CN110452691B - 一种氮氧化物蓝绿色荧光粉及其制备方法 - Google Patents

一种氮氧化物蓝绿色荧光粉及其制备方法 Download PDF

Info

Publication number
CN110452691B
CN110452691B CN201910484299.5A CN201910484299A CN110452691B CN 110452691 B CN110452691 B CN 110452691B CN 201910484299 A CN201910484299 A CN 201910484299A CN 110452691 B CN110452691 B CN 110452691B
Authority
CN
China
Prior art keywords
blue
raw materials
equal
phosphor
fluorescent powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910484299.5A
Other languages
English (en)
Other versions
CN110452691A (zh
Inventor
余华
季振国
苏伟涛
陈雷锋
钟家松
赵红挺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910484299.5A priority Critical patent/CN110452691B/zh
Publication of CN110452691A publication Critical patent/CN110452691A/zh
Application granted granted Critical
Publication of CN110452691B publication Critical patent/CN110452691B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本发明公开一种氮氧化物蓝绿色荧光粉,其化学式为:(Mga‑xSia)Al(b‑2a)OcN(3b‑2c)/3:xEu2+,其中0.5≤a≤1,2≤b≤4,1≤c≤2,0.001≤x≤0.1。制备时,按上述化学式的化学计量比称取镁的无机盐、氧化硅、氮化硅、氧化铝、氮化铝和氧化铕等原料;加入镁、铝的卤化物中的任意两种以上作为卤化物混合助熔剂;将上述原料和卤化物混合助熔剂的均匀混合物在还原气氛下于高温炉内烧结后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。本发明所得荧光粉在紫外、紫光和蓝光芯片激发下发射蓝绿光,荧光粉分散性好、颗粒度均匀、化学稳定性好和发光效率高。制备时,本发明以化学式中所含金属离子的卤化物中的任意两种为助熔剂,避免杂质离子引入,提高产物的纯度,降低烧结温度。

