CN110467475A - 一种梯度功能陶瓷的制备方法 - Google Patents

一种梯度功能陶瓷的制备方法 Download PDF

Info

Publication number
CN110467475A
CN110467475A CN201910874517.6A CN201910874517A CN110467475A CN 110467475 A CN110467475 A CN 110467475A CN 201910874517 A CN201910874517 A CN 201910874517A CN 110467475 A CN110467475 A CN 110467475A
Authority
CN
China
Prior art keywords
ceramic
printing
preparation
gradient function
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910874517.6A
Other languages
English (en)
Inventor
伍尚华
伍海东
许锐悦
林立甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201910874517.6A priority Critical patent/CN110467475A/zh
Priority to PCT/CN2019/106343 priority patent/WO2021051294A1/zh
Publication of CN110467475A publication Critical patent/CN110467475A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • C04B2235/775Products showing a density-gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及陶瓷制备技术领域,尤其涉及一种梯度功能陶瓷的制备方法。本发明通过优化浆料及3D打印的工艺参数,尤其是优化浆料中陶瓷复合粉体中的烧结添加剂及3D打印的曝光能量,根据不同的浆料采用相应的曝光能量打印坯体,由3D打印所得坯体均匀且成型率高,由所述坯体在一定条件下脱脂烧结形成的陶瓷其变形性小,结构及尺寸精度高,层间粘结性好,密度和抗弯强度高。通过本发明方法制备的梯度功能陶瓷不仅成型效率高,成型尺寸精度高,而且结构可精确调控,实现功能化,并且可降低材料成本,提高生产效率。

