CN110465209A - 一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法 - Google Patents

一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法 Download PDF

Info

Publication number
CN110465209A
CN110465209A CN201810446831.XA CN201810446831A CN110465209A CN 110465209 A CN110465209 A CN 110465209A CN 201810446831 A CN201810446831 A CN 201810446831A CN 110465209 A CN110465209 A CN 110465209A
Authority
CN
China
Prior art keywords
film
tube
carbon nano
polypyrrole
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810446831.XA
Other languages
English (en)
Inventor
耿宏章
郭志迎
袁雪爽
景立超
谷泽增
袁晓彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201810446831.XA priority Critical patent/CN110465209A/zh
Publication of CN110465209A publication Critical patent/CN110465209A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties

Abstract

本发明公开了一种用于水处理的聚吡咯‑碳纳米管/聚醚砜复合导电膜及其制备方法。目前,用于水处理方面的导电膜存在制备困难、导电性不高的缺点。本发明在聚醚砜平板膜制作的基础上,利用压力沉积碳纳米管薄膜,并采用化学聚合方法在碳纳米管薄膜上原位合成聚吡咯,在聚醚砜平板膜上形成导电层,从而得到导电复合膜。高导电性碳纳米管的加入大大提高了复合膜的导电性。聚吡咯原位聚合在膜表面上,增强了膜的亲水性和导电层的稳定性,提高了膜的抗污染性能。该导电膜具有高导电性、柔性和稳定性、长寿命的特点。本制备方法工艺简单,不需要复杂的反应和高温,成本低,可操作性强。

Description

一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法
技术领域
本发明涉及用于水处理导电膜技术领域,尤其涉及一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法。
技术背景
近年来,基于膜的膜分离技术在混合物和污染物分离领域有着广泛的应用,如废水回收利用,饮用水生产地表水或地下水的处理,药物浓度处理等。然而,膜渗透性和操作稳定性容易被膜污染损坏。虽然传统的化学清洗能有效地去除污染物,但是成本较高且会降低膜使用寿命,因此膜分离技术的广泛应用受到限制。
导电膜的出现为提高膜抗污染能力提供了有效方法。导电膜具有可调的带电膜表面,可以排除带电污染物颗粒并提高抗污染性。同时在导电膜上施加电场,将膜作为阴极可以进一步增加膜与带负电荷污染物之间的静电排斥,以排除带电污染物颗粒对膜的污染。导电膜的导电性是决定膜防污性能的决定性指标之一。因此,制备具有高导电性的导电膜是提高防污性能的关键。
目前,共混改性和表面改性是制备导电膜的两个主要方法。对于共混改性膜,由于非导电基质材料的绝缘性质,所得膜的电导率通常较小,不能满足实际要求。研究发现表面改性制备导电层是制备高导电膜的有效方法。导电聚合物如聚苯胺,聚吡咯和聚噻吩已用于制备膜表面上的导电层。在这些导电聚合物中,聚吡咯具有紧密的刚性结构,具有弱碱性阴离子交换基团,并且可以通过化学或电化学氧化容易地聚合。与其他导电聚合物相比,聚吡咯具有良好的环境稳定性和较高的电导率,因此是可用于防污的的材料之一。此外,聚吡咯作为导电层可以很容易地沉积在膜表面或孔内以制备导电膜,然而,仅用聚吡咯修饰的膜表面的电导率还有待提高。
碳纳米管作为理想的导电材料由于其优异的导电性,有效的电荷转移性质和物理化学稳定性。通过在一定压力下,将碳纳米管沉积在支撑膜表面上制备出的导电膜。然而,由于碳纳米管没有以任何方式与支撑膜载体结合,因此很容易从膜表面洗掉。
发明内容
本发明的目的之一为了解决上述复合膜的导电性差和导电层的不稳定性等技术问题,而提供了一种聚吡咯-碳纳米管/聚醚砜复合导电膜,所制得的复合膜具有优异的导电性、亲水性,抗污染性及稳定性等特点。
本发明的目的之二在于提供上述的一种聚吡咯-碳纳米管/聚醚砜复合导电膜的制备方法,该制备方法工艺简单。
本发明的技术方案
一种聚吡咯-碳纳米管/聚醚砜复合导电膜,即以聚醚砜膜为基底的支撑膜,在一定压力下,抽滤沉积一层碳纳米管,再通过化学聚合一层聚吡咯,从而制备聚吡咯-碳纳米管/聚醚砜复合导电膜。
上述的一种聚吡咯-碳纳米管/聚醚砜复合导电膜的制备方法,具体包括如下步骤:
(1)在聚醚砜平板膜上压力沉积碳纳米管层
将聚醚砜和添加剂加入到有机溶剂中,在70℃下加热搅拌6h形成均匀的铸膜液,将铸膜液放在真空烘箱中进行真空脱泡,用平板刮膜机刮膜并将其放到凝固浴中至有机溶剂完全去除,得到聚醚砜平板膜。将碳纳米管和分散剂以一定比例进行混合,并用超声分散机在一定功率下超声分散一段时间,从而制备分散均匀的碳纳米管溶液。取一定量的碳纳米管溶液,在一定压力下,抽滤到聚醚砜平板膜上,得到碳纳米管/聚醚砜复合膜。
(2)化学聚合聚吡咯层
分别配置一定浓度的吡咯溶液和氧化剂介质溶液,先将步骤(1)中得到的碳纳米管/聚醚砜复合膜浸入到配置好的吡咯溶液中一段时间,得到了覆盖了吡咯单体的碳纳米管/聚醚砜复合膜,之后,再将该膜迅速浸入到氧化剂介质溶液中一段时间。当膜浸入到氧化剂介质溶液中后,吡咯单体在碳纳米管/聚醚砜复合膜表面上发生化学聚合,形成聚吡咯-碳纳米管导电层,将此化学聚合后的导电复合膜浸入到蒸馏水中24h以上,以去除多余的吡咯单体和附着的氧化剂,从而得到一种聚吡咯-碳纳米管/聚醚砜复合导电膜。所制备的聚吡咯-碳纳米管/聚醚砜复合导电膜的渗透能力基本未变化,且具有优异的导电性,在提高膜的抗污染方面有很大的应用潜力。
本发明的有益技术效果为:本发明的一种聚吡咯-碳纳米管/聚醚砜复合导电膜,由于制备过程中将聚醚砜优良的机械性能,碳纳米管优异的导电性能、聚吡咯优良的亲水性能和聚吡咯与原始膜的优良附着性能有机结合起来,通过表面改性的方法制备导电复合膜。同时,制备过程中通过调节碳纳米管的含量、吡咯溶液与氧化剂溶液的浓度、化学聚合反应的时间,可以对膜的导电性、亲水性、孔结构进行高效地控制,进而优化膜的亲水性能,分离性能和导电性能。
本发明的一种聚吡咯-碳纳米管/聚醚砜复合导电膜保留了纯聚醚砜膜优良的机械强度和较高的纯水通量。
上述所得的聚吡咯-碳纳米管/聚醚砜复合导电膜的渗透能力基本未变化,且具有优异的导电性,复合导电膜的面电阻值为80-800Ω/sq。将复合导电膜作为阴极,在电场力作用下,可以进一步有效阻碍带负电荷的污染物质在膜表面上沉积,从而提高膜的抗污染能力,因此复合导电膜在抗污染方面有很大的应用潜力。
附图说明
图1为制备聚吡咯-碳纳米管/聚醚砜复合导电膜的过程示意图。
图2为实例1中制备的纯聚醚砜膜放大30000倍的表面扫描电子显微镜图像。
图3为实例2中制备的聚吡咯/聚醚砜复合膜放大30000倍的表面扫描电子显微镜图像。
图4为实例3中制备的聚吡咯-碳纳米管/聚醚砜复合膜放大30000倍的表面扫描电子显微镜图像。
图5为制备的纯聚醚砜膜、聚吡咯/聚醚砜复合膜和聚吡咯-碳纳米管/聚醚砜复合膜的面电阻的柱状图。
图6为制备的纯聚醚砜膜、聚吡咯/聚醚砜复合膜和聚吡咯-碳纳米管/聚醚砜复合膜在室温下,压力为1bar时测定的纯水通量的柱状图。
具体实施方式
下面结合具体实例对本发明作详细说明。
实例1:
(1)将19g聚醚砜和2g聚乙二醇加入到84mL的N,N-二甲基甲酰胺中,在70℃下加热搅拌6h形成均匀的铸膜液,将铸膜液放在真空烘箱中进行真空脱泡,用平板刮膜机刮膜并将其放到凝固浴中至有机溶剂完全去除,得到聚醚砜平板膜。然后,将羧基化碳纳米管和十二烷基硫酸钠按照质量比为1∶5的比例混合,并用超声分散机在200W下超声分散1h,从而制备分散均匀的浓度为0.4mg/mL的羧基化碳纳米管溶液。取5mL的碳纳米管溶液,在0.3Mpa的压力下,抽滤到制备的聚醚砜平板膜上。
(2)将步骤(1)制备的碳纳米管/聚醚砜复合膜浸入到0.2mol/L的吡咯溶液中6h,再将其迅速浸入到0.6mol/L的过硫酸铵溶液中6h。之后,将聚合了吡咯后的膜浸入到蒸馏水中24h以上,以去除多余的吡咯单体和附着的氧化剂,得到聚吡咯-碳纳米管/聚醚砜复合导电膜。
实例2:
(1)将19g聚醚砜和3g聚甲基丙烯酸甲酯加入到76mL的N-甲基吡咯烷酮中,在70℃下加热搅拌6h形成均匀的铸膜液,将铸膜液放在真空烘箱中进行真空脱泡,用平板刮膜机刮膜并将其放到凝固浴中至有机溶剂完全去除,得到聚醚砜平板膜。然后,将单壁碳纳米管和木质素磺酸钠按照质量比为1∶15的比例混合,并用超声分散机在300W下超声分散3h,从而制备分散均匀的浓度为0.6mg/mL的单壁碳纳米管溶液。取8mL的碳纳米管溶液,在0.5Mpa的压力下,抽滤到制备的聚醚砜平板膜上。
(2)将步骤(1)制备的碳纳米管/聚醚砜复合膜浸入到0.4mol/L的吡咯溶液12h,再将其迅速浸入到0.4mol/L的碘酸钾溶液中12h。之后,将聚合了吡咯后的膜浸入到蒸馏水中24h以上,以去除多余的吡咯单体和附着的氧化剂,得到聚吡咯-碳纳米管/聚醚砜复合导电膜。
实例3:
(1)将19g聚醚砜和1g聚乙烯吡咯烷酮加入到85mL的N,N-二甲基乙酰胺有机溶剂中,在70℃下加热搅拌6h形成均匀的铸膜液,将铸膜液放在真空烘箱中进行真空脱泡,用平板刮膜机刮膜并将其放到凝固浴中至有机溶剂完全去除,得到聚醚砜平板膜。然后,将多壁碳纳米管和十二烷基苯磺酸钠按照质量比为1∶10的比例混合,并用超声分散机在100W下超声分散2h,从而制备分散均匀的浓度为0.2mg/mL的多壁聚碳纳米管溶液。取10mL的碳纳米管溶液,在0.1Mpa的压力下,抽滤到制备的聚醚砜平板膜上。
(2)将步骤(1)制备的碳纳米管/聚醚砜复合膜浸入到0.3mol/L的吡咯溶液1h,再将其迅速浸入到0.5mol/L的三氯化铁溶液中1h。之后,将聚合了吡咯后的膜浸入到蒸馏水中24h以上,以去除多余的吡咯单体和附着的氧化剂,得到聚吡咯-碳纳米管/聚醚砜复合导电膜。

Claims (10)

1.一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法,其特征在于包括如下步骤:
(1)在聚醚砜平板膜上压力沉积碳纳米管层
将聚醚砜和添加剂加入到有机溶剂中,在70℃下加热搅拌6h形成均匀的铸膜液,将铸膜液放在真空烘箱中进行真空脱泡,用平板刮膜机刮膜并将其放到凝固浴中至有机溶剂完全去除,得到聚醚砜平板膜。将碳纳米管和分散剂以一定比例进行混合,并用超声分散机在一定功率下超声分散一段时间,从而制备分散均匀的碳纳米管溶液。取一定量的碳纳米管溶液,在一定压力下,抽滤到聚醚砜平板膜上,得到碳纳米管/聚醚砜复合膜。
(2)化学聚合聚吡咯层
分别配置一定浓度的吡咯溶液和氧化剂介质溶液,先将步骤(1)中得到的碳纳米管/聚醚砜复合膜浸入到配置好的吡咯溶液中一段时间,得到了覆盖了吡咯单体的碳纳米管/聚醚砜复合膜,之后,再将该膜迅速浸入到氧化剂介质溶液中一段时间。当膜浸入到氧化剂介质溶液中后,吡咯单体在碳纳米管/聚醚砜复合膜表面上发生化学聚合,形成聚吡咯-碳纳米管导电层,将此化学聚合后的导电复合膜浸入到蒸馏水中24h以上,以去除多余的吡咯单体和附着的氧化剂,从而得到一种聚吡咯-碳纳米管/聚醚砜复合导电膜。所制备的聚吡咯-碳纳米管/聚醚砜复合导电膜的渗透能力基本未变化,且具有优异的导电性,在提高膜的抗污染方面有很大的应用潜力。
2.根据权利要求1所述的步骤(1),其特征在于,添加剂可选用聚乙烯吡咯烷酮、聚乙二醇、聚甲基丙烯酸甲酯,其含量为1-3%;溶剂可选用N-N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基-2-吡咯烷酮,N-甲基吡咯烷酮,其含量为71-84%;凝固浴为去离子水。
3.根据权利要求1所述的步骤(1),其特征在于,碳纳米管可选用多壁碳纳米管,单壁碳纳米管,羧酸化碳纳米管,羟基化碳纳米管。
4.根据权利要求1所述的步骤(1),其特征在于,分散剂可选用十二烷基苯磺酸钠,十二烷基硫酸钠,木质素磺酸钠,十六烷基三甲基溴化铵。
5.根据权利要求1所述的步骤(1),其特征在于,碳纳米管和分散剂的质量配比为1∶(5-20),制备成分散均匀的浓度为0.02-1mg/mL的碳纳米管溶液。
6.根据权利要求1所述的步骤(1),其特征在于,超声分散机超声分散1-5h,超声功率为100-400W,抽滤的压力为0.1-0.5Mpa。进行抽滤所取的碳纳米管溶液为5-15mL。
7.根据权利要求1所述的步骤(2),其特征在于,氧化剂可选用三氯化铁,过硫酸铵,过氧化氢,碘酸钾。
8.根据权利要求1所述的步骤(2),其特征在于,氧化剂溶液的浓度为0.2-0.8mol/L,吡咯溶液的浓度为0.2-0.8mol/L,氧化剂和吡咯的摩尔浓度比为1∶1-4∶1。
9.根据权利要求1所述所述的步骤(2),其特征在于,复合膜浸入吡咯溶液中的时间为0.5-12h,在氧化剂介质溶液中的浸泡时间为0.5-12h。
10.根据权利1所制备的聚吡咯-碳纳米管/聚醚砜复合导电膜,其特征在于,复合导电膜的面电阻值为80-800Ω/sq。
CN201810446831.XA 2018-05-09 2018-05-09 一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法 Pending CN110465209A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810446831.XA CN110465209A (zh) 2018-05-09 2018-05-09 一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810446831.XA CN110465209A (zh) 2018-05-09 2018-05-09 一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法

Publications (1)

Publication Number Publication Date
CN110465209A true CN110465209A (zh) 2019-11-19