Description

一种氮氧化物蓝绿色荧光粉及其制备方法
技术领域
本发明涉及氮氧化物蓝绿色荧光粉及其制备方法,属于发光材料技术领域。
背景技术
白光LED是一种将电能转换为白光的固态半导体器件,又称半导体照明,具有效率高、体积小、寿命长、安全、低电压、节能、环保等诸多优点,被人们看成是继白炽灯、荧光灯、高压气体放电灯之后第四代照明光源,是未来照明市场上的主流产品。
目前出现了各种各样的白光LED制备方法,其中蓝光LED芯片与黄色荧光材料组合、蓝光LED芯片与红色和绿色荧光材料组合、紫光LED芯片与三基色荧光材料组合这三种方法以价格低、制备简单成为制备白光LED的主要方法。蓝光LED芯片与黄色荧光材料组合是研究最早也是最成熟的方法,制备的白光LED发光效率已经远远超过白炽灯,但是显色指数低,色温高,不能作为室内照明使用。为了提高白光LED的显色性,各国科学家研发了蓝光LED芯片与红、绿色荧光材料组合和紫光LED芯片与红、绿、蓝三基色荧光材料组合另外两种实现白光LED的方法。
目前InGaN芯片的发射波长已经移至近紫外区域,能为荧光粉提供更高的激发能量,进一步提高白光LED的光强。由于紫外光不可见,紫外激发白光LED的颜色只能由荧光粉决定,因此颜色稳定,显色指数高,使用近紫外InGaN芯片和蓝、黄荧光粉或者与三基色荧光粉组合来实现白光的方案成为目前白光LED行业发展的重点。绿色荧光粉是该方案中不可缺少的成分。
发明内容
本发明的目的是提供一种新的氮氧化物蓝绿色荧光粉及其制备方法。
为实现上述目的,本发明所采取的技术方案是:本发明氮氧化物蓝绿色荧光粉具有如下化学表示式:(Mga-xSia)Al(b-2a)OcN(3b-2c)/3:xEu2+,其中0.5≤a≤1,2≤b≤4,1≤c≤2,0.001≤x≤0.1。
本发明氮氧化物蓝绿色荧光粉的制备方法包括:
按化学式(Mga-xSia)Al(b-2a)OcN(3b-2c)/3:xEu2+的化学计量比称取相应的原料,其中,0.5≤a≤ 1,2≤b≤4,1≤c≤2,0.001≤x≤0.1,所述原料分别为镁的无机盐、氧化硅、氮化硅、氧化铝、氮化铝和氧化铕;加入卤化物混合助熔剂,所述卤化物混合助熔剂为氟化镁、氯化镁和氟化铝中的任意两种;将所述原料和卤化物混合助熔剂的均匀混合物在还原气氛下于高温炉内烧结后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
进一步地,本发明所述卤化物混合助熔剂为氟化镁、氯化镁和氟化铝中的任意两种以上。
进一步地,本发明所述卤化物混合助溶剂中的任一种的质量不低于所述原料的总质量的1%,混合助熔剂的总质量为所述原料的总质量的2%~7%。
进一步地,本发明所述烧结的温度为1450~1500℃,烧结时间为2~7小时。
进一步地,本发明所述镁的无机盐为碳酸镁。
进一步地,本发明所述还原气氛为氮氢混合气或CO气氛。
与现有技术相比,本发明的有益效果是:
本发明的蓝绿色荧光粉具有宽的激发带宽,覆盖紫外、紫光和蓝光区域,激发峰位于381nm 附近,与紫外、紫光和蓝光芯片的发射峰重叠很好,能够有效被激发。本发明荧光粉的发射峰位于460nm附近,适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。本发明荧光粉分散性好、颗粒度均匀、化学稳定性好和发光效率高。本发明的制备方法通过以化学表示式中所含的金属离子镁、铝的卤化物氟化镁、氯化镁和氟化铝这三种中的任意两种为混合助熔剂,来避免杂质离子的引入,提高产物的纯度,并降低烧结温度低至1450~1500℃。而且,在本发明中,除非使用氟化镁、氯化镁和氟化铝这三种中的任意两种作为混合助熔剂,如果使用其中的一种或者三种一起使用,或者使用其他物质作为助溶剂,都将导致得不到目标产物或得到的产物不纯。
附图说明
图1是实施例1制备的荧光粉体的激发光谱图(监控波长460纳米);
图2是实施例1制备的荧光粉体的发射光谱图(激发波长381纳米);
图3是本发明提供的实施例制备的荧光粉体和标准图谱XRD图谱。
具体实施方式
实施例1:
按照(Mg0.499Si0.5)AlON4/3:0.001Eu2+称取MgCO3、SiO2、Si3N4、AlN和Eu2O3,MgCO3、SiO2、 Si3N4、AlN和Eu2O3的摩尔比为0.499:0.25:1/12:1:0.0005;加入MgF2和MgCl2的混合物作为助熔剂,其总质量为上述五种原料的总质量的2%(其中,MgF2的质量为原料总质量的1%,MgCl2的质量为原料总质量的1%)。将上述原料充分研磨并与助溶剂混合均匀后,放置坩埚中,在高温炉内于CO气氛下,在1450℃焙烧7小时,后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
从图1中可以看出,本实施例得到的荧光粉的激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,从图2中可以看出,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。从图3中可以看出,本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例2:
按照(Mg0.49Si0.5)AlON4/3:0.01Eu2+称取MgCO3、SiO2、Si3N4、AlN和Eu2O3,MgCO3、SiO2、Si3N4、AlN和Eu2O3的摩尔比为0.49:0.25:1/12:1:0.005;加入MgF2和AlF3的混合物作为助熔剂,其总质量为上述五种原料的总质量的5%(MgF2的质量为原料总质量的1%,AlF3的质量为原料总质量的4%)。将上述原料充分研磨并与助溶剂混合均匀后,放置坩埚中,在高温炉内于 5%H2+95%N2(体积比)的氮氢混合气氛下,在1475℃焙烧5小时,后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。从图3中可以看出,本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例3:
按照(Mg0.4Si0.5)AlON4/3:0.1Eu2+称取MgCO3、SiO2、Si3N4、AlN和Eu2O3,MgCO3、SiO2、Si3N4、AlN和Eu2O3的摩尔比为0.4:0.25:1/12:1:0.005;加入MgCl2和AlF3的混合物作为助熔剂,其总质量为上述五种原料总质量的7%(MgCl2的质量为原料总质量的3%,AlF3的质量为原料总质量的4%)。将上述原料充分研磨并与助熔剂混合均匀后,放置坩埚中,在高温炉内于 5%H2+95%N2(体积比)的氮氢混合气氛下,在1500℃焙烧2小时,后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。从图3中可以看出,本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例4:
按照(Mg0.99Si)ON4/3:0.01Eu2+称取MgCO3、Si3N4和Eu2O3,MgCO3、Si3N4和Eu2O3的摩尔比为0.99:1/3:0.005,加入MgF2和MgCl2的混合物作为助熔剂,其总质量为原料总质量的5%(其中,MgF2的质量为原料总质量的3%,MgCl2的质量为原料总质量的2%)。将上述三种原料充分研磨并与混合助溶剂混合均匀后,放置坩埚中,在高温炉内于CO气氛下,在1500℃焙烧2小时,后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。从图3中可以看出,本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例5:
按照(Mg0.99Si)O2N2/3:0.01Eu2+称取MgCO3、SiO2、Si3N4和Eu2O3,MgCO3、SiO2、Si3N4和Eu2O3的摩尔比为0.99:1/2:1/6:0.005;加入MgF2和MgCl2的混合物作为助熔剂,其总质量为原料总质量的7%(其中,MgF2的质量为原料总质量的1%,MgCl2的质量为原料总质量的6%)。将上述四种原料充分研磨并与混合助溶剂混合均匀后,放置坩埚中,在高温炉内于5%H2+95%N2 (体积比)的氮氢混合气氛下,在1450℃焙烧7小时,后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例6:
按照(Mg0.99Si)Al2ON10/3:0.01Eu2+称取MgCO3、Si3N4、AlN和Eu2O3,MgCO3、Si3N4、AlN和Eu2O3的摩尔比为0.99:1/3:2:0.005;加入MgCl2和AlF3的混合物作为助熔剂,其总质量为原料总质量的2%(MgCl2的质量为原料总质量的1%,AlF3的质量为原料总质量的1%)。将上述四种原料充分研磨并与混合助溶剂混合均匀后,放置坩埚中,在高温炉内于CO气氛下,在1500℃焙烧2小时,后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例7:
按照(Mg0.99Si)Al2O2N8/3:0.01Eu2+称取MgCO3、SiO2、Si3N4、AlN和Eu2O3,MgCO3、SiO2、Si3N4、AlN和Eu2O3的摩尔比为0.99:1/2:1/6:2:0.005;加入MgF2和MgCl2的混合物作为助熔剂,其总质量为原料总质量的7%(其中,MgF2的质量为原料总质量的3%,MgCl2的质量为原料总质量的4%)。将上述五种原料充分研磨混合均匀后,放置坩埚中,在高温炉内于5%H2+95%N2 (体积比)的氮氢混合气氛下,在1450℃焙烧7小时,后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例8:
按照(Mg0.49Si0.5)AlON4/3:0.01Eu2+称取MgCO3、SiO2、Si3N4、AlN和Eu2O3,MgCO3、SiO2、Si3N4、AlN和Eu2O3的摩尔比为0.49:1/4:1/12:1:0.005;加入MgCl2和AlF3的混合物作为助熔剂,其总质量为原料总质量的5%(其中,MgCl2的质量为原料总质量的2%,AlF3的质量为原料总质量的3%)。将上述五种原料充分研磨并与混合助溶剂混合均匀后,放置坩埚中,在高温炉内于5%H2+95%N2(体积比)的氮氢混合气氛下,在1450℃焙烧7小时,后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例9:
按照(Mg0.49Si0.5)AlO2N2/3:0.01Eu2+称取MgCO3、SiO2、Al2O3、AlN和Eu2O3,MgCO3、SiO2、Al2O3、AlN和Eu2O3的摩尔比为0.49:1/2:1/6:2/3:0.005;加入MgF2和MgCl2的混合物作为助熔剂,其总质量为原料总质量的7%(MgF2的质量为原料总质量的5%,MgCl2的质量为原料总质量的2%)。将上述五种原料充分研磨并与混合助溶剂混合均匀后,放置坩埚中,在高温炉内于 CO气氛下,在1500℃焙烧2小时,后冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例10:
按照(Mg0.49Si0.5)Al3ON10/3:0.01Eu2+称取MgCO3、SiO2、Si3N4、AlN和Eu2O3,MgCO3、SiO2、 Si3N4、AlN和Eu2O3的摩尔比0.49:1/4:1/12:3:0.005;加入MgF2和AlF3的混合物作为助熔剂,其总质量为原料总质量的7%(MgF2的质量为原料总质量的2%,AlF3的质量为原料总质量的5%)。将上述五种原料充分研磨并与混合助溶剂混合均匀后,放置坩埚中,在高温炉内于CO气氛下,在1450℃焙烧7小时,后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉可以被紫外、紫光和蓝光芯片有效激发。当激发波长为381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
实施例11:
按照(Mg0.49Si0.5)Al3O2N8/3:0.01Eu2+称取MgCO3、SiO2、Al2O3、AlN和Eu2O3,MgCO3、SiO2、 Al2O3、AlN和Eu2O3的摩尔比为0.49:1/2:1/6:8/3:0.005,加入MgF2和AlF3的混合助熔剂,其总质量为原料总质量的2%(其中,MgF2的质量为原料总质量的1%,AlF3的质量为原料总质量的 1%)。将上述五种原料充分研磨并与混合助溶剂混合均匀后,放置坩埚中,在高温炉内于 5%H2+95%N2(体积比)的氮氢混合气氛下,在1500℃焙烧2小时,后冷却到室温,得到氮氧化物蓝绿色荧光粉。
本实施例得到的荧光粉激发谱为一宽谱,覆盖了紫外、紫光和蓝光区域,激发峰位于381nm 附近,光谱峰值高,说明本实施例的荧光粉被紫外、紫光和蓝光芯片有效激发。当激发波长为 381nm时,本实施例的荧光粉的发射为宽带蓝绿光发射,发射峰位于460nm附近,说明本实施例的荧光粉适合做紫外、紫光和蓝光激发的蓝绿色荧光粉。本实施例的荧光粉的XRD的衍射峰强度高且与标准图谱吻合较好,说明本实施例的荧光粉具有较高的结晶度和纯度。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (9)

1.一种氮氧化物蓝绿色荧光粉,其特征在于,具有如下化学表示式:(Mga-xSia)Al(b-2a)OcN(3b-2c)/3:xEu2+,其中,a=0.5,b=2,c=1,0.001≤x≤0.1。
2.一种权利要求1所述的氮氧化物蓝绿色荧光粉的制备方法,其特征在于,包括:
按化学式(Mga-xSia)Al(b-2a)OcN(3b-2c)/3:xEu2+的化学计量比称取相应的原料,其中,a=0.5,b=2,c=1,0.001≤x≤0.1,所述原料分别为镁的无机盐、氧化硅、氮化硅、氧化铝、氮化铝和氧化铕;加入卤化物混合助熔剂,所述卤化物混合助熔剂为氟化镁、氯化镁和氟化铝中的任意两种;将所述原料和卤化物混合助熔剂的均匀混合物在还原气氛下于高温炉内烧结后缓慢冷却到室温,得到氮氧化物蓝绿色荧光粉。
3.根据权利要求2所述的制备方法,其特征在于:所述卤化物混合助溶剂中的任一种的质量不低于所述原料的总质量的1%,混合助熔剂的总质量为所述原料的总质量的2%~7%。
4.根据权利要求2或3所述的制备方法,其特征在于:所述烧结的温度为1450~1500℃,烧结时间为2~7小时。
5.根据权利要求2或3所述的制备方法,其特征在于:所述镁的无机盐为碳酸镁。
6.根据权利要求4所述的制备方法,其特征在于:所述镁的无机盐为碳酸镁。
7.根据权利要求2、3或6所述的制备方法,其特征在于:所述还原气氛为氮氢混合气或CO气氛。
8.根据权利要求4所述的制备方法,其特征在于:所述还原气氛为氮氢混合气或CO气氛。
9.根据权利要求5所述的制备方法,其特征在于:所述还原气氛为氮氢混合气或CO气氛。
CN201910484299.5A 2019-06-05 2019-06-05 一种氮氧化物蓝绿色荧光粉及其制备方法 Active CN110452691B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910484299.5A CN110452691B (zh) 2019-06-05 2019-06-05 一种氮氧化物蓝绿色荧光粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910484299.5A CN110452691B (zh) 2019-06-05 2019-06-05 一种氮氧化物蓝绿色荧光粉及其制备方法