Description

一种梯度功能陶瓷的制备方法
技术领域
本发明涉及陶瓷制备技术领域,尤其涉及一种梯度功能陶瓷的制备方法。
背景技术
梯度功能陶瓷是由两种或两种以上材料复合且成分和结构呈梯度变化的一种复合材料。与传统复合材料相比,其具有减小界面残余应力和热应力,提高粘结强度,实现不同空间上的功能化的特点。目前制造这种梯度陶瓷部件的成型方法包括冷自蔓延高温合成法、干压成型、颗粒共沉降和激光加热合成等方法。干压成型的方法效率较高,但存在显微结构不均匀的问题,同时不易成型复杂形状和异形产品;自蔓延高温合成法制备金属-陶瓷复合材料存在合成产物孔隙率大,反应过程速度快、温度高、内应力大,致使陶瓷相的大小和形貌难以控制等不足的问题。颗粒共沉降法制备FGM具有设备简单、操作简便、得到的梯度材料成分渐变性更好等许多特点,但其难以应用化。
光固化成型技术(3D打印技术),其原理是通过计算机控制特定波长与强度的光束在x-y面进行扫描,使陶瓷浆料选择性固化,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面,如此循环构成一个陶瓷坯体。由以上可知,光固化成型技术打印的坯体是通过层层累加而成,这对制备梯度功能材料层内层间结构设计提供了巨大优势,有望拓展梯度功能陶瓷的应用领域。
发明内容
本发明针对现有技术制备梯度功能陶瓷存在坯体不均匀,成型效率低及加工成本高的问题,提供一种高效制备梯度功能陶瓷的方法,坯体均匀,层间结合性好,可制备高精度形状复杂的梯度功能陶瓷。
为实现上述目的,本发明采用以下技术方案。
一种梯度功能陶瓷的制备方法,浆料通过3D打印形成坯体,3D打印使用的模型为具有不同陶瓷层结构的梯度结构模型;所述的制备方法包括以下步骤:
S1制备陶瓷复合粉体:根据梯度结构模型分别配制用于3D打印对应陶瓷层的陶瓷复合粉体,与各陶瓷层对应的陶瓷复合粉体按以下重量份将各组分混合均匀制得:10-30份的陶瓷粉体、0-15份的烧结添加剂、0-15份的造孔剂。
优选的,所述陶瓷粉体选自氧化铝、氧化锆、氧化镁、氧化钇、氮化硅、碳化硅、氮化硼中的至少一种。
优选的,所述烧结添加剂选自碳纳米管、石墨烯、Re2O3中的至少一种,其中Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
优选的,所述造孔剂选自淀粉、酚醛树脂、尼龙纤维中的至少一种。
优选的,所述溶剂选自去离子水、无水乙醇、丙酮中的至少一种。
S2制备浆料:根据梯度结构模型分别配制用于3D打印对应陶瓷层的浆料,与各陶瓷层对应的浆料按以下重量份将各组分混合均匀制得:100-120份的陶瓷复合粉体,90-110份的光敏树脂,0.1-5份的光引发剂,0.1-5份的分散剂。
优选的,所述光敏树脂选自1,6-乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯和聚氨酯丙烯酸酯中的至少一种。
优选的,所述光引发剂选自2-羟基-2-甲基-1-苯基-1-丙酮、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、1-羟基环已基苯基酮中的至少一种。
优选的,所述分散剂为硅烷偶联剂KH560、油酸、铝酸酯中的至少一种。
S3成型:按照梯度结构模型,将与陶瓷层对应的浆料置于3D打印设备的打印料槽中,进行逐层打印,制得坯体。
S4脱脂烧结:先以0.1-5℃/min的速率升温至300-800℃并保温2-4h,对坯体进行脱脂处理;然后坯体在空气、氮气气氛或者真空下,以5-20℃/min的速率升温至1300-1850℃并保温1-4h,制得梯度功能陶瓷。
进一步地,经步骤S4烧结制备的梯度功能陶瓷中各陶瓷层的孔隙率小于或等于50vol%。
优选的,以上所述的梯度功能陶瓷的制备方法,步骤S1中所述陶瓷粉体中的氮化硅含量小于10%,所述烧结添加剂选自Re2O3中的至少一种,其中Re为Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu时,步骤S3中进行3D打印的曝光能量设置如下:所述陶瓷复合粉体中烧结添加剂的含量为陶瓷粉体的10wt%以内时,曝光能量E为40mJ/cm2≤E<80mJ/cm2
优选的,以上所述的梯度功能陶瓷的制备方法,步骤S1中所述陶瓷粉体中的氮化硅含量大于或等于90%,所述烧结添加剂选自Re2O3中的至少一种,其中Re为Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu,所述陶瓷复合粉体中烧结添加剂的含量为陶瓷粉体的5wt%以内时,步骤S3中进行3D打印的曝光能量E为100mJ/cm2≤E≤120mJ/cm2;更优选的,步骤S1中所述陶瓷粉体由氮化硅和氧化铝组成。
