CN110496219B - 一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用 - Google Patents
一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用 Download PDFInfo
- Publication number
- CN110496219B CN110496219B CN201910858907.4A CN201910858907A CN110496219B CN 110496219 B CN110496219 B CN 110496219B CN 201910858907 A CN201910858907 A CN 201910858907A CN 110496219 B CN110496219 B CN 110496219B
- Authority
- CN
- China
- Prior art keywords
- peg
- ferrihydrite
- fns
- nano
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/6931—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
- A61K9/1694—Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Molecular Biology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明公开了一种新型水铁矿纳米光敏剂的合成方法,包括以下步骤:称取303mg Fe(NO3)3·9H2O固体充分溶解于30ml蒸馏水中,配成0.75mM的Fe(NO3)3水溶液;向水溶液中加入PEG固体,PEG与Fe3+的摩尔比例为1:1~1:50,充分搅拌溶解;将得到的溶液于75℃水浴搅拌加热10~50分钟,立即取出冰浴冷却;冷却后的混合溶液低温高速离心清洗3次,弃上清,所得到的沉淀为PEG修饰的水铁矿纳米颗粒(PEG‑Fns)。本发明合成的PEG‑Fns能够被蓝光可控性的诱导还原,释放出Fe2+,进而在细胞内通过Fe2+和H2O2发生的芬顿反应,产生·OH,诱发细胞氧化损伤,进而达到可控的抗癌抗菌目的。
Description
技术领域
本发明属于抗菌抗癌药物技术领域,尤其涉及一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用。
背景技术
提高癌细胞内活性氧(reactive oxygen species,ROS)水平是实现癌症标本兼治的一种重要途径。目前,癌细胞内ROS的提高主要是通过细胞内源途径抑制抗氧化系统的方法实现的。有报道提到小分子(荜茇明碱)能够特异性的提高癌细胞中的ROS水平,从而选择性的诱导癌细胞死亡,且对正常组织以及快速增殖的非肿瘤细胞不产生影响(Nature2011,475,231-234.)。但此类方法的抗癌效果比较有限,而且可能会引起一系列的并发症。例如,ROS是肝脏信号传导途径中的信号分子,大量ROS的产生将会导致肝硬化和Ⅱ型糖尿病的发病率增加。此外,亦有通过利用超小二氧化硅和氧化铁纳米粒子(ferumoxytol)增加细胞内活性氧来杀死癌细胞的报道(Nature Nanotechnology,2016,11,977–985.NatureNanotechnology,2016,11,986-994.),但此类方法存在着一个严重缺陷,即无法实现癌细胞内ROS含量的可控增加。
病原微生物广泛存在于环境中,其种类繁多、传播速度快、易引起机体不良反应。虽然传统杀菌剂抗菌杀菌性能良好,但存在时效短、用量大及其本身或副产物对周边环境具有一定危害等问题。因此,长效、稳定、绿色环保型杀菌剂和抗菌材料的研发成为学者们的关注热点。虽有研究团队利用人工合成的石墨烯量子点的过氧化物酶活性催化·OH生成进行抗菌治疗(ACSNano,2014,8(6):6202-6210.),但该方法受限于原料昂贵和步骤繁琐等短板而不能够广泛应用。因此,有必要开发新型廉价的抗菌新技术。