Publications (2)

Publication Number Publication Date
CN110452691A CN110452691A (zh) 2019-11-15
CN110452691B true CN110452691B (zh) 2022-01-04

Family

ID=68480656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910484299.5A Active CN110452691B (zh) 2019-06-05 2019-06-05 一种氮氧化物蓝绿色荧光粉及其制备方法

Country Status (1)

Country Link
CN (1) CN110452691B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029230A (zh) * 2007-04-03 2007-09-05 北京宇极科技发展有限公司 一种氮氧化合物发光材料及其制法以及由其制成的照明或显示光源
CN101948689A (zh) * 2010-09-29 2011-01-19 彩虹集团公司 一种含Al元素氮氧化物绿色荧光粉材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029230A (zh) * 2007-04-03 2007-09-05 北京宇极科技发展有限公司 一种氮氧化合物发光材料及其制法以及由其制成的照明或显示光源
CN101948689A (zh) * 2010-09-29 2011-01-19 彩虹集团公司 一种含Al元素氮氧化物绿色荧光粉材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
High temperature syntheses of novel nitrido- and oxonitrido-silicates and sialons using rf furnaces;Wolfgang Schnick;《JOURNAL OF MATERIALS CHEMISTRY》;19990131;第9卷(第1期);全文 *
白光LED用氮(氧)化物荧光粉研究进展;王贵超;《中国照明电器》;20131025;全文 *

Also Published As

Publication number Publication date
CN110452691A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN112094647B (zh) 一种窄带发射氮氧化物红色荧光粉及其制备方法
WO2012088788A1 (zh) 一种氮氧化合物发光材料、其制备方法以及由其制成的照明光源
CN102260498B (zh) 一种白光led用氮氧化物橙红色荧光粉及其制备方法
CN111234814B (zh) 一种Mn4+掺杂的氮氧化物红色荧光粉及制备方法
CN101760194B (zh) 一种白光led用红色荧光粉及其制备方法
CN104087293A (zh) 红色荧光体及其碳热还原氮化制备方法及应用
Xiao et al. Y4MgSi3O13: RE3+ (RE= Ce, Tb and Eu) nanophosphors for a full-color display
CN111518551A (zh) 一种掺杂Mn4+的高色纯度氟化物红光材料及制备方法
CN101307228B (zh) 氯铝硅酸盐荧光粉及其制备方法
CN102660284A (zh) 一种led用氮化物红色荧光粉的制造方法
CN104498031B (zh) 一种白光led用磷酸盐黄色荧光粉及其制备方法
CN104962286A (zh) 石榴石结构的复相荧光材料及其制备方法
CN110240900B (zh) 一种Eu2+掺杂的窄带绿色发光材料、制备方法及照明与显示光源
CN107163934B (zh) 四价锰离子掺杂氟氧化铝锂红色荧光粉及其制备方法
CN110452691B (zh) 一种氮氧化物蓝绿色荧光粉及其制备方法
CN107163943B (zh) 一种适于近紫外激发的光谱可调控的荧光粉及其制备方法
CN115305088A (zh) 基于石榴石结构衍生的荧光粉材料及其制备方法和应用
CN110283588B (zh) 一种照明显示用白光led用荧光粉及其制备和应用
CN111171812A (zh) 一种掺杂二价锰离子超窄带绿光荧光粉的制备方法及应用
CN108048085B (zh) 一种磷硅酸盐绿色荧光粉及其制备方法
CN113999671B (zh) 一种照明显示白光led用荧光粉及其制备和应用
CN116410745B (zh) 一种荧光粉材料
CN105238401B (zh) 基于紫外光或近紫外光激发的白光荧光粉及其制备方法
CN109021972B (zh) 一种白光led用硼酸盐蓝色荧光粉及其制备方法
CN109929554B (zh) 一种硼磷酸盐绿色荧光粉及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant