型晶体管及其制造方法

Country Status (3)

Country Link
US (1) US11605725B2 (zh)
CN (1) CN110504167A (zh)
WO (1) WO2019219071A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11605725B2 (en) 2018-05-17 2023-03-14 Advanced Semiconductor Manufacturing Corporation., Ltd. Insulated gate bipolar transistor and fabrication method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035676A (zh) * 2011-09-28 2013-04-10 丰田自动车株式会社 半导体装置及其制造方法
CN103946985A (zh) * 2011-12-28 2014-07-23 富士电机株式会社 半导体装置及半导体装置的制造方法
JP2014175517A (ja) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
CN107833914A (zh) * 2016-09-15 2018-03-23 富士电机株式会社 半导体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124179A (en) * 1996-09-05 2000-09-26 Adamic, Jr.; Fred W. Inverted dielectric isolation process
JP4129106B2 (ja) * 1999-10-27 2008-08-06 三菱電機株式会社 半導体装置
US6451645B1 (en) * 2000-07-12 2002-09-17 Denso Corp Method for manufacturing semiconductor device with power semiconductor element and diode
US8507352B2 (en) * 2008-12-10 2013-08-13 Denso Corporation Method of manufacturing semiconductor device including insulated gate bipolar transistor and diode
EP2339613B1 (en) * 2009-12-22 2015-08-19 ABB Technology AG Power semiconductor device and method for producing same
CN109065441B (zh) * 2013-06-26 2023-06-30 富士电机株式会社 半导体装置及半导体装置的制造方法
CN105185826B (zh) * 2015-08-10 2019-01-22 电子科技大学 一种横向rc-igbt器件
CN106558557B (zh) * 2015-09-25 2019-08-23 上海先进半导体制造股份有限公司 半导体器件的制作方法
CN105742346B (zh) * 2016-04-26 2018-06-01 电子科技大学 双分裂沟槽栅电荷存储型rc-igbt及其制造方法
DE112019000094T5 (de) * 2018-03-19 2020-09-24 Fuji Electric Co., Ltd. Halbleitervorrichtung und verfahren zum herstellen einerhalbleitervorrichtung
CN110504167A (zh) 2018-05-17 2019-11-26 上海先进半导体制造股份有限公司 绝缘栅双极型晶体管及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035676A (zh) * 2011-09-28 2013-04-10 丰田自动车株式会社 半导体装置及其制造方法
CN103946985A (zh) * 2011-12-28 2014-07-23 富士电机株式会社 半导体装置及半导体装置的制造方法
JP2014175517A (ja) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
CN107833914A (zh) * 2016-09-15 2018-03-23 富士电机株式会社 半导体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11605725B2 (en) 2018-05-17 2023-03-14 Advanced Semiconductor Manufacturing Corporation., Ltd. Insulated gate bipolar transistor and fabrication method therefor

Also Published As

Publication number Publication date
WO2019219071A1 (zh) 2019-11-21
US20210234019A1 (en) 2021-07-29
US11605725B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
CN103383958B (zh) 一种rc-igbt器件及其制作方法
CN103413824B (zh) 一种rc-ligbt器件及其制作方法
JP5033335B2 (ja) 半導体装置およびそれを用いたインバータ装置
CN103137472B (zh) 结合快复管的igbt器件制造方法
CN105185826B (zh) 一种横向rc-igbt器件
CN106098762B (zh) 一种rc-igbt器件及其制备方法
CN101393928A (zh) 一种阳极短路的隧道泵igbt
CN107534042A (zh) 半导体装置
CN103337498A (zh) 一种bcd半导体器件及其制造方法
CN105023943A (zh) 一种纵向rc-igbt器件
CN110459598A (zh) 一种超结mos型功率半导体器件及其制备方法
CN110504310A (zh) 一种具有自偏置pmos的ret igbt及其制作方法
CN108649068A (zh) Rc-igbt器件及其制备方法
CN106067481A (zh) 一种双通道rc‑igbt器件及其制备方法
CN110504167A (zh) 绝缘栅双极型晶体管及其制造方法
CN103199107B (zh) 半导体器件及制造方法
CN105529370A (zh) 一种mos触发负阻二极管及其制造方法
CN106981510B (zh) 一种碳化硅双极结型晶体管
CN109920840A (zh) 一种具有L型SiO2隔离层的复合型RC-LIGBT器件
CN106206291A (zh) 一种rc‑ligbt器件及其制备方法
CN107919391B (zh) 一种具有槽型氧化层和垂直缓冲层的rc-ligbt
CN106601800A (zh) 一种沟槽绝缘栅双极型晶体管
CN106486536A (zh) 一种逆导型绝缘栅双极晶体管及其制作方法
CN106057878A (zh) Igbt器件及工艺方法
CN110416073A (zh) Igbt和其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No.385, Hongcao Road, Xuhui District, Shanghai 200233

Applicant after: SHANGHAI ADVANCED SEMICONDUCTO

Address before: No.385, Hongcao Road, Xuhui District, Shanghai 200233

Applicant before: ADVANCED SEMICONDUCTOR MANUFACTURING Co.,Ltd.

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20191126

RJ01 Rejection of invention patent application after publication