Family

ID=68504356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810446831.XA Pending CN110465209A (zh) 2018-05-09 2018-05-09 一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110465209A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559742A (zh) * 2019-12-25 2020-08-21 江西悦安新材料股份有限公司 一种提高碳纳米管稳定性的方法
CN112473372A (zh) * 2020-12-07 2021-03-12 江南大学 一种导电正渗透膜及其制备方法
CN113893701A (zh) * 2021-11-10 2022-01-07 贵州省材料产业技术研究院 一种导电聚醚砜分离膜的制备方法
CN114053888A (zh) * 2021-11-19 2022-02-18 泰州九润环保科技有限公司 一种亲水导电蒸馏膜及其制备方法和使用方法
CN114349134A (zh) * 2022-01-19 2022-04-15 清华大学 一种电控吸附膜、制备方法和电聚合装置以及自清洁方法
CN115155332A (zh) * 2022-07-07 2022-10-11 南京大学 一种低压电场耦合导电超滤膜原位抗膜污染的方法
CN115193476A (zh) * 2022-07-14 2022-10-18 中国科学院生态环境研究中心 光电催化膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509635A (zh) * 2011-10-31 2012-06-20 华中科技大学 一种基于碳布的柔性超级电容器的制备方法
CN103100314A (zh) * 2013-01-28 2013-05-15 大连理工大学 一种制备聚苯胺改性中性导电滤膜的方法
CN103840074A (zh) * 2014-02-12 2014-06-04 中国科学院化学研究所 一种聚吡咯包覆碳纳米管的复合热电材料的制备方法
CN104362293A (zh) * 2014-12-05 2015-02-18 上海空间电源研究所 一种具有多级结构的含硫正极材料、其制备方法及其用途
CN104924701A (zh) * 2015-06-18 2015-09-23 福建师范大学 一种碳基材料/聚合物复合材料及其制备方法
CN105013335A (zh) * 2015-06-29 2015-11-04 天津工业大学 一种聚合物导电复合膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509635A (zh) * 2011-10-31 2012-06-20 华中科技大学 一种基于碳布的柔性超级电容器的制备方法
CN103100314A (zh) * 2013-01-28 2013-05-15 大连理工大学 一种制备聚苯胺改性中性导电滤膜的方法
CN103840074A (zh) * 2014-02-12 2014-06-04 中国科学院化学研究所 一种聚吡咯包覆碳纳米管的复合热电材料的制备方法
CN104362293A (zh) * 2014-12-05 2015-02-18 上海空间电源研究所 一种具有多级结构的含硫正极材料、其制备方法及其用途
CN104924701A (zh) * 2015-06-18 2015-09-23 福建师范大学 一种碳基材料/聚合物复合材料及其制备方法
CN105013335A (zh) * 2015-06-29 2015-11-04 天津工业大学 一种聚合物导电复合膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIFEN LIU ET AL.: "Preparation of highly conductive cathodic membrane with graphene (oxide)/PPy and the membrane antifouling property in filtrating yeast suspensions in EMBR", 《JOURNAL OF MEMBRANE SCIENCE》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559742A (zh) * 2019-12-25 2020-08-21 江西悦安新材料股份有限公司 一种提高碳纳米管稳定性的方法
CN112473372A (zh) * 2020-12-07 2021-03-12 江南大学 一种导电正渗透膜及其制备方法
CN113893701A (zh) * 2021-11-10 2022-01-07 贵州省材料产业技术研究院 一种导电聚醚砜分离膜的制备方法
CN114053888A (zh) * 2021-11-19 2022-02-18 泰州九润环保科技有限公司 一种亲水导电蒸馏膜及其制备方法和使用方法
CN114349134A (zh) * 2022-01-19 2022-04-15 清华大学 一种电控吸附膜、制备方法和电聚合装置以及自清洁方法
CN115155332A (zh) * 2022-07-07 2022-10-11 南京大学 一种低压电场耦合导电超滤膜原位抗膜污染的方法
CN115155332B (zh) * 2022-07-07 2023-12-19 南京大学 一种低压电场耦合导电超滤膜原位抗膜污染的方法
CN115193476A (zh) * 2022-07-14 2022-10-18 中国科学院生态环境研究中心 光电催化膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110465209A (zh) 一种聚吡咯-碳纳米管/聚醚砜复合导电膜及其制备方法
CN104986758A (zh) 一种锂电池用三维网络石墨烯及其制备方法
CA2787645A1 (en) Method of manufacturing proton-conducting membranes
CN103738935B (zh) 一种以多孔铜为模板制备多孔碳材料的方法
TW200805763A (en) Membrane electrode assemblies prepared from fluoropolymer dispersions
CN109575755B (zh) 一种季铵化木质素分散石墨烯/碳纳米管基复合防腐涂层及其制备方法与应用
CN107089707B (zh) 电容型脱盐电极用核壳结构三维石墨烯复合材料及其制备方法
CN1349668A (zh) 非晶质含氟聚合物的电化学应用
CN103253740A (zh) 三维分级结构石墨烯/多孔碳复合电容型脱盐电极的制备方法
CN104927073A (zh) 银纳米线/石墨烯聚合物复合薄膜的气液界面自组装制备方法
CN105013335A (zh) 一种聚合物导电复合膜及其制备方法
CN106450234B (zh) 一种球形二氧化钛/石墨烯柔性复合材料的制备方法
CN105576264A (zh) 一种气体扩散电极及其制备和应用
KR20170129884A (ko) 다공성 전극 및 이로부터 제조된 전기화학 전지 및 액체 흐름 배터리
US20180102549A1 (en) Porous Electrodes and Electrochemical Cells and Liquid Flow Batteries Therefrom
CN112646212B (zh) 一种聚苯胺包覆的金属有机框架纳米阵列薄膜的制备方法及其产品和应用
CN109745865A (zh) 一种基于石墨/二氧化钛复合材料的聚偏氟乙烯电催化超滤膜
US20240047704A1 (en) Gas diffusion system with high purity
CN108232262A (zh) 高阻隔、高耐受复合质子交换膜及其制备方法
CN105405671B (zh) 氧化石墨烯/纯粹石墨烯/聚苯胺三元导电复合材料及其制备方法
TW201010940A (en) Mathod for making carbon nanotube/conductive polymer composite
CN1522475A (zh) 质子导体及采用它的电化学装置
CN110898861A (zh) 双极膜的制备方法以及双极膜
CN111850657A (zh) 一种聚吡咯/植酸/氧化石墨烯复合防腐蚀涂层的制备方法及应用
KR101353915B1 (ko) 축전식 탈염용 복합전극 제조방법 및 제조장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191119