优选的,以上所述的梯度功能陶瓷的制备方法,步骤S1中所述陶瓷粉体中的氮化硅含量大于或等于90%,所述烧结添加剂由石墨烯或碳纳米管与Y2O3组成,所述陶瓷复合粉体中烧结添加剂的含量为陶瓷粉体的1-5wt%时,步骤S3中进行3D打印的曝光能量E为140mJ/cm2≤E≤200mJ/cm2;更优选的,步骤S1中所述陶瓷粉体由氮化硅和氧化铝组成。
与现有技术相比,本发明的有益效果是:
本发明通过优化浆料及3D打印的工艺参数,尤其是优化浆料中陶瓷复合粉体中的烧结添加剂及3D打印的曝光能量,根据不同的浆料采用相应的曝光能量打印坯体,由3D打印所得坯体均匀且成型率高,由所述坯体在一定条件下脱脂烧结形成的陶瓷其变形性小,结构及尺寸精度高,层间粘结性好,密度和抗弯强度高。通过本发明方法制备的梯度功能陶瓷不仅成型效率高,成型尺寸精度高,而且结构可精确调控,实现功能化,并且可降低材料成本,提高生产效率。
附图说明
图1为实施例1制备的梯度功能陶瓷的第1-5层的SEM图。
具体实施方式
为了更充分的理解本发明的技术内容,下面结合具体实施例对本发明的技术方案作进一步介绍和说明。
实施例1
本实施例提供一种由八层结构为一层叠结构单元的梯度功能陶瓷及其制备方法。具体制备步骤如下:
(1)制备陶瓷复合粉体:根据梯度结构模型分别制备用于3D打印对应陶瓷层的浆料中的陶瓷复合粉体。以无水乙醇为溶剂,将组成陶瓷复合粉体的各组分按照比例加入无水乙醇中,超声分散10min,然后球磨12h,球磨转速为250r/min,使得各组分充分混合。将超声后的混合物倒入旋转蒸发仪中,并在60℃下蒸发溶剂,再经过100目筛,得到陶瓷复合粉体。
用于制备层叠结构单元中各层陶瓷的陶瓷复合粉体的组成如下:
第一层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3
第二层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,1gLa2O3
第三层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,3gLa2O3
第四层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,5gLa2O3
第五层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10gLa2O3
第六层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10gLa2O3,1g尼龙纤维;
第七层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10gLa2O3,5g尼龙纤维;
第八层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10gLa2O3,10g尼龙纤维。
(2)制备浆料:将步骤(1)制备的用于各陶瓷层的陶瓷复合粉体按配比与光敏树脂、光引发剂和分散剂混合均匀,分别制得用于制备各陶瓷层的浆料。具体为是将50g 1,6-乙二醇二丙烯酸酯和50g三羟甲基丙烷三丙烯酸酯均匀混合形成树脂预混液,然后将各陶瓷层的陶瓷复合粉体分别与树脂预混液混合,控制混合物的固含量均为50vol%。接着再加入5g油酸,球磨2h使各组分分散均匀,转速350r/min,再接着继续添加1g 2-羟基-2-甲基-1-苯基-1-丙酮,继续球磨30min,制得八种浆料。
(3)成型
按照梯度结构模型,将与陶瓷层对应的浆料置于3D打印设备的打印料槽中,进行逐层打印,制得坯体。
坯体的层叠结构单元中各浆料层的曝光能量分别如下:用第一至第五层的浆料打印对应的层时的曝光能量是40mJ/cm2,用第六至第八层的浆料打印对应的层时的曝光能量是60mJ/cm2,并将1-8层的打印层厚度均设置为20μm,每层的每种浆料只打印一次。重复上述层叠结构单元的打印,打印由10个层叠结构单元叠加构成的坯体。
(4)脱脂:将坯体置于空气气氛脱脂炉内,以2℃/min的速率升温至650℃并保温4h。
(5)烧结:将坯体置于空气气氛下烧结,以10℃/min的速率升温至1500℃并保温2h,制得具有八层结构的梯度功能陶瓷。
本实施例制备的梯度功能陶瓷,每一层叠结构单元的表层致密,内层多孔,层叠结构单元的整体孔隙率为25%;通过扫描电子显微镜观察陶瓷的截面,各陶瓷层间结合良好,层与层间无裂纹;如图1所示为梯度功能陶瓷的层叠结构单元中第1-5层的SEM图,相邻的上下两层陶瓷结合良好;陶瓷性能良好,其抗弯强度为150MPa。
实施例2
本实施例提供一种六层结构的梯度功能陶瓷及其制备方法。具体制备步骤如下:
(1)制备陶瓷复合粉体:根据梯度结构模型分别制备用于3D打印对应陶瓷层的浆料中的陶瓷复合粉体。以无水乙醇为溶剂,将组成陶瓷复合粉体的各组分按照比例加入无水乙醇中,超声分散10min,然后球磨12h,球磨转速为250r/min,使得各组分充分混合。将超声后的混合物倒入旋转蒸发仪中,并在60℃下蒸发溶剂,再经过100目筛,得到陶瓷复合粉体。
用于制备各层陶瓷的陶瓷复合粉体的组成如下:
第一层陶瓷的陶瓷复合粉体:90g Si3N4,5g Al2O3,5g Y2O3
第二层陶瓷的陶瓷复合粉体:90g Si3N4,5g Al2O3,5g β-Si3N4,5g Y2O3
第三层陶瓷的陶瓷复合粉体:90g Si3N4,5g Al2O3,5g β-Si3N4,5g Y2O3;1g石墨烯;
第四层陶瓷的陶瓷复合粉体:90g Si3N4,5gAl2O3,5g β-Si3N4,5gY2O3;2g石墨烯;
第五层陶瓷的陶瓷复合粉体:90g Si3N4,5g Al2O3,5g β-Si3N4,5g Y2O3;3g石墨烯;
第六层陶瓷的陶瓷复合粉体:90g Si3N4,5g Al2O3,5g β-Si3N4,5g Y2O3;5g石墨烯。
(2)制备浆料:将步骤(1)制备的用于各陶瓷层的陶瓷复合粉体按配比与光敏树脂、光引发剂和分散剂混合均匀,分别制得用于制备各陶瓷层的浆料。具体为是将50g1,6-乙二醇二丙烯酸酯和50g三羟甲基丙烷三丙烯酸酯均匀混合形成树脂预混液,然后将各陶瓷层的陶瓷复合粉体分别与树脂预混液混合,控制混合物的固含量均为40vol%。接着再加入5g铝酸酯,球磨2h使各组分分散均匀,转速350r/min,再接着继续添加1g苯基双(2,4,6-三甲基苯甲酰基)氧化膦,继续球磨30min,制得六种浆料。
(3)成型
按照梯度结构模型,将与陶瓷层对应的浆料置于3D打印设备的打印料槽中,进行逐层打印,制得坯体。
坯体的中各浆料层的曝光能量分别如下:用第一至第六层的浆料打印对应的层时的曝光能量分别是100mJ/cm2,120mJ/cm2,140mJ/cm2,160mJ/cm2,180mJ/cm2,200mJ/cm2,将1-2层的打印层厚度均设置为50μm,将3-6层的打印层厚度均设置为20μm,坯体中每层浆料的总厚度均为500μm。
(4)脱脂:将坯体置于真空气氛脱脂炉内,以3℃/min的速率升温至750℃并保温3h。
(5)烧结:将坯体置于氮气气氛下烧结,以20℃/min的速率升温至1200℃,然后以10℃/min升温至1800℃并保温2h,制得具有六层结构的梯度功能陶瓷。
本实施例制备的梯度功能陶瓷表层致密,内层多孔,层叠结构单元的整体孔隙率为20%;通过扫描电子显微镜观察陶瓷的截面,各陶瓷层间结合良好,层与层间无裂纹;陶瓷性能良好,其抗弯强度为300MPa。
实施例3
本实施例提供一种十层结构的梯度功能陶瓷及其制备方法。具体制备步骤如下:
(1)制备陶瓷复合粉体:根据梯度结构模型分别制备用于3D打印对应陶瓷层的浆料中的陶瓷复合粉体。以丙酮为溶剂,将组成陶瓷复合粉体的各组分按照比例加入丙酮中,超声分散10min,然后球磨12h,球磨转速为250r/min,使得各组分充分混合。将超声后的混合物倒入旋转蒸发仪中,并在60℃下蒸发溶剂,再经过100目筛,得到陶瓷复合粉体。
用于制备各层陶瓷的陶瓷复合粉体的组成如下:
第一层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3
第二层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,1gCeO2
第三层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,3g CeO2
第四层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,5g CeO2
第五层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10g CeO2
第六层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10g CeO2,1gCNT;
第七层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10g CeO2,3gCNT;
第八层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10g CeO2,5gCNT;
第九层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10g CeO2,7gCNT;
第十层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,10g CeO2,10gCNT。
(2)制备浆料:将步骤(1)制备的用于各陶瓷层的陶瓷复合粉体按配比与光敏树脂、光引发剂和分散剂混合均匀,分别制得用于制备各陶瓷层的浆料。具体为是将50g 1,6-乙二醇二丙烯酸酯和50g三羟甲基丙烷三丙烯酸酯均匀混合形成树脂预混液,然后将各陶瓷层的陶瓷复合粉体分别与树脂预混液混合,按以下要求控制各混合物的固含量:一至五层对应的混合物的固含量为50vol%,六至八层对应的混合物的固含量为40vol%,九至十层对应的混合物的固含量为30vol%。接着再加入5g硅烷偶联剂KH560,球磨2h使各组分分散均匀,转速350r/min,再接着继续添加1g 2-羟基-2-甲基-1-苯基-1-丙酮,继续球磨30min,制得十种浆料。
(3)成型
按照梯度结构模型,将与陶瓷层对应的浆料置于3D打印设备的打印料槽中,进行逐层打印,制得坯体。
坯体中各浆料层的曝光能量分别如下:用第1层至第5层的浆料打印对应的层时的曝光能量是60mJ/cm2,用第6层至第8层的浆料打印对应的层时的曝光能量是100mJ/cm2,用第9层、第10层的浆料打印对应的层时的曝光能量是200mJ/cm2,将1-5层的打印层厚度均设置为50μm,将5-10层的打印层厚度均设置为20μm,坯体中每层浆料的总厚度为200μm。
(4)脱脂:将坯体置于空气气氛脱脂炉内,以2℃/min的速率升温至650℃并保温4h。
(5)烧结:将坯体置于真空下烧结,以10℃/min的速率升温至1750℃并保温2h,制得具有十层结构的梯度功能陶瓷。
本实施例制备的梯度功能陶瓷表层致密,内层多孔,层叠结构单元的整体孔隙率为15%;通过扫描电子显微镜观察陶瓷的截面,各陶瓷层间结合良好,层与层间无裂纹;陶瓷性能良好,其抗弯强度为200MPa。
对比例1
本对比例提供一种由八层结构为一层叠结构单元的梯度功能陶瓷及其制备方法,包括以下制备步骤:(1)制备陶瓷复合粉体,(2)制备浆料,(3)成型,(4)脱脂,(5)烧结。与实施例1相比,本对比例仅成型步骤中3D打印设置的曝光能量不同,其它步骤与实施例1的一致。本对比例中,用第1层至第8层的浆料打印对应的层时的曝光能量均是40mJ/cm2
通过扫描电子显微镜观察陶瓷的截面,梯度功能陶瓷的层叠结构单元中,第1层至第5层间的结合良好,但第5层与第6层间出现裂纹,第6层与第7层间也出现裂纹。
对比例2
本对比例提供一种由八层结构为一层叠结构单元的梯度功能陶瓷及其制备方法,包括以下制备步骤:(1)制备陶瓷复合粉体,(2)制备浆料,(3)成型,(4)脱脂,(5)烧结。与实施例1相比,本对比例的制备陶瓷复合粉体步骤中制备陶瓷复合粉体的组分不同,以及成型步骤中3D打印设置的曝光能量不同,其它步骤与实施例1的一致。
本对比例的步骤(1)中,用于制备各层陶瓷的陶瓷复合粉体的组成如下:
第一层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3
第二层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,1g石墨烯;
第三层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,2g石墨烯;
第四层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,3g石墨烯;
第五层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,4g石墨烯;
第六层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,5g石墨烯,1gNa2SO4
第七层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,6g石墨烯,3gNa2SO4
第八层陶瓷的陶瓷复合粉体:20gZrO2,80gAl2O3,7g石墨烯,5gNa2SO4
本对比例中,用第1层至第8层的浆料打印对应的层时的曝光能量均是160mJ/cm2
通过扫描电子显微镜观察陶瓷的截面,梯度功能陶瓷的层叠结构单元中,第1层至第8层间出现裂纹。
以上所述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。

Claims (10)

1.一种梯度功能陶瓷的制备方法,其特征在于,浆料通过3D打印形成坯体,3D打印使用的模型为具有不同陶瓷层结构的梯度结构模型;所述制备方法包括以下步骤,
S1 制备陶瓷复合粉体:根据梯度结构模型分别配制用于3D打印对应陶瓷层的陶瓷复合粉体,与各陶瓷层对应的陶瓷复合粉体按以下重量份将各组分混合均匀制得:10-30份的陶瓷粉体、0-15wt份的烧结添加剂、0-15份的造孔剂;
S2 制备浆料:与各陶瓷层对应的浆料按以下重量份将各组分混合均匀制得:100-120份的陶瓷复合粉体,90-110份的光敏树脂,0.1-5份的光引发剂,0.1-5份的分散剂;
S3 成型:按照梯度结构模型,将与陶瓷层对应的浆料置于3D打印设备的打印料槽中,进行逐层打印,制得坯体;
S4 脱脂烧结:先以0.1-5℃/min的速率升温至300-800℃并保温2-4h,对坯体进行脱脂处理;然后坯体在空气气氛下,以5-10℃/min的速率升温至1300-1850℃并保温1-4h,制得梯度功能陶瓷。
2.根据权利要求1所述的一种梯度功能陶瓷的制备方法,其特征在于,步骤S1中,所述陶瓷粉体选自氧化铝、氧化锆、氧化镁、氧化钇、氮化硅、碳化硅、氮化硼中的至少一种。
3.根据权利要求2所述的一种梯度功能陶瓷的制备方法,其特征在于,步骤S1中,所述烧结添加剂选自碳纳米管、石墨烯、Re2O3中的至少一种,其中Re为Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu。
4.根据权利要求1所述的一种梯度功能陶瓷的制备方法,其特征在于,步骤S1中,所述造孔剂选自淀粉、酚醛树脂、尼龙纤维中的至少一种。
5.根据权利要求1所述的一种梯度功能陶瓷的制备方法,其特征在于,步骤S2中,所述光敏树脂选自1,6-乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、聚氨酯丙烯酸酯中的至少一种。
6.根据权利要求1所述的一种梯度功能陶瓷的制备方法,其特征在于,步骤S2中,所述光引发剂选自2-羟基-2-甲基-1-苯基-1-丙酮、苯基双(2,4,6-三甲基苯甲酰基)氧化膦、1-羟基环已基苯基酮中的至少一种。
7.根据权利要求1所述的一种梯度功能陶瓷的制备方法,其特征在于,经步骤S4烧结制备的梯度功能陶瓷中各陶瓷层的孔隙率小于或等于50vol%。
8.根据权利要求1-7任一项所述的一种梯度功能陶瓷的制备方法,其特征在于,步骤S1中所述陶瓷粉体中的氮化硅含量小于10%,所述烧结添加剂选自Re2O3中的至少一种,其中Re为Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu时,步骤S3中进行3D打印的曝光能量设置如下:所述陶瓷复合粉体中烧结添加剂的含量为陶瓷粉体的10wt%以内时,曝光能量E为40mJ/cm2≤E<80mJ/cm2
9.根据权利要求1-7任一项所述的一种梯度功能陶瓷的制备方法,其特征在于,步骤S1中所述陶瓷粉体中的氮化硅含量大于或等于90%,所述烧结添加剂选自Re2O3中的至少一种,其中Re为Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu时,所述陶瓷复合粉体中烧结添加剂的含量为陶瓷粉体的5wt%以内时,步骤S3中进行3D打印的曝光能量E为100mJ/cm2≤E≤120mJ/cm2
10.根据权利要求1-7任一项所述的一种梯度功能陶瓷的制备方法,其特征在于,步骤S1中所述陶瓷粉体中的氮化硅含量大于或等于90%,所述烧结添加剂由石墨烯或碳纳米管与Y2O3组成,所述陶瓷复合粉体中烧结添加剂的含量为陶瓷粉体的1-5wt%时,步骤S3中进行3D打印的曝光能量E为140mJ/cm2≤E≤200mJ/cm2
CN201910874517.6A 2019-09-16 2019-09-16 一种梯度功能陶瓷的制备方法 Pending CN110467475A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910874517.6A CN110467475A (zh) 2019-09-16 2019-09-16 一种梯度功能陶瓷的制备方法
PCT/CN2019/106343 WO2021051294A1 (zh) 2019-09-16 2019-09-18 一种梯度功能陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910874517.6A CN110467475A (zh) 2019-09-16 2019-09-16 一种梯度功能陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN110467475A true CN110467475A (zh) 2019-11-19

Family

ID=68516018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910874517.6A Pending CN110467475A (zh) 2019-09-16 2019-09-16 一种梯度功能陶瓷的制备方法

Country Status (2)

Country Link
CN (1) CN110467475A (zh)
WO (1) WO2021051294A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021118459A1 (en) * 2019-12-12 2021-06-17 National University Of Singapore Porous composites, scaffolds, foams, methods of fabrication and uses thereof
CN113103576A (zh) * 2021-04-07 2021-07-13 吉林大学 一种面向有序梯度多孔材料的3d打印系统及方法
CN113546614A (zh) * 2020-04-16 2021-10-26 中国石油天然气股份有限公司 一种具有梯度微观形貌结构的催化剂氧化铝载体材料及其制备方法
CN113620717A (zh) * 2021-09-03 2021-11-09 萍乡旭材科技有限公司 一种梯度层状结构氮化硅陶瓷的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835501B (zh) * 2022-05-19 2023-06-23 广东工业大学 一种氮化硅基织构化梯度材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107098717A (zh) * 2017-04-07 2017-08-29 武汉理工大学 一种过滤用多孔陶瓷的三维打印成型制备方法
CN107540379A (zh) * 2017-09-04 2018-01-05 清华大学 复合陶瓷粉体及陶瓷成型方法
CN107586136A (zh) * 2017-10-17 2018-01-16 广东工业大学 一种3d打印氮化硅陶瓷的方法
US10040216B2 (en) * 2007-04-04 2018-08-07 The Exone Company Powder particle layerwise three-dimensional printing process
CN108675798A (zh) * 2018-08-03 2018-10-19 广东工业大学 一种氮化硅陶瓷及其制备方法
CN109279875A (zh) * 2018-08-24 2019-01-29 清华大学 陶瓷型的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040216B2 (en) * 2007-04-04 2018-08-07 The Exone Company Powder particle layerwise three-dimensional printing process
CN107098717A (zh) * 2017-04-07 2017-08-29 武汉理工大学 一种过滤用多孔陶瓷的三维打印成型制备方法
CN107540379A (zh) * 2017-09-04 2018-01-05 清华大学 复合陶瓷粉体及陶瓷成型方法
CN107586136A (zh) * 2017-10-17 2018-01-16 广东工业大学 一种3d打印氮化硅陶瓷的方法
CN108675798A (zh) * 2018-08-03 2018-10-19 广东工业大学 一种氮化硅陶瓷及其制备方法
CN109279875A (zh) * 2018-08-24 2019-01-29 清华大学 陶瓷型的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021118459A1 (en) * 2019-12-12 2021-06-17 National University Of Singapore Porous composites, scaffolds, foams, methods of fabrication and uses thereof
CN113546614A (zh) * 2020-04-16 2021-10-26 中国石油天然气股份有限公司 一种具有梯度微观形貌结构的催化剂氧化铝载体材料及其制备方法
CN113546614B (zh) * 2020-04-16 2023-10-27 中国石油天然气股份有限公司 一种具有梯度微观形貌结构的催化剂氧化铝载体材料及其制备方法
CN113103576A (zh) * 2021-04-07 2021-07-13 吉林大学 一种面向有序梯度多孔材料的3d打印系统及方法
CN113103576B (zh) * 2021-04-07 2022-01-28 吉林大学 面向有序梯度多孔材料的3d打印方法
CN113620717A (zh) * 2021-09-03 2021-11-09 萍乡旭材科技有限公司 一种梯度层状结构氮化硅陶瓷的制备方法

Also Published As

Publication number Publication date
WO2021051294A1 (zh) 2021-03-25

Similar Documents

Publication Publication Date Title
CN110467475A (zh) 一种梯度功能陶瓷的制备方法
CN105198449B (zh) 一种光固化成型的高致密陶瓷的制备方法
CN108456002B (zh) 一种适用于自修复/自增强的基于光固化成型的3d打印陶瓷部件的方法
CN109020605B (zh) 一种陶瓷材料及其制备方法和应用
CN106007723B (zh) 一种SiC陶瓷素坯的制造方法
CN107353036A (zh) 一种基于增材制造技术的多孔氮化硅陶瓷、其制备方法及其应用
CN106673646A (zh) 一种基于光固化成型的3d打印制备氧化锆陶瓷的方法
CN108726997A (zh) 一种氧化铝高固相含量光敏陶瓷3d打印膏料及其制备方法
CN114380583B (zh) 一种陶瓷材料的制备方法
CN113045297B (zh) 一种3d直写打印复合陶瓷浆料、制备方法及得到的陶瓷
CN104326766A (zh) 一种具有球形孔结构的多孔氮化硅陶瓷材料的制备方法
CN112537948A (zh) 一种氧化铝基陶瓷型芯的光固化3d打印制造方法
CN109456041B (zh) 一种基于sla-3d打印的氧化锆/氧化铝复合光敏膏料均质化制备技术
CN114105650B (zh) 下沉式dlp光固化技术3d打印制备氮化硅陶瓷的方法
CN105330268A (zh) 一种层状陶瓷的制备方法
CN110357642A (zh) 光固化3d打印用浆料、制备方法及氮化硅陶瓷
CN104311091A (zh) 一种稀土掺杂纳米陶瓷材料及其制备方法
CN113956023A (zh) 基于下沉式dlp光固化3d打印制备氧化铝陶瓷的方法
TW201630729A (zh) 複合耐火物及其製造方法
CN114800767A (zh) 基于光固化3d打印技术一次成型制备透明陶瓷的方法
CN114436661A (zh) 一种氮化硅陶瓷天线罩及其增材制造方法
CN101734920A (zh) 一种氮化钛多孔陶瓷及其制备方法
CN109320257A (zh) 一种高强度高孔隙率多孔氮化硅陶瓷的制备方法
CN107500779A (zh) 一种多孔硅基结构陶瓷及其制备方法
CN116573952A (zh) 一种粘结剂喷射打印碳化硅-铝复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191119