CN110436949A - 一种高导热沥青基炭纤维/碳化硅复合材料的制备方法 - Google Patents
一种高导热沥青基炭纤维/碳化硅复合材料的制备方法 Download PDFInfo
- Publication number
- CN110436949A CN110436949A CN201810423334.8A CN201810423334A CN110436949A CN 110436949 A CN110436949 A CN 110436949A CN 201810423334 A CN201810423334 A CN 201810423334A CN 110436949 A CN110436949 A CN 110436949A
- Authority
- CN
- China
- Prior art keywords
- composite material
- carbon fiber
- based carbon
- thermal conductivity
- pitch based
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C04B35/806—
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明涉及一种高导热沥青基炭纤维/碳化硅复合材料的制备方法:将沥青基炭纤维置于真空下用聚碳硅烷‑二甲苯溶液浸渍3~12h;将浸渍后的沥青基炭纤维在一定温度下烘2~5h;然后将烘过的沥青基炭纤维在150~250℃、1~10MPa下热模压成型;将预成型体在60~150℃下烘2~5h;将预成型放入体炭化炉中,以3~15℃/min的升至1000~1500℃,保温0.5~2h进行高温裂解;重复以上浸渍‑干燥‑裂解过程3~15次,即得到沥青基炭纤维增强碳化硅复合材料。该复合材料具有良好的力学性能和热导率,弯曲强度可达150MPa以上,材料的热导率达80 W•m‑1•K‑1以上。本发明在首周期裂解前采用热模压辅助成型工艺,从而提高了浸渍效率,减少了致密化周期,大大减少了现有技术制备碳纤维/碳化硅复合材料的制备周期,从而有效的节约了材料的制备成本。
Description
技术领域
本发明涉及炭纤维复合材料的制备方法,尤其是涉及一种高导热沥青基炭纤维/碳化硅复合材料的制备方法。
背景技术
随着科学技术的不断发展,对于材料的性能要求越来越严苛,现有的散热材料已经渐渐无法满足社会的需求,若热量不能及时散掉,会导致设备的性能大大退化,需要用导电性好、热膨胀系数小、热导率高,又有较高强度和刚度的材料做基板,一边迅速传走热量,避免产生热应力、微裂纹和翘曲,来提高器件的可靠性。因此导热系数和热膨胀系数是导热材料所必须考虑的两大因素,另外考虑到航空航天领域的要求,材料的密度也是一个重要的因素。W-Cu合金具有优异的导热性能及较低的热膨胀系数和良好的封装气密性,但是其密度过高,在一些对密度较为敏感的领域,如航空航天、便携电子仪器等很难获得广泛的应用。为了解决单一金属或陶瓷作为导热材料的各种缺点,满足高性能导热材料的要求,材料的复合化已经成为必然的趋势。炭纤维增强碳化硅复合材料因其具有耐高温、抗氧化、低密度、耐烧蚀、热导率高等优异性能,具有比C/C复合材料更好的抗氧化性,是一种广泛应用于航空航天领域的新型复合材料,在飞行器引擎换热器、卫星天基雷达相阵天线等高温高导热材料领域具有非常高的应用潜力。
由于Cf/SiC复合材料具有优异的性能,国内外很多研究学者对该材料进行了大量的研究。最常用的制备Cf/Si复合材料的制备方法有:化学气象渗透法(Chemical VaporInfiltration, CVI)、先驱体转化法(Precursor Infiltration Pyrolysis, PIP)及多种工艺结合的制备工艺等。采用CVI法制备的复合材料近些年来已经取得了很大的成就,但其仍然存在制备成本高、制备周期长、工艺较复杂的一系列缺点,还需大量的研究人员进行进一步的深入研究及确定更加优异的制备工艺。PIP法主要是通过将纤维或纤维的预成型体置于液态的先驱体溶液中,在一定的温度和真空下,将先驱体浸渗到纤维或预成型体中,然后经干燥和高温裂解使先驱体转化为单组元或多组元的基体。
先驱体转化法与CVI法相比,其优点有:(1)成型温度低、裂解温度低、工艺简单;(2)能获得成分均匀、纯度很高的单组元或多组员的基体;(3)可以制备出形状复杂的复合材料的零部件。然而PIP法的缺点也不容忽视,其所得产物效率较低,因此需多次进行浸渗裂解,因而材料的制备周期较长,制备成本也较高;先驱体裂解过程中,会使纤维损伤或和纤维形成较强的界面,使复合材料的强度下降;先驱体裂解过程中会产生较大的体积收缩、易产生气孔和裂纹,有些气孔甚至为闭孔,影响复合材料以后的浸渗能力,使得复合材料不易致密化。虽然PIP法有以上缺点,我们仍需对PIP法制备Cf/SiC复合材料进行更加深入的研究,获得优异的制备工艺。
采用聚丙烯腈炭纤维作为增强体制备的炭纤维增强碳化硅复合材料,复合材料具有很高的弯曲强度可达500MPa以上,但其材料的热导率较低只有14 W•m-1•K-1左右,其导热性能已经难以满足社会发展对材料导热性能的要求。中间相沥青基炭纤维具有较低的密度、低的热膨胀系数、优异的机械性能和很高的热导率,例如美国氰特公司生产的沥青基炭纤维的热导率达到1100 W•m-1•K-1,高导热沥青基炭纤维已被广泛用于制备高导热复合材料。近年来,我国在高性能炭纤维的制备技术方面已取得了重大进步,SiC陶瓷具有密度低、硬度高、耐高温、抗氧化、耐腐蚀、耐磨损、热导率高及化学稳定性好等优良的物理化学性能,但其弯曲强度、断裂韧性等较差,从而限制了其大规模应用,这就为制备高热导率的炭纤维/碳化硅复合材料提供了新的思路。
发明内容
本发明所要解决的技术问题是:针对现有炭纤维/碳化硅复合材料热导率低的缺陷,本发明提供一种大大减少样品制备周期,而且具有良好力学性能和高热导率的沥青基炭纤维增强碳化硅复合材料的制备方法。
一种沥青基炭纤维/碳化硅复合材料的制备方法,包括以下步骤:
(1)将沥青基炭纤维整齐排列在模具中并置于真空条件下,用聚碳硅烷先驱体溶液浸渍3-12h;
(2)将浸渍后的沥青基炭纤维置于鼓风干燥箱60~150℃下烘干;
(3)将烘过的沥青基炭纤维于150~250℃、1~15MPa下热模压成纤维预成型体;
(4)将纤维预成型体置于鼓风干燥箱60~120℃烘干;
(5)将纤维的预成型体置于碳化炉中,以3~15℃/min的升温速率升温到1000~1500℃,达到温度后保温0.5-2h进行高温裂解;
重复以上浸渍-干燥-裂解过程(重复次数3-15次),最终得到沥青基炭纤维增强碳化硅复合材料。
上述的制备方法中,所采用的聚碳硅烷先驱体溶液为聚碳硅烷-二甲苯溶液,聚碳硅烷质量分数为20%~70%,上述烘箱干燥优化的时间为2~5h。
与现有的技术相比,本发明具有以下优点:
本发明的沥青基炭纤维增强碳化硅复合材料制备的Cf/SiC复合材料与现有的Cf/SiC复合材料相比,本发明使用的纤维为沥青基石墨纤维,其含碳量更高,纤维的热导率更高,复合材料中没有Si-O-C相,从而制得的沥青基碳化硅复合材料具有更高的热导率和更高的抗氧化性能。
本发明的沥青基炭纤维增强碳化硅复合材料的制备方法,其裂解前采用热模压辅助工艺,提高了浸渍效率,减少了致密化周期,大大缩短了纤维增强碳化硅复合材料的制备周期,从而有效的节约了材料的制备成本。
本发明的沥青基炭纤维增强碳化硅复合材料的制备方法,其复合材料的密度较高,纤维与碳化硅结合较好,复合材料弯曲强度高,其弯曲强度为151MPa,材料的热导率达87 W•m-1•K-1。
附图说明
图1是本发明3个浸渍-裂解周期制得的复合材料断口形貌的扫描电镜照片。
图2是本发明5个浸渍-裂解周期制得的复合材料断口形貌的扫描电镜照片。
图3是本发明7个浸渍-裂解周期制得的复合材料断口形貌的扫描电镜照片。
具体实施方式
下面给出本发明的实施例,是对本发明的进一步说明。
实施例1:
将聚碳硅烷研成粉末,称取一定量的二甲苯溶液放置于玻璃容器内,然后将聚碳硅烷粉末倒入装有二甲苯溶液的玻璃容器内,使聚碳硅烷质量与二甲苯质量相等,再用塑料薄膜将玻璃容器密封,将整个玻璃容器放置于超声环境下1h,使聚碳硅烷的先驱体溶液分散均匀,从而配置好浸渗用的溶液。采用日本石墨纤维公司生产的XN-80中间相沥青基炭纤维(室温热导率为320 W•m-1•K-1,直径为10μm,密度为2.2g/cm3),将炭纤维清洗烘干后整齐排列在模具中,将聚碳硅烷的先驱体溶液加入到模具中,然后将模具置于真空环境下60℃浸渗3h,将浸渗好的纤维置于鼓风干燥箱下110℃干燥4h,将浸渗-干燥好的纤维以10℃/min的速率升温到200℃,然后开始加压,实验所采用的压力为5MPa,保压5min,冷却到室温得到纤维的预成型体。将试样连同模具一起置于管式炉中,抽真空至炉内压力小于50Pa,通入N2(流量为250sccm),以7℃/min的升温速率升温到600℃并保温10min,然后以5℃/min的升温速率升温到1100℃后保温1h进行高温裂解。重复上述的浸渗-干燥-裂解3个周期后,得到Cf/SiC复合材料,复合材料的密度为1.67g•cm-3,其弯曲强度为24MPa,材料的热导率为37.3W•m-1•K-1。
实施例2:
过程同实施例1,不同实施例1的是重复上述的浸渗-干燥-裂解4个周期后,得到Cf/SiC复合材料,复合材料的密度为1.76g•cm-3,其弯曲强度为96MPa,材料的热导率为55.7 W•m-1•K-1。
实施例3:
过程同实施例1,不同实施例1的是重复上述的浸渗-干燥-裂解5个周期后,得到Cf/SiC复合材料,复合材料的密度为1.96g•cm-3,其弯曲强度为133MPa,材料的热导率为73.4 W•m-1•K-1。
实施例4:
过程同实施例1,不同实施例1的是重复上述的浸渗-干燥-裂解6个周期后,得到Cf/SiC复合材料,复合材料的密度为2.06g•cm-3,其弯曲强度为146Mpa,材料的热导率为81.3 W•m-1•K-1。
实施例5:
过程同实施例1,不同实施例1的是重复上述的浸渗-干燥-裂解7个周期后,得到Cf/SiC复合材料,复合材料的密度为2.12g•cm-3,其弯曲强度为151Mpa,材料的热导率为87.0 W•m-1•K-1。
实施例6:
过程同实施例1,不同实施例1的是实验所采用的压力为1MPa,重复上述的浸渗-干燥-裂解7个周期后,得到Cf/SiC复合材料,复合材料的密度为1.77g•cm-3,其弯曲强度为101MPa,材料的热导率为58.1 W•m-1•K-1。
实施例7:
过程同实施例1,不同实施例1的是实验所采用的压力为15MPa,重复上述的浸渗-干燥-裂解7个周期后,得到Cf/SiC复合材料,复合材料的密度为1.71g•cm-3,其弯曲强度为88MPa,材料的热导率为49.6 W•m-1•K-1。
本发明提出的高导热沥青基炭纤维/碳化硅复合材料的制备方法,本领域技术人员可以在权利要求的范围内适当改变原料和工艺路线等环节实施,在不脱离本发明内容、精神和范围内对本文所述的方法和技术路线进行改动或重新组合,来实现最终的制备技术,这并不影响本发明的实质内容。
Claims (5)
1.在一种高导热沥青基炭纤维/碳化硅复合材料的制备方法,其特征是以下步骤:
将沥青基炭纤维整齐排列在模具中并置于真空条件下,用聚碳硅烷先驱体溶液浸渍3~12h;
将浸渍后的炭纤维置于鼓风干燥箱下60~150℃烘干;
将烘过的炭纤维于150~250℃、1~15MPa下热模压成纤维预成型体;
将预成型体置于鼓风干燥箱60~150℃下烘干;
将纤维预成型体置于炭化炉中,在氮气等惰性气氛下以3~15℃/min的升温速率升至1000~1500℃,并保温0.5~2h进行高温裂解;
重复以上浸渍-干燥-裂解过程(重复次数3~15次),最终得到沥青基炭纤维增强碳化硅复合材料。
2.如权利要求1所述的方法,其特征是所采用的沥青基炭纤维为高导热炭纤
维其热导率为320 W•m-1•K-1,直径为10μm,密度为2.17g/cm3。
3.如权利要求1所述的方法,其特征是所采用的先驱体溶液为聚碳硅烷-二甲苯或甲苯溶液,聚碳硅烷质量分数为20%~70%。
4.如权利要求1所述的方法,其特征是使用鼓风干燥箱干燥优化的时间为2~5h。
5.如权利要求1所述的方法,其特征是在首次裂解前采用热模压辅助工艺,
优化的工艺是于200℃下以5MPa的压力进行热压并保压5min,随后自然冷却,该工艺方法提高了浸渍效率,减少了致密化周期,大大减少了现有技术制备炭纤维/碳化硅复合材料的制备周期,从而有效的节约了材料的制备成本 。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810423334.8A CN110436949A (zh) | 2018-05-06 | 2018-05-06 | 一种高导热沥青基炭纤维/碳化硅复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810423334.8A CN110436949A (zh) | 2018-05-06 | 2018-05-06 | 一种高导热沥青基炭纤维/碳化硅复合材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110436949A true CN110436949A (zh) | 2019-11-12 |
Family
ID=68427228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810423334.8A Pending CN110436949A (zh) | 2018-05-06 | 2018-05-06 | 一种高导热沥青基炭纤维/碳化硅复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110436949A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111573678A (zh) * | 2020-05-14 | 2020-08-25 | 湖南太子新材料科技有限公司 | 一种碳化硅薄膜成型装置与碳化硅薄膜的制备方法 |
CN112110741A (zh) * | 2020-08-28 | 2020-12-22 | 湖南东映碳材料科技有限公司 | 一种高导热C/C-SiC复合材料的制备方法 |
CN115724675A (zh) * | 2022-11-16 | 2023-03-03 | 航天特种材料及工艺技术研究所 | 聚硅氮烷的浸渍-固化处理方法及复合材料及其制备方法 |
-
2018
- 2018-05-06 CN CN201810423334.8A patent/CN110436949A/zh active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111573678A (zh) * | 2020-05-14 | 2020-08-25 | 湖南太子新材料科技有限公司 | 一种碳化硅薄膜成型装置与碳化硅薄膜的制备方法 |
CN112110741A (zh) * | 2020-08-28 | 2020-12-22 | 湖南东映碳材料科技有限公司 | 一种高导热C/C-SiC复合材料的制备方法 |
CN112110741B (zh) * | 2020-08-28 | 2022-04-22 | 湖南东映碳材料科技有限公司 | 一种高导热C/C-SiC复合材料的制备方法 |
CN115724675A (zh) * | 2022-11-16 | 2023-03-03 | 航天特种材料及工艺技术研究所 | 聚硅氮烷的浸渍-固化处理方法及复合材料及其制备方法 |
CN115724675B (zh) * | 2022-11-16 | 2023-12-19 | 航天特种材料及工艺技术研究所 | 聚硅氮烷的浸渍-固化处理方法及复合材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104311090B (zh) | 一种热压烧结/前驱体裂解法制备Cf/ZrC-SiC超高温陶瓷复合材料的方法 | |
CN103408315B (zh) | 一种三维中间相沥青基高热导率碳/碳复合材料及其制备工艺 | |
CN103613400B (zh) | 一种碳纤维增强碳-碳化硅双元陶瓷基梯度复合材料的制备方法 | |
CN110436949A (zh) | 一种高导热沥青基炭纤维/碳化硅复合材料的制备方法 | |
CN102910927B (zh) | 一种自愈合碳化硅陶瓷基复合材料的制备方法 | |
CN101260005B (zh) | 一种炭/炭/碳化硅复合材料的制备方法 | |
CN105152672B (zh) | Cf/(BN‑SiC)复合材料的制备方法 | |
CN105152671A (zh) | SiCf/SiC复合材料的界面改性方法 | |
CN105948776B (zh) | 一种阵列碳纳米管/碳纤维/碳化硅导热复合材料的制备方法 | |
CN108101566A (zh) | Rtm工艺辅助制备碳化硅陶瓷基复合材料构件的方法 | |
CN103073836A (zh) | 一种高导热炭纤维树脂基复合材料及其制备方法 | |
CN106966745B (zh) | 一种热压法制备热结构复合材料的方法 | |
CN1830602A (zh) | 一种制备高导热SiCp/Al电子封装材料的方法 | |
CN105801146A (zh) | 连续密度梯度化低密度多孔碳粘接复合材料及其制备方法 | |
Hu et al. | Mechanical and dielectric properties of SiCf/SiC composites fabricated by PIP combined with CIP process | |
CN102219537A (zh) | 一种平板类碳/碳复合材料的快速成型方法 | |
CN105384454A (zh) | 一种复杂结构高韧性SiC基复合材料零件的快速制造方法 | |
CN105272256B (zh) | 一种高导热石墨泡沫/碳复合材料及其制备方法 | |
CN115354296A (zh) | 一种提高石墨膜铝复合材料热导率的方法 | |
CN106966746B (zh) | 等离子体增强微波热解制备陶瓷基复合材料的方法及装置 | |
CN110421918A (zh) | 一种热管理用石墨膜-Ti层状块体复合材料及其制备方法 | |
CN102211766B (zh) | 一种高导热碳材料的快速、低成本制备方法 | |
CN106565263A (zh) | 一种碳纳米管/碳化硅导热复合材料的制备方法 | |
CN103342573B (zh) | 一种金刚石薄膜增强碳/碳复合材料热导率的方法 | |
CN110028329A (zh) | 一种高导热陶瓷基复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20191112 |
|
WD01 | Invention patent application deemed withdrawn after publication |