机体细胞内最主要的ROS产生途径是亚铁离子(Fe2+)与H2O2发生芬顿反应(FentonReaction:Fe2++H2O2→Fe3++·OH+-OH)产生·OH等活性自由基,其中·OH氧化能力较强,半衰期较短,是毒害作用较大的自由基之一。因此,可利用外源Fe2+诱导的·OH产生实现对癌细胞的杀伤;此外,在抗菌方面,由于·OH的半衰期长,毒性大且易于与微生物细胞膜的脂质进行反应,因此可以诱发细菌及真菌死亡。综上所述,·OH能够在抗菌和抗肿瘤中扮演清除和抑制的角色。水铁矿是一种被广泛认识的光芬顿反应(photo-Fenton)催化剂,在≤580nm光线照射下,能迅速将其中的三价铁还原成二价铁,并以游离Fe2+的形式释放出来;释放的Fe2+可与H2O2发生芬顿反应产生·OH。因此,水铁矿介导的光芬顿反应具有成为抗菌抗癌新途径的潜力。
目前,人工合成水铁矿主要利用其吸附能力和光芬顿活性来吸附和降解有机物,尚未见将其应用于生物体内ROS水平调控和抗菌抗肿瘤的报道。其原因可能是现有方法合成的水铁矿处于团聚状态,形貌和粒径达不到药物应用的要求(CN 108686624 A.PhysicaB-Condensed Matter 2017,513,58-61.Materials Chemistry And Physics 2009,113,349-355.)。因此,有必要通过新的方法合成分散性好,形貌和粒径满足要求的新型水铁矿并实现其在抗肿瘤抗菌中的有效应用。
发明内容
本发明的目的在于:为了克服以上癌症治疗、抗菌以及水铁矿纳米颗粒合成技术中的缺陷,满足临床需求,本发明合成一种粒径小、分散性高的新型光敏化的PEG修饰的水铁矿纳米颗粒(PEG-Fns),在蓝光作用下释放Fe2+并与H2O2发生芬顿反应产生·OH,实现高效可控的抗菌和抗肿瘤效果。
为实现上述目的,本发明第一方面提供了一种新型水铁矿纳米光敏剂的合成方法,包括以下步骤:
(1)称取303mg Fe(NO3)3·9H2O固体充分溶解于30ml蒸馏水中,配成0.75mM的Fe(NO3)3水溶液;
(2)向步骤(1)所得水溶液中加入PEG固体作为修饰剂,搅拌充分溶解,且PEG与Fe3+的摩尔比例为1:1~1:50;
(3)将步骤(2)得到的溶液在75℃水浴条件下搅拌加热10~50分钟,立即取出冰浴冷却;
(4)步骤(3)得到的冷却的混合溶液低温高速离心,弃去上清液;
(5)步骤(4)得到的沉淀用蒸馏水离心清洗3次,所得到的沉淀即为水铁矿纳米颗粒。
步骤(2)中所述PEG与Fe3+的优选比例为1:5~1:30;
步骤(2)中所述PEG与Fe3+的进一步优选比例为1:20。
步骤(3)中水浴搅拌加热时间优选为20分钟。
本发明的第二方面提供了一种利用上述方法合成的水铁矿纳米光敏剂,该水铁矿纳米光敏剂为高度分散状态,粒径为20~30nm。
本发明的第三方面提供了一种利用上述方法合成的水铁矿纳米光敏剂在制备抗菌抗癌药物中的应用。
本发明的有益效果:
(1)本发明在Fe3+水解成核的过程中,加入PEG,一方面避免了水铁矿成核后进一步聚集,进而得到粒径20~30nm且高度分散的PEG-Fns;另一方面PEG的修饰,增加了PEG-Fns的生物相容性,使其能够被细胞有效吸收。
(2)本发明合成的PEG-Fns保留了水铁矿本身的吸附性质,能够吸附微生物,并且对普通蓝光具有高度的敏感性和特异性。
(3)本发明合成的PEG-Fns能够被蓝光可控性的诱导还原,释放出Fe2+,进而在细胞内通过Fe2+和H2O2发生的芬顿反应,产生·OH,诱发细胞氧化损伤以及破坏微生物细胞膜,进而达到抗癌抗菌的目的。
(4)本发明合成的PEG-Fns具有较宽的应用范围,从pH 3.6~7.4都具有抗菌能力。
(5)本发明所采用的合成方法合成成本低,操作步骤简单,反应条件容易控制,可大量快速制备。
附图说明:
图1表示不同PEG修饰比例得到的PEG-Fns粒径;
图2表示当PEG修饰比例为PEG:Fe3+=1:20时,加热不同时间得到的PEG-Fns粒径;
图3表示当选择PEG:Fe3+=1:20,加热20分钟的最优条件时,合成的PEG-Fns电镜照片和能谱结果;
图4表示当选择PEG:Fe3+=1:20,加热20分钟的最优条件时,合成的PEG-Fns被蓝光特异性诱导释放Fe2+;
图5表示进行体外小鼠肿瘤细胞增殖抑制实验时,用不同浓度的以最优条件合成的PEG-Fns孵育细胞时,其能够被细胞有效吸收(比例尺:50μm);
图6表示进行体外小鼠肿瘤细胞增殖抑制实验时,细胞内的ROS水平变化;
图7表示进行体外小鼠肿瘤细胞增殖抑制实验时,继续孵育过程中细胞活性变化;
图8表示进行体外小鼠肿瘤细胞增殖抑制实验时,继续孵育过程中光源周围细胞损伤情况;
图9表示进行体内抗肿瘤实验时,治疗后,各组小鼠肿瘤恢复情况;
图10表示进行体内抗肿瘤实验时,治疗过程中各组小鼠体重变化情况;
图11表示进行抗菌实验时,不同处理的真菌及细菌的克隆数;
图12表示进行抗菌实验时,不同处理的由细菌及真菌构成的生物膜的共聚焦显微镜3D图;
