CN110492170A - 一种高离子电导率复合固体电解质及其制备方法 - Google Patents
一种高离子电导率复合固体电解质及其制备方法 Download PDFInfo
- Publication number
- CN110492170A CN110492170A CN201910815874.5A CN201910815874A CN110492170A CN 110492170 A CN110492170 A CN 110492170A CN 201910815874 A CN201910815874 A CN 201910815874A CN 110492170 A CN110492170 A CN 110492170A
- Authority
- CN
- China
- Prior art keywords
- solid electrolyte
- ionic conductivity
- composite solid
- high ionic
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/447—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63408—Polyalkenes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/0615—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3287—Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
一种高离子电导率复合固体电解质的制备方法,属于离子导体电解质领域。首先在去离子水中加入陶瓷粉料、分散剂球磨混合得到浆料,通过吸附在陶瓷颗粒表面的分散剂有机链的空间位阻作用,将陶瓷粉体分散,随后加入粘结剂、交联剂继续球磨制备出水基陶瓷浆料;然后在浆料原位固化前,将模板放入浆料充分浸润后取出固化、干燥,再经煅烧除去模板、高温烧结得到多孔陶瓷结构,最后与聚合物复合得到固体电解质。相比于其他技术,本发明方法可根据模板的选择灵活设计多孔陶瓷电解质的结构;同时多孔陶瓷骨架致密,结晶性好、体积占比高,大大增加复合电解质的离子电导率;环境友好且成本低廉,利于大规模的推广应用。
Description
技术领域
本发明属于离子导体电解质领域,具体涉及一种高离子电导率复合固体电解质及其制备方法。
背景技术
无机陶瓷固体电解质具有电化学性能好、离子电导率高、对锂负极接触稳定等优点,有望用于制备高安全性、高能量密度的固态锂电池。但是,陶瓷固体电解质本身硬而脆的特点造成与电极的接触受限,导致电池界面内阻过大。因此,将质轻且柔韧性好的聚合物电解质和无机陶瓷电解质制备复合固体电解质,成为了固态锂电池研究的热点之一。
当前复合固体电解质主要工作聚焦在提升离子电导率上。常见的复合固体电解质制备方法是将陶瓷电解质粉体分散在聚合物基体中,但是复合体系的离子传输受限于低离子电导率的聚合物基体。因此,研究人员设法通过设计陶瓷电解质的结构来改善复合固体电解质的离子电导率。例如Zhai等人(Nano Lett.2017:3182-3187)通过冷冻干燥法制备LATP垂直棒状结构,复合后的电解质室温离子电导率仅为0.52×10-4S/cm,原因是LATP陶瓷结构松散,颗粒间界面阻抗大;此外,Hu等人(Mater Today,2018:594-601)利用纤维素为模板,通过浸渍LLZO前驱体溶液烧制出三维织状的LLZO结构,得到的复合固体电解质室温离子电导率仅为2.7×10-5S/cm。通过前驱体溶液浸渍制备出的LLZO陶瓷相结晶性较差,且陶瓷体相含量低,复合体系电导率相对较低;同时,工作效率以及成本也显然不能满足大规模的生产需求。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提供一种高离子电导率复合固体电解质及其制备方法。本发明方法通过制备水基陶瓷粉体浆料,将模板充分浸入浆料,取出固化并干燥,然后煅烧除去模板并高温烧结得到结构稳定的多孔陶瓷电解质,最后与聚合物复合制备出高离子电导率的固体电解质。相比于其他技术,本发明方法可根据模板的选择灵活设计多孔陶瓷电解质的结构;同时多孔陶瓷骨架致密,结晶性好、体积占比高,大大增加复合电解质的离子电导率;环境友好且成本低廉,利于大规模的推广应用。
为实现上述目的,本发明采用的技术方案如下:
一种高离子电导率复合固体电解质,包括三维多孔陶瓷以及填充于三维多孔陶瓷的孔隙内的聚合物,其中三维多孔陶瓷与聚合物的质量比为(4~9):(6~1),三维多孔陶瓷的孔径为1μm~30μm。
进一步地,所述三维多孔陶瓷为LLZO(石榴石型锂镧锆氧)陶瓷、LLTO(钙钛矿型锂镧钛氧)陶瓷、LATP(NASICON型锂铝钛磷)陶瓷或LAGP(锂铝锗磷)陶瓷等。
进一步地,所述聚合物为聚氧化乙烯(PEO)、聚偏氟乙烯(PVDF)、聚乙二醇二甲基丙烯酸酯(PEGDMA)等。
一种高离子电导率复合固体电解质的制备方法,具体包括以下步骤:
步骤1、将陶瓷粉体、分散剂加入去离子水中,球磨混合均匀后,加入粘结剂和交联剂,进一步混合均匀,得到水基陶瓷浆料;其中,步骤1所述的分散剂、陶瓷粉料、粘结剂、交联剂的质量比为(0.5~5):(20~1000):(1~10):(0.5~10);
步骤2、将模板浸入步骤1得到的水基陶瓷浆料中充分浸润,然后将模板取出固化并干燥;
步骤3、将步骤2得到的样品煅烧以排出有机模板,煅烧温度为300~700℃,时间为2~8h,得到煅烧后的多孔结构;然后继续升温至800~1200℃下烧结8~24h,得到骨架致密的三维多孔陶瓷电解质;其中,三维多孔陶瓷电解质的孔径范围为1μm~30μm;
步骤4、将步骤3得到的三维多孔陶瓷电解质浸泡于聚合物电解质溶液中,取出干燥,得到所述高离子电导率复合固体电解质。
进一步地,步骤1所述分散剂包括但不仅限于水溶性聚丙烯酸盐、水溶性聚异丁烯马来酸铵盐等中的一种或几种。
进一步地,步骤1所述粘结剂包括但不仅限于水溶性异丁烯马来酸酐、大分子多糖、琼脂、环氧树脂、聚丙烯酰胺等高分子产物;所述交联剂包括但不仅限于水溶性异丁烯马酸酐衍生物、多胺、聚丙烯酸及其衍生物等高分子。
进一步地,步骤1所述陶瓷粉体包括但不仅限于LLZO(石榴石型锂镧锆氧)陶瓷粉料、LLTO(钙钛矿型锂镧钛氧)陶瓷粉料、LATP(NASICON型锂铝钛磷)陶瓷粉料或LAGP(锂铝锗磷)陶瓷粉料等。
进一步地,步骤2所述模板包括但不仅限于天然纤维素有机模板、纤维素聚酯类复合模板、生物有机模板、碳纤维模板、塑料模板等。
进一步地,步骤2所述固化和干燥的温度为20~80℃,湿度为30%~80%。
进一步地,步骤4所述的聚合物电解质溶液是将聚合物、锂盐溶于有机溶剂中,配制得到的;其中,聚合物、锂盐、有机溶剂的质量比为(1~5):(0.2~2):(10~50),聚合物包括但不限于聚氧化乙烯(PEO)、聚偏氟乙烯(PVDF)、聚乙二醇二甲基丙烯酸酯(PEGDMA)中任意一种型号或衍生物,锂盐包括但不仅限于高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、双三氟甲基磺酰亚胺锂(LITFSI),有机溶剂包括但不仅限于乙腈、丙酮、丁酮。
进一步地,步骤4得到的高离子电导率复合固体电解质,包括多孔陶瓷相与聚合物相,多孔陶瓷相与聚合物相的质量比为(4~9):(6~1)。
本发明提供的一种高离子电导率复合固体电解质的制备方法,首先在去离子水中加入陶瓷粉料、分散剂球磨混合得到浆料,通过吸附在陶瓷颗粒表面的分散剂有机链的空间位阻作用,将陶瓷粉体分散,随后加入粘结剂、交联剂继续球磨制备出水基陶瓷浆料;然后在浆料原位固化前,将模板放入浆料充分浸润后取出固化、干燥,再经煅烧除去模板、高温烧结得到多孔陶瓷结构,最后与聚合物复合得到固体电解质。
与现有技术相比,本发明的有益效果为:
1、本发明提供的一种高离子电导率复合固体电解质的制备方法,得到的多孔陶瓷结构骨架致密,结晶性好、体积占比高,大大提升复合固体电解质的离子电导率。
2、本发明提供的一种高离子电导率复合固体电解质的制备方法,操作简单,普适性强,对操作条件及设备均无苛刻的要求,且环境友好,成本低廉,有利于大规模的推广应用。
附图说明
图1为本发明实施例1步骤4制得的LLZO多孔陶瓷(a)和步骤6制得的复合固体电解质(b)的SEM;
图2为本发明实施例1制得的复合固体电解质在不同温度下的阻抗谱。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种高离子电导率复合固体电解质的制备方法,具体包括以下步骤:
步骤1、固相烧结法制备LLZO陶瓷粉料:将氢氧化锂、氧化镧、氧化锆球磨混合后,在900℃煅烧12h;然后将煅烧后的粉料湿法球磨12h,球磨介质为乙醇,烘干,得到粒度均匀的LLZO陶瓷粉料,得到的粉料的平均粒径约为0.5μm;
步骤2、在10g去离子水中加入0.1g短分子链5000~6000的水溶性异丁烯聚合物作为分散剂,搅拌10min混合均匀;然后再向其中加入20g步骤1制得的LLZO陶瓷粉料,在行星式球磨机中混合球磨60min;再分别加入0.3g分子链为45000~65000和0.3g分子链为85000~100000的水溶性异丁烯类聚合物,球磨混合后得到均匀的水基陶瓷浆料;
步骤3、将纤维素模板浸入步骤2得到的水基陶瓷浆料中充分浸润,然后将模板取出,在室温(25℃)下固化并干燥;
步骤4、将步骤3得到的样品煅烧以排出模板,煅烧温度为600℃,时间为2h,得到煅烧后的坯体;然后继续升温至1100℃下烧结8h,得到骨架致密的三维多孔陶瓷电解质;其中,三维多孔陶瓷电解质的孔径范围为1μm~5μm;
步骤5、聚合物电解质的配制:将1g的PEO、0.3g的LiClO4溶于10g乙腈中,搅拌24h,得到PEO有机溶液;
步骤6、将步骤4得到的三维多孔陶瓷电解质浸泡于步骤5配制的PEO有机溶液中,充分浸润后,取出在60℃干燥24h,得到所述高离子电导率复合固体电解质。
图1为本发明实施例1步骤4制得的LLZO多孔陶瓷(a)和步骤6制得的复合固体电解质(b)的SEM图;由图1可知,LLZO多孔陶瓷呈现三维多孔结构,PEO聚合物完全填充LLZO孔隙中。
图2为本发明实施例1制得的复合固体电解质在不同温度下的阻抗谱;由图2可知,实施例1制备得到的复合固体电解质的阻抗较小,室温离子电导率高达2.6×10-4S/cm。
实施例2
一种高离子电导率复合固体电解质的制备方法,具体包括以下步骤:
步骤1、在10g去离子水中加入0.4g聚丙烯酸铵作为分散剂,搅拌10min混合均匀;然后再向其中加入15g LAGP陶瓷粉料,在行星式球磨机中混合球磨60min;再分别加入0.8g环氧树脂和0.2g四乙烯五胺,球磨混合后得到均匀的水基陶瓷浆料;
步骤2、将纤维素与聚酯模板浸入步骤1得到的水基陶瓷浆料中充分浸润,然后将模板取出,在室温(25℃)下固化并干燥;
步骤3、将步骤2得到的样品煅烧以排出纤维素模板,煅烧温度为550℃,时间为6h,得到煅烧后的坯体;然后继续升温至850℃下烧结8h,得到骨架致密的三维多孔陶瓷电解质;其中,三维多孔陶瓷电解质的孔径范围为1μm~5μm;
步骤4、聚合物电解质的配制:将1g的PVDF、0.5g的LITFSI溶于8g丁酮中,搅拌24h,得到PVDF有机溶液;
步骤5、将步骤3得到的三维多孔LAGP浸泡于步骤4配制的PVDF有机溶液中,取出在80℃干燥24h,得到所述高离子电导率复合固体电解质。
Claims (10)
1.一种高离子电导率复合固体电解质,包括三维多孔陶瓷以及填充于三维多孔陶瓷的孔隙内的聚合物,其中三维多孔陶瓷与聚合物的质量比为(4~9):(6~1),三维多孔陶瓷的孔径为1μm~30μm。
2.根据权利要求1所述的高离子电导率复合固体电解质,其特征在于,所述三维多孔陶瓷为LLZO陶瓷、LLTO陶瓷、LATP陶瓷或LAGP陶瓷。
3.根据权利要求1所述的高离子电导率复合固体电解质,其特征在于,所述聚合物为聚氧化乙烯、聚偏氟乙烯或聚乙二醇二甲基丙烯酸酯。
4.一种高离子电导率复合固体电解质的制备方法,其特征在于,包括以下步骤:
步骤1、将陶瓷粉体、分散剂加入去离子水中,混合均匀后,加入粘结剂和交联剂,得到水基陶瓷浆料;其中,所述分散剂、陶瓷粉料、粘结剂、交联剂的质量比为(0.5~5):(20~1000):(1~10):(0.5~10);
步骤2、将模板浸入步骤1得到的水基陶瓷浆料中充分浸润,然后取出固化并干燥;
步骤3、将步骤2得到的样品煅烧,煅烧温度为300~700℃,时间为2~8h,得到煅烧后的多孔结构;然后继续升温至800~1200℃烧结8~24h,得到骨架致密的三维多孔陶瓷电解质;
步骤4、将步骤3得到的三维多孔陶瓷电解质浸泡于聚合物电解质溶液中,取出干燥,得到所述高离子电导率复合固体电解质。
5.根据权利要求4所述的高离子电导率复合固体电解质的制备方法,其特征在于,步骤2所述模板为纤维素有机模板、纤维素聚酯类复合模板、生物有机模板、碳纤维模板或塑料模板。
6.根据权利要求4所述的高离子电导率复合固体电解质的制备方法,其特征在于,步骤2所述固化和干燥的温度为20~80℃,湿度为30%~80%。
7.根据权利要求4所述的高离子电导率复合固体电解质的制备方法,其特征在于,步骤4所述的聚合物电解质溶液是将聚合物、锂盐溶于有机溶剂中,配制得到的;其中,聚合物、锂盐、有机溶剂的质量比为(1~5):(0.2~2):(10~50),聚合物为聚氧化乙烯、聚偏氟乙烯、聚乙二醇二甲基丙烯酸酯中任意一种型号或衍生物,锂盐为高氯酸锂、六氟磷酸锂或双三氟甲基磺酰亚胺锂,有机溶剂为乙腈、丙酮或丁酮。
8.根据权利要求4所述的高离子电导率复合固体电解质的制备方法,其特征在于,步骤1所述分散剂为水溶性聚丙烯酸盐、水溶性聚异丁烯马来酸铵盐中的一种或几种。
9.根据权利要求4所述的高离子电导率复合固体电解质的制备方法,其特征在于,步骤1所述粘结剂为水溶性异丁烯马来酸酐、大分子多糖、琼脂、环氧树脂或聚丙烯酰胺;所述交联剂为水溶性异丁烯马酸酐衍生物、多胺、聚丙烯酸及其衍生物。
10.根据权利要求4所述的高离子电导率复合固体电解质的制备方法,其特征在于,步骤1所述陶瓷粉体为LLZO陶瓷粉料、LLTO陶瓷粉料、LATP陶瓷粉料或LAGP陶瓷粉料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910815874.5A CN110492170A (zh) | 2019-08-30 | 2019-08-30 | 一种高离子电导率复合固体电解质及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910815874.5A CN110492170A (zh) | 2019-08-30 | 2019-08-30 | 一种高离子电导率复合固体电解质及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110492170A true CN110492170A (zh) | 2019-11-22 |
Family
ID=68555780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910815874.5A Pending CN110492170A (zh) | 2019-08-30 | 2019-08-30 | 一种高离子电导率复合固体电解质及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110492170A (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111244536A (zh) * | 2020-01-15 | 2020-06-05 | 浙江大学 | 一种三维骨架结构陶瓷-聚合物复合固态电解质及其制备方法和应用 |
CN111509290A (zh) * | 2019-12-30 | 2020-08-07 | 香港科技大学 | 一种高陶瓷含量复合固体电解质及其制备方法 |
CN111725562A (zh) * | 2020-06-23 | 2020-09-29 | 浙江理工大学 | 以蚕丝织物为牺牲模板制备氧化物型陶瓷织物复合固态电解质的方法 |
CN112038688A (zh) * | 2020-08-19 | 2020-12-04 | 河南电池研究院有限公司 | 一维纳米形貌llzo基固态电解质材料的制备方法 |
EP3836275A1 (en) * | 2019-12-10 | 2021-06-16 | Toyota Jidosha Kabushiki Kaisha | Garnet-type solid electrolyte separator and method of producing the same |
CN113429199A (zh) * | 2021-07-20 | 2021-09-24 | 西南交通大学 | 一种致密固态电解质latp的烧结方法 |
CN113461050A (zh) * | 2021-07-20 | 2021-10-01 | 中国科学院上海硅酸盐研究所 | 一种热电池电解质用多孔llzo陶瓷粉体抑制剂及其制备方法 |
CN113611909A (zh) * | 2021-08-05 | 2021-11-05 | 恒大新能源技术(深圳)有限公司 | 复合固态电解质及其制备方法、固态电池 |
CN114883638A (zh) * | 2022-04-29 | 2022-08-09 | 哈尔滨工业大学 | 一种高离子电导性复合固态电解质、制备方法及应用 |
CN115207569A (zh) * | 2022-07-15 | 2022-10-18 | 中国电力科学研究院有限公司 | 一种锂离子电池及其制备方法 |
CN115466116A (zh) * | 2022-08-31 | 2022-12-13 | 武汉理工大学深圳研究院 | 一种多孔锂镧锆氧固体电解质片及其制备方法和应用 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102947972A (zh) * | 2010-06-17 | 2013-02-27 | Sb锂摩托有限公司 | 锂离子电池 |
CN105070892A (zh) * | 2015-09-22 | 2015-11-18 | 中国科学院化学研究所 | 一种硒碳复合物的制备方法及应用 |
KR20160108932A (ko) * | 2015-03-09 | 2016-09-21 | 현대자동차주식회사 | 나노 고체 전해질을 포함하는 전고체 전지 및 이의 제조방법 |
CN107710455A (zh) * | 2015-06-24 | 2018-02-16 | 昆腾斯科普公司 | 复合电解质 |
CN107887554A (zh) * | 2017-10-23 | 2018-04-06 | 柔电(武汉)科技有限公司 | 一种柔性三维固态电解质隔膜的制备方法 |
CN108140883A (zh) * | 2016-03-30 | 2018-06-08 | 株式会社Lg化学 | 固体聚合物电解质及其制备方法 |
CN108172897A (zh) * | 2017-12-29 | 2018-06-15 | 桑德集团有限公司 | 固态电解质及其制备方法和全固态电池 |
CN108336401A (zh) * | 2017-12-19 | 2018-07-27 | 成都亦道科技合伙企业(有限合伙) | 固态电解质结构及其制备方法、锂电池 |
CN108493480A (zh) * | 2018-04-28 | 2018-09-04 | 哈尔滨工业大学 | 一种复合单颗粒层固态电解质及其制备方法 |
CN109301320A (zh) * | 2018-09-30 | 2019-02-01 | 中国航发北京航空材料研究院 | 无机固态电解质垂直取向的复合固态电解质及制备方法 |
CN109378525A (zh) * | 2018-09-30 | 2019-02-22 | 武汉理工大学 | 一种微米级石榴石型无机固体电解质膜的制备方法 |
CN109786816A (zh) * | 2018-12-27 | 2019-05-21 | 西安交通大学 | 一种复合固态电解质及其制备方法 |
CN109818051A (zh) * | 2019-01-04 | 2019-05-28 | 南方科技大学 | 锂镧锆氧固态电解质及其制备方法、锂离子电池 |
CN109950618A (zh) * | 2019-03-26 | 2019-06-28 | 西安交通大学 | 一种溶剂化复合固态电解质及其制备方法和应用 |
CN109994774A (zh) * | 2019-03-22 | 2019-07-09 | 电子科技大学 | 一种通过水基注凝成型制备锂镧锆氧固态电解质的方法 |
CN110061240A (zh) * | 2019-04-25 | 2019-07-26 | 中国科学院上海硅酸盐研究所 | 一种具有蜂窝状定向孔分布的多孔电极载体及其制备方法和应用 |
-
2019
- 2019-08-30 CN CN201910815874.5A patent/CN110492170A/zh active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102947972A (zh) * | 2010-06-17 | 2013-02-27 | Sb锂摩托有限公司 | 锂离子电池 |
KR20160108932A (ko) * | 2015-03-09 | 2016-09-21 | 현대자동차주식회사 | 나노 고체 전해질을 포함하는 전고체 전지 및 이의 제조방법 |
CN107710455A (zh) * | 2015-06-24 | 2018-02-16 | 昆腾斯科普公司 | 复合电解质 |
CN105070892A (zh) * | 2015-09-22 | 2015-11-18 | 中国科学院化学研究所 | 一种硒碳复合物的制备方法及应用 |
CN108140883A (zh) * | 2016-03-30 | 2018-06-08 | 株式会社Lg化学 | 固体聚合物电解质及其制备方法 |
CN107887554A (zh) * | 2017-10-23 | 2018-04-06 | 柔电(武汉)科技有限公司 | 一种柔性三维固态电解质隔膜的制备方法 |
CN108336401A (zh) * | 2017-12-19 | 2018-07-27 | 成都亦道科技合伙企业(有限合伙) | 固态电解质结构及其制备方法、锂电池 |
CN108172897A (zh) * | 2017-12-29 | 2018-06-15 | 桑德集团有限公司 | 固态电解质及其制备方法和全固态电池 |
CN108493480A (zh) * | 2018-04-28 | 2018-09-04 | 哈尔滨工业大学 | 一种复合单颗粒层固态电解质及其制备方法 |
CN109301320A (zh) * | 2018-09-30 | 2019-02-01 | 中国航发北京航空材料研究院 | 无机固态电解质垂直取向的复合固态电解质及制备方法 |
CN109378525A (zh) * | 2018-09-30 | 2019-02-22 | 武汉理工大学 | 一种微米级石榴石型无机固体电解质膜的制备方法 |
CN109786816A (zh) * | 2018-12-27 | 2019-05-21 | 西安交通大学 | 一种复合固态电解质及其制备方法 |
CN109818051A (zh) * | 2019-01-04 | 2019-05-28 | 南方科技大学 | 锂镧锆氧固态电解质及其制备方法、锂离子电池 |
CN109994774A (zh) * | 2019-03-22 | 2019-07-09 | 电子科技大学 | 一种通过水基注凝成型制备锂镧锆氧固态电解质的方法 |
CN109950618A (zh) * | 2019-03-26 | 2019-06-28 | 西安交通大学 | 一种溶剂化复合固态电解质及其制备方法和应用 |
CN110061240A (zh) * | 2019-04-25 | 2019-07-26 | 中国科学院上海硅酸盐研究所 | 一种具有蜂窝状定向孔分布的多孔电极载体及其制备方法和应用 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3836275A1 (en) * | 2019-12-10 | 2021-06-16 | Toyota Jidosha Kabushiki Kaisha | Garnet-type solid electrolyte separator and method of producing the same |
CN111509290A (zh) * | 2019-12-30 | 2020-08-07 | 香港科技大学 | 一种高陶瓷含量复合固体电解质及其制备方法 |
CN111244536A (zh) * | 2020-01-15 | 2020-06-05 | 浙江大学 | 一种三维骨架结构陶瓷-聚合物复合固态电解质及其制备方法和应用 |
CN111725562B (zh) * | 2020-06-23 | 2021-07-16 | 浙江理工大学 | 以蚕丝织物为牺牲模板制备氧化物型陶瓷织物复合固态电解质的方法 |
CN111725562A (zh) * | 2020-06-23 | 2020-09-29 | 浙江理工大学 | 以蚕丝织物为牺牲模板制备氧化物型陶瓷织物复合固态电解质的方法 |
CN112038688B (zh) * | 2020-08-19 | 2022-07-26 | 河南电池研究院有限公司 | 一维纳米形貌llzo基固态电解质材料的制备方法 |
CN112038688A (zh) * | 2020-08-19 | 2020-12-04 | 河南电池研究院有限公司 | 一维纳米形貌llzo基固态电解质材料的制备方法 |
CN113429199A (zh) * | 2021-07-20 | 2021-09-24 | 西南交通大学 | 一种致密固态电解质latp的烧结方法 |
CN113461050A (zh) * | 2021-07-20 | 2021-10-01 | 中国科学院上海硅酸盐研究所 | 一种热电池电解质用多孔llzo陶瓷粉体抑制剂及其制备方法 |
CN113461050B (zh) * | 2021-07-20 | 2024-01-23 | 中国科学院上海硅酸盐研究所 | 一种热电池电解质用多孔llzo陶瓷粉体抑制剂及其制备方法 |
CN113611909A (zh) * | 2021-08-05 | 2021-11-05 | 恒大新能源技术(深圳)有限公司 | 复合固态电解质及其制备方法、固态电池 |
CN114883638A (zh) * | 2022-04-29 | 2022-08-09 | 哈尔滨工业大学 | 一种高离子电导性复合固态电解质、制备方法及应用 |
CN115207569A (zh) * | 2022-07-15 | 2022-10-18 | 中国电力科学研究院有限公司 | 一种锂离子电池及其制备方法 |
CN115466116A (zh) * | 2022-08-31 | 2022-12-13 | 武汉理工大学深圳研究院 | 一种多孔锂镧锆氧固体电解质片及其制备方法和应用 |
CN115466116B (zh) * | 2022-08-31 | 2024-06-11 | 武汉理工大学深圳研究院 | 一种多孔锂镧锆氧固体电解质片及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110492170A (zh) | 一种高离子电导率复合固体电解质及其制备方法 | |
CN109786816A (zh) | 一种复合固态电解质及其制备方法 | |
KR102699849B1 (ko) | 고체 상태 하이브리드 전해질, 이의 제조 방법 및 이의 용도 | |
Lu et al. | Wood‐inspired high‐performance ultrathick bulk battery electrodes | |
US20200112050A1 (en) | Solid-state hybrid electrolytes, methods of making same, and uses thereof | |
Wang et al. | Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries | |
CN104916817B (zh) | 具有低溶解率的涂敷的金属氧化物颗粒、其制备方法及其在电化学体系中的用途 | |
CN109768215B (zh) | 一种固态锂电池正极低阻抗界面处理方法及正极结构 | |
US12034152B2 (en) | Cathodes for solid-state lithium sulfur batteries and methods of manufacturing thereof | |
CN105576287B (zh) | 一体化无界面的固态电解质锂离子电池及其制备方法 | |
CN107316965A (zh) | 锂镧锆氧纳米纤维、复合薄膜制备方法及固态电池应用 | |
CN110165236A (zh) | 一种双层氧化物固态电解质的制备方法及其应用 | |
US11695118B2 (en) | Modified cathodes for solid-state lithium sulfur batteries and methods of manufacturing thereof | |
Osada et al. | The design of nanostructured sulfur cathodes using layer by layer assembly | |
CN105742761B (zh) | 一种全固态锂‑空气电池及其制备方法与应用 | |
CN105322132A (zh) | 一种具有多功能弹性保护层的锂硫电池正极 | |
CN104218227A (zh) | 可再充电锂电池用负极活性物质、其制备方法和包括它的可再充电锂电池 | |
CN108461759B (zh) | 一种浸渍法制备固体氧化物燃料电池的纳米复合阴极材料的方法 | |
CN101315993A (zh) | 一种叠片式锂离子电池的制造方法 | |
CN113036073B (zh) | 用于固态锂硫电池的一种复合正极及其制备方法 | |
CN107017387A (zh) | 一种用于固态锂离子电池的复合正极材料及其制备方法 | |
Shafique et al. | The impact of polymeric binder on the morphology and performances of sulfur electrodes in lithium–sulfur batteries | |
CN105762441B (zh) | 基于锂离子固体电解质的锂空气电池的制备方法 | |
CN111354925A (zh) | 具有碳纤维结构的碳绑定的锂离子导体-碳复合负极材料的合成 | |
CN111834660A (zh) | 固态锂硫电池的正极改进设计及相关制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191122 |
|
RJ01 | Rejection of invention patent application after publication |