图13表示进行抗菌实验时,不同处理的由细菌及真菌构成的生物膜平均厚度;
图14表示进行动物伤口愈合实验时,第0、3、7、11天动物伤口面积图片;
图15表示进行动物伤口愈合实验时,治疗后前三天不同组伤口处细菌微生物平均克隆数;
图16表示进行动物伤口愈合实验时,处理后不同组随时间变化的伤口平均面积。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
实施例1:
一种新型水铁矿纳米光敏剂的合成方法,包括以下步骤:
称取303mg Fe(NO3)3·9H2O固体充分溶解于30ml蒸馏水中,配成0.75mM的Fe(NO3)3水溶液;向水溶液中加入125mg PEG固体,PEG与Fe3+的比例分别为1:1、1:2.5、1:5、1:10,充分搅拌溶解;将得到的溶液于75℃水浴搅拌加热10分钟,立即取出冰浴冷却;冷却后的混合溶液低温高速离心弃上清,得到的沉淀用蒸馏水清洗3次。所得到的沉淀即为所述的水铁矿纳米颗粒,其粒径均小于50nm,PEG-Fns粒径如图1所示。
实施例2:
一种新型水铁矿纳米光敏剂的合成方法,包括以下步骤:
称取303mg Fe(NO3)3·9H2O固体充分溶解于30ml蒸馏水中,配成0.75mM的Fe(NO3)3水溶液;向水溶液中加入125mg PEG固体,PEG与Fe3+的摩尔比例为1:20,充分搅拌溶解;将得到的溶液75℃水浴搅拌加热10分钟,立即取出冰浴冷却;冷却后的混合溶液低温高速离心弃上清,得到的沉淀用蒸馏水清洗3次。所得到的沉淀即为所述的水铁矿纳米颗粒,其粒径d≈100nm左右,PEG-Fns粒径如图2所示。
实施例3:
一种新型水铁矿纳米光敏剂的合成方法,包括以下步骤:
称取303mg Fe(NO3)3·9H2O固体充分溶解于30ml蒸馏水中,配成0.75mM的Fe(NO3)3水溶液;向水溶液中加入125mg PEG固体,PEG与Fe3+的摩尔比例为1:20,搅拌充分溶解;将得到的溶液75℃水浴搅拌加热15分钟,立即取出冰浴冷却;冷却后的混合溶液低温高速离心弃上清,得到的沉淀用蒸馏水清洗3次。所得到的沉淀即为所述的水铁矿纳米颗粒,其粒径d≈30nm左右,部分粒径较大d≈100nm左右,PEG-Fns粒径如图2所示。
实施例4:
一种新型水铁矿纳米光敏剂的合成方法,包括以下步骤:
称取303mg Fe(NO3)3·9H2O固体充分溶解于30ml蒸馏水中,配成0.75mM的Fe(NO3)3水溶液;向水溶液中加入125mg PEG固体,PEG与Fe3+的摩尔比例为1:20,搅拌充分溶解;将得到的溶液75℃水浴搅拌加热20分钟,立即取出冰浴冷却;冷却后的混合溶液低温高速离心弃上清,得到的沉淀用蒸馏水清洗3次。所得到的沉淀即为所述的水铁矿纳米颗粒,d≈20nm左右;因此该实施例中选择的PEG:Fe3+=1:20,加热20分钟为最优的条件,PEG-Fns粒径如图2所示。
实施例5:
一种新型水铁矿纳米光敏剂的合成方法,包括以下步骤:
称取303mg Fe(NO3)3·9H2O固体充分溶解于30ml蒸馏水中,配成0.75mM的Fe(NO3)3水溶液;向水溶液中加入125mg PEG固体,PEG与Fe3+的摩尔比例为1:50,搅拌充分溶解;将得到的溶液75℃水浴搅拌加热20分钟,立即取出冰浴冷却;冷却后的混合溶液低温高速离心弃上清,得到的沉淀用蒸馏水清洗3次。所得到的沉淀即为所述的水铁矿纳米颗粒。
上述实施例4得到的水铁矿纳米光敏剂的实验效果评价
1、体外小鼠肿瘤细胞增殖抑制实验
本实验所采用的细胞为SCC-7细胞,是一种小鼠鳞状表皮癌细胞。
取对数期生长的细胞以1×104/孔的密度接种于96孔板,37℃、5%CO2的细胞培养箱中过夜贴壁,用培养基稀释PEG-Fns至浓度分别为0μM、80μM、160μM、320μM(以PEG-Fns中Fe3+的量为浓度单位)孵育细胞12h,每个浓度设置三个重复。之后,以换液的形式更换为不含酚红的培养基,蓝光刺激30min。H2DCFDA探针检测细胞内活性氧水平,同时以不同时间继续孵育细胞,并用CCK-8试剂盒检测细胞活性的变化;取对数期生长的细胞接种于confocol细胞培养皿,之后用以上方法处理细胞。Calcein-AM/PI双染后,共聚焦显微(Leica TCSSP8)镜观察光源周围细胞存活情况。
如图6、7和8所示,当PEG-Fns的终浓度达到320μM时,蓝光系统中所引起的细胞内ROS水平比未加PEG-Fns组增加30%左右,24h后细胞活性下降至30%,并呈继续下降趋势进而接近100%杀伤细胞。并且这种杀伤不会扩展到光源以外的区域,表明PEG-Fns本身对细胞无毒。
2、体内抗肿瘤实验
12只健康雌性BALB/C小鼠,SPF级,在腹股沟处剃毛后荷瘤,荷瘤细胞量5×104/只。待肿瘤直径d=5mm左右(10天)时开始治疗:3只/组,随机分为PEG-Fns治疗组(瘤内注射5μmol PEG-Fns/只)、蓝光治疗组(肿瘤部位蓝光刺激30min)、PEG-Fns+蓝光治疗组(瘤内注射5μmol PEG-Fns/只,48h后,肿瘤部位蓝光刺激30min)、对照组(瘤内注射等量生理盐水)。
如图9和10所示,7天后,PEG-Fns+蓝光治疗组小鼠肿瘤部位明显结痂,14天后基本痊愈,并且在治疗过程中小鼠体重稳定在24g左右,各组没有明显差异。表明本发明合成的PEG-Fns在蓝光系统中能够有效杀伤小鼠体内的肿瘤。
3.抗菌实验Ⅰ
收集对数生长期的大肠杆菌或金黄葡萄球菌并用LB液体培养基稀释至106cfu mL-1。加入25mL菌液(终浓度:PEG-Fns 400μM,H2O20.5 mM)至50mL培养瓶中于蓝光下37℃震荡孵育5h。取1mL菌液4000rpm离心3min,去除900μL上清液,剩余100μL上清液重悬菌体并涂于LB固体培养基上,12h后进行抗菌效果分析。
收集对数生长期的白色念球菌并用改良YPD液体培养基稀释至106cfu mL-1,加入25mL菌液(终浓度:PEG-Fns 400μM,H2O20.5 mM)至50mL培养瓶中于蓝光下30℃震荡孵育5h。取1mL菌液4000rpm离心3min,去除900μL上清液,剩余100μL上清液重悬菌体并涂于沙堡固体培养基上,12h后进行抗菌效果分析。
如图11所示,PEG-Fns+H2O2+Light能够显著杀伤细菌及真菌,对细菌和真菌的致死率大于90%,表明PEG-Fns具有很强的抗真菌及细菌的能力。
4、抗菌实验Ⅱ
收集对数生长期的大肠杆菌或金黄葡萄球菌并用LB液体培养基(1%蛋白胨,0.5%酵母粉,1%NaCl,pH7.0)稀释至106cfu mL-1。取直径为10mm的无菌盖玻片于24孔板中,并将1mL大肠杆菌或金黄葡萄球菌稀释液加入24孔板中,于37℃培养箱培养48h,每24h换一次液。48h后去除培养基,用10mM pH7.0的PBS缓冲液清洗盖玻片两次。加入1mL含PEG-Fns和H2O2的LB液体培养基(终浓度:PEG-Fns 400μM,H2O2 100mM)在蓝光下继续于37℃培养箱孵育12h。蓝光处理12h后用PBS缓冲液清洗两次除去游离菌体,用吖啶橙(AcridineOrange,AO)染色液于37℃黑暗条件下染色30min后用PBS缓冲液清洗2次。使用共聚焦显微镜(Leica TCS SP8)进行抗菌效果分析。
实验结果表明本发明合成的PEG-Fns在蓝光及H2O2存在下能够显著杀伤细菌,致死率接近90%,表明PEG-Fns具有很强的抗细菌能力。
收集对数生长期的白色念球菌并用YPD液体培养基(1%酵母粉,2%蛋白胨,2%葡萄糖,pH5.6)稀释到106cfu mL-1,取直径为10mm的无菌盖玻片于24孔板中。取1mL白色念球菌稀释液加入24孔板中,于30℃培养箱培养48h,每24h换一次液。48h后去除培养基。用10mMpH 7.0的PBS缓冲液清洗盖玻片两次,加入1mL改良YPD液体培养基(400μM PEG-Fns,100mMH2O2)在蓝光下继续于30℃培养箱孵育12h。蓝光处理12h后用PBS缓冲液清洗两次除去游离菌体,用吖啶橙(Acridine Orange,AO)染色液于30℃黑暗条件下染色30min用PBS缓冲液清洗2次。使用共聚焦显微镜(Leica TCS SP8)进行抗菌效果分析。
如图12所示,由共聚焦显微镜3D照片可以看出,单独的PEG-Fns、蓝光、H2O2的抗菌效果不明显,而三种因素共同作用能够显著杀伤真菌,致死率接近90%,表明PEG-Fns具有很强的抗真菌能力。
如图13所示,由细菌及真菌构成的生物膜平均厚度我们可以看出单独的PEG-Fns处理能够促进细菌及真菌的生长,另外单独的蓝光及H2O2的处理对细菌及真菌的生长无明显影响。然而,与对照组相比,PEG-Fns+H2O2+Light组能够显著杀伤细菌及真菌。综上所述,PEG-Fns在蓝光系统中能够促进H2O2对细菌及真菌的杀伤。
5、动物伤口愈合实验
选取24只6-8周龄的昆明小鼠分成四组,每组6只。在制作伤口前一天剃毛适应一天外界环境。在小鼠背部制作两个直径为4mm的圆形伤口。对照组分别为:伤口不处理;伤口加20μL浓度为700μM的PEG-Fns;伤口蓝光照射1h。实验组为伤口加20μL浓度为700μM的PEG-Fns于蓝光下照射1h。每24h各组处理一次并分别于0、3、7、11天进行拍照记录。
由图15可知,实验组与对照组相比,伤口细菌克隆数显著减少,从图中也可得知单独PEG-Fns处理也可降低伤口细菌克隆数,然而其克隆菌落较大,其原因可能为PEG-Fns具有吸附作用,因此不能够准确测量单独PEG-Fns组真实的抗菌效果。
由图14和16可以看出第7天实验组小鼠伤口面积较对照组显著减少,第11天除对照组外,其余三组伤口面积基本愈合,我们从图中也可得知单独的PEG-Fns及蓝光也可促进伤口愈合,其原因可能是促进了免疫系统。综上所述,蓝光照射PEG-Fns释放的Fe2+可与小鼠伤口生成的H2O2发生芬顿反应进而抑制伤口细菌生长及促进伤口愈合。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。
Claims (4)
1.一种新型水铁矿纳米光敏剂的合成方法,其特征在于:包括以下步骤:
(1)称取303mg Fe(NO3)3·9H2O固体充分溶解于30ml蒸馏水中,配成0.75mM的Fe(NO3)3水溶液;
(2)向步骤(1)所得水溶液中加入PEG固体作为修饰剂,搅拌充分溶解,且PEG与Fe3+的摩尔比例为1:20;
(3)将步骤(2)得到的溶液在75℃水浴条件下搅拌加热20分钟,立即取出冰浴冷却;
(4)步骤(3)得到的冷却的混合溶液低温高速离心,弃去上清液;
(5)步骤(4)得到的沉淀用蒸馏水离心清洗3次,所得到的沉淀,即为PEG修饰的水铁矿纳米颗粒。
2.一种权利要求1所述的方法合成的水铁矿纳米光敏剂,其特征在于:所述水铁矿纳米光敏剂粒径为20~30nm。
3.一种权利要求1所述的方法合成的水铁矿纳米光敏剂,其特征在于:所述水铁矿纳米光敏剂为高度分散状态。
4.一种权利要求1所述的方法合成的水铁矿纳米光敏剂在制备抗菌抗癌药物中的应用。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910858907.4A CN110496219B (zh) | 2019-09-11 | 2019-09-11 | 一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用 |
PCT/CN2019/126862 WO2021047099A1 (zh) | 2019-09-11 | 2019-12-20 | 一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用 |
US15/734,232 US11452777B2 (en) | 2019-09-11 | 2019-12-20 | Method for synthesizing a new ferrihydrite nano-photosensitizer and its antibacterial and anticancer use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910858907.4A CN110496219B (zh) | 2019-09-11 | 2019-09-11 | 一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110496219A CN110496219A (zh) | 2019-11-26 |
CN110496219B true CN110496219B (zh) | 2021-10-15 |
Family
ID=68591612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910858907.4A Active CN110496219B (zh) | 2019-09-11 | 2019-09-11 | 一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11452777B2 (zh) |
CN (1) | CN110496219B (zh) |
WO (1) | WO2021047099A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110496219B (zh) * | 2019-09-11 | 2021-10-15 | 西北工业大学 | 一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用 |
CN113331337B (zh) * | 2021-04-16 | 2024-04-12 | 上海海洋大学 | 一种复合光敏剂及光驱动杀菌的方法 |
CN114751461A (zh) * | 2022-04-13 | 2022-07-15 | 南京海关工业产品检测中心 | 一种新型的铁氧体及其合成方法和应用 |
CN115120720B (zh) * | 2022-07-03 | 2023-07-14 | 重庆医科大学 | 一种金属多酚网络包覆二氧化锰纳米粒及其制备方法 |
CN115444941B (zh) * | 2022-09-06 | 2024-05-28 | 山西大学 | pH响应释药的双药纳米钻石药物及其制备方法和应用 |
CN117123221B (zh) * | 2023-09-18 | 2024-05-07 | 华南农业大学 | 一种生物质铁碳复合材料及其制备与应用方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2457074C1 (ru) * | 2011-03-24 | 2012-07-27 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Способ получения наночастиц ферригидрита |
CN105727876A (zh) * | 2016-04-01 | 2016-07-06 | 华中农业大学 | 一种水铁矿-石墨烯复合材料及其应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110496219B (zh) * | 2019-09-11 | 2021-10-15 | 西北工业大学 | 一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用 |
-
2019
- 2019-09-11 CN CN201910858907.4A patent/CN110496219B/zh active Active
- 2019-12-20 US US15/734,232 patent/US11452777B2/en active Active
- 2019-12-20 WO PCT/CN2019/126862 patent/WO2021047099A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2457074C1 (ru) * | 2011-03-24 | 2012-07-27 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Способ получения наночастиц ферригидрита |
CN105727876A (zh) * | 2016-04-01 | 2016-07-06 | 华中农业大学 | 一种水铁矿-石墨烯复合材料及其应用 |
Non-Patent Citations (4)
Title |
---|
A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses;Stefanos Giannakis;《Applied Catalysis B: Environmental》;20190215;第248卷;第309-329页 * |
Aggregation of ferrihydrite nanoparticles in aqueous systems;Virany M. Yuwono等;《Fa raday Discuss.》;20121231;第159卷;第235-245页 * |
Virany M. Yuwono等.Aggregation of ferrihydrite nanoparticles in aqueous systems.《Fa raday Discuss.》.2012,第159卷第235-245页. * |
铁(氢)氧化物纳米颗粒的团聚行为及其机理研究;刘娟娟;《中国博士学位论文全文数据库 工程科技І辑》;20190815;B027-4 * |
Also Published As
Publication number | Publication date |
---|---|
WO2021047099A1 (zh) | 2021-03-18 |
CN110496219A (zh) | 2019-11-26 |
US20210260191A1 (en) | 2021-08-26 |
US11452777B2 (en) | 2022-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110496219B (zh) | 一种新型水铁矿纳米光敏剂的合成方法及其在抗癌抗菌中的应用 | |
Zhou et al. | Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections | |
CN114306382B (zh) | 一种铜基纳米酶及其制备方法和应用 | |
Du et al. | NIR-activated multi-hit therapeutic Ag2S quantum dot-based hydrogel for healing of bacteria-infected wounds | |
Gong et al. | Magnetically retained and glucose-fueled hydroxyl radical nanogenerators for H2O2-self-supplying chemodynamic therapy of wound infections | |
CN112807430A (zh) | 一种纳米酶基材料的应用 | |
Li et al. | Applications and perspectives of cascade reactions in bacterial infection control | |
CN113234436A (zh) | 一种近红外碳量子点/二氧化硅复合材料及其制备方法和应用 | |
CN115317607B (zh) | 单原子铁掺杂的石墨相氮化碳纳米复合材料、其制备方法及应用 | |
CN112274639B (zh) | Fe2C@Fe3O4异质纳米颗粒、制备方法及用途 | |
CN112209445B (zh) | 一种三氧化钼纳米点抑菌材料的制备方法及其应用 | |
CN114180621A (zh) | 一种原子分散的钒掺杂二氧化钛及其制备方法和用途 | |
CN109200060B (zh) | 氮掺杂纳米碳球的类氧化酶活性及其用途 | |
CN117562996A (zh) | 一种可降解双金属多模式治疗纳米药物及其制备方法和应用 | |
CN109432450B (zh) | 一种超分子纳米化学动力药物及其在肿瘤治疗方面的应用 | |
CN113230401A (zh) | 一种核壳上转换MOFs光敏复合材料、制备方法及其应用 | |
CN115212319A (zh) | 一种小尺寸铁掺杂氧化锌纳米复合颗粒的制备及应用 | |
CN114106354B (zh) | 可原位自催化产生过氧化氢并持续释放no和自由基的纳米复合材料及其制备方法与应用 | |
Yang et al. | pH‑responsive nanozyme cascade catalysis: A strategy of BiVO4 application for modulation of pathological wound microenvironment | |
Akpojevwa et al. | In-vitro biosynthesis of concentration-induced nickel oxide nanoparticles for antibacterial applications | |
CN112402632B (zh) | 一种放疗增敏用纳米级配位聚合物及其制备方法和用途 | |
CN110665005B (zh) | 一种掺铁聚合物纳米粒及其制备方法和应用 | |
CN113679837A (zh) | 一种窄带隙无机纳米酶治疗试剂及其制备方法与应用 | |
Nouri et al. | Microbial synthesis of nano-selenium and nano-titanium dioxide: mechanisms of selenite respiration | |
Cui et al. | A double rare earth doped CD nanoplatform for nanocatalytic/starving-like synergistic therapy with GSH-depletion and enhanced reactive oxygen species generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |