CN110411996A - 基于有机金属框架检测辛硫磷的方法 - Google Patents

基于有机金属框架检测辛硫磷的方法 Download PDF

Info

Publication number
CN110411996A
CN110411996A CN201910654651.5A CN201910654651A CN110411996A CN 110411996 A CN110411996 A CN 110411996A CN 201910654651 A CN201910654651 A CN 201910654651A CN 110411996 A CN110411996 A CN 110411996A
Authority
CN
China
Prior art keywords
phoxim
metal framework
organic metal
detection
mof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910654651.5A
Other languages
English (en)
Other versions
CN110411996B (zh
Inventor
陈茂龙
程云辉
许宙
唐雄
卢天慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201910654651.5A priority Critical patent/CN110411996B/zh
Publication of CN110411996A publication Critical patent/CN110411996A/zh
Application granted granted Critical
Publication of CN110411996B publication Critical patent/CN110411996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及一种基于有机金属框架检测辛硫磷的方法,包括如下步骤:将有机金属框架与含有辛硫磷的样品混合均匀,反应一段时间,测量混合物的荧光特性;其中,所述有机金属框架由稀土盐与有机羧酸配体形成。依据稀土金属与辛硫磷分子中的磷氧键之间的配位络合作用,使荧光MOF的荧光信号降低从而达到检测辛硫磷浓度的目的。该方法检测水中辛硫磷无需昂贵的仪器,且无需复杂的前处理过程,该方法检测水中辛硫磷,有着高效、方便快捷、可实时检测水中的辛硫磷。

Description

基于有机金属框架检测辛硫磷的方法
技术领域
本发明涉及分析化学领域,更具体地,涉及一种基于有机金属框架检测辛硫磷的方法。
背景技术
辛硫磷因其在控制病虫害数量或抑制其生长、促进农作物产量增加等方面发挥着积极作用被广泛使用,但不可避免地导致其在环境释放量大幅度增加,从而对人类健康和生态平衡造成威胁。
随着检测技术的发展,使当前对有机磷农药残留检测方法日益多样化。目前,关于有机磷农药的检测方法主要有有色谱法(液相色谱法、液-质联用法、气相色谱法、气-质联用法)、生物传感器、光学传感器、分子印迹传感器(MIP)、电化学传感器等方法。其中色谱法实验仪器昂贵、操作较为繁琐、需要专人负责、耗时长等。这些因素限制了对辛硫磷的实时快速的检测,无法对其进行实时检测。生物传感器基本上由两个主要的集成元件组成,即换能器和识别元件。识别元件(例如酶,抗体和核酸)与分析物相互作用以产生可测量的电信号或荧光信号用于检测。尽管它们具有广泛的适用性,但这些基于酶的技术并非没有某些限制,酶在恶劣的环境条件下(例如高温和苛刻的pH条件下)容易失去活性,(b)酶-分析物相互作用需要很长的孵育时间,(c)酶活性的再生可能不精确,(d)酶传感器的寿命很短。MIP传感器可能存在一些缺点,例如,缺乏稳定性和信号转导不良。
发明内容
基于此,本发明针对上现有技术的缺陷,提供了一种基于有机金属框架检测辛硫磷的方法。
一种基于有机金属框架检测辛硫磷的方法,包括如下步骤:
将有机金属框架与含有辛硫磷的样品混合均匀,反应一段时间,测量混合物的荧光特性;
其中,所述有机金属框架由稀土盐与有机羧酸配体形成。
在一些实施方式中,所述稀土盐包括GdCl3·6H2O和EuCl3·6H2O。
在一些实施方式中,所述稀土盐为GdCl3·6H2O。
在一些实施方式中,所述有机羧酸配体包括中-四(3,5-二羧基苯基)卟吩和中-四(4-羧基苯基)卟吩。
在一些实施方式中,所述有机羧酸配体为中-四(4-羧基苯基)卟吩。
在一些实施方式中,,所述样品为化学样品和水。
在一些实施方式中,通过辛硫磷与有机金属框架的荧光强度绘制标准曲线。
在一些实施方式中,通过所述标准曲线可以得到样品中辛硫磷的浓度。
在一些实施方式中,所述辛硫磷的线性检测方法为5μg/L~25μg/L。
在一些实施方式中,所述方法的检测限为5μg/L。
与现有技术相比,本发明具有如下有益效果:
1)依据稀土金属与辛硫磷分子中的磷氧键之间的配位络合作用,使荧光MOF的荧光信号降低从而达到检测辛硫磷浓度的目的。该方法检测水中辛硫磷无需昂贵的仪器,且无需复杂的前处理过程,该方法检测水中辛硫磷,有着高效、方便快捷、可实时检测水中的辛硫磷。
2)本发明的检测方法对辛硫磷的线性检测范围为5μg/L~25μg/L,线性范围为0.9849,检测限为5μg/L。
3)为检验所构建的检测平台在实际样品检测中的使用效果,本研究进行了自来水加标回收实验,当自来水中辛硫磷加标量为10μg/L和20μg/L时,其回收率分别为94.6%和96.55%。说明体系中所形成的荧光MOF对检测辛硫磷的灵敏性较高。
4)本发明总结出辛硫磷浓度与荧光Gd-MOF的荧光信号值之间的关系,为荧光MOF检测其他小分子物质提供借鉴。
附图说明
图1为MOF的TEM图;
图2为本发明公开的辛硫磷检测的标准曲线图;
图3为本发明公开的荧光MOF对辛硫磷的专一性示意图。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
实施例1
1、MOF的制备,包括如下步骤:
1)称取30mg、0.08mmlo GdCl3·6H2O溶解于5-20mL的超纯水中,待溶解完全后,将其与20.5mg、0.026mmol的羧酸配体TCPP混合,然后用搅拌器匀速搅拌30min,待溶液变成墨绿色;
2)加入17mg、0.06mmol的表面活性剂十二烷基苯磺酸钠,再加入1mL、6mol/L的盐酸,混合后匀速搅拌10min;
3)将混合液移至25mL的高压反应釜中,置于烘箱内,140℃加热60-72h,缓慢冷却20-24h至25-40℃,获得MOF材料;
4)将MOF材料用乙醇洗涤3次,再用超纯水洗涤3次,在1000rpm/min的条件下离心5min,最后于20mL超纯水中保存。
如图1所示,通过电镜可以看到MOF材料的粒径为150nm。
2、向比色皿中分别加入2.8mL的MOF,再加入0.2mL 5μg/L的辛硫磷溶液,混合均匀,反应温度不低于15℃,反应时间为5-20min。
实施例2
1、MOF的制备方法与实施例1相同。
2、本实施例与实施例1的不同之处在于加入辛硫磷的浓度,辛硫磷的浓度为10μg/L。
实施例3
1、MOF的制备方法与实施例1相同。
2、本实施例与实施例1的不同之处在于加入辛硫磷的浓度,辛硫磷的浓度为15μg/L。
实施例4
1、MOF的制备方法与实施例1相同。
2、本实施例与实施例1的不同之处在于加入辛硫磷的浓度,辛硫磷的浓度为20μg/L。
实施例5
1、MOF的制备方法与实施例1相同。
2、本实施例与实施例1的不同之处在于加入辛硫磷的浓度,辛硫磷的浓度为25μg/L。
根据实施例1至5的辛硫磷的浓度与655nm的荧光强度,绘制“MOF荧光淬灭强度-辛硫磷浓度”的标准工作曲线,如图2所示,计算方程为y=3.71x+201.07,R2=0.9849。
对照组1
1、MOF的制备方法与实施例5相同。
2、本实施例与实施例5的不同之处在于加入草甘膦,辛硫磷的浓度为100μg/L。
对照组2
1、MOF的制备方法与实施例5相同。
2、本实施例与实施例5的不同之处在于加入草铵膦,草铵膦的浓度为100μg/L。
对照组3
1、MOF的制备方法与实施例5相同。
2、本实施例与实施例5的不同之处在于加入敌草快,敌草快的浓度为100μg/L。
对照组4
1、MOF的制备方法与实施例5相同。
2、本实施例与实施例5的不同之处在于加入哒螨灵,哒螨灵的浓度为100μg/L。
在激发光为365nm,发射波长为655处检测MOF处检测。以不同种类的农药为横坐标,以该浓度下的某种农药与MOF所产生的荧光值与原始MOF的荧光值的差值△I除以原始MOF产生的荧光值I0的比值为纵坐标,考察不同种类的农药对MOF的淬灭程度。如图3所示,辛硫磷的淬灭程度最大。
实施例7
1、MOF的制备方法与实施例1相同。
2、本实施例与实施例1的不同之处在于加入水,水中辛硫磷的浓度为10μg/L。
实施例8
1、MOF的制备方法与实施例1相同。
2、本实施例与实施例1的不同之处在于加入水,水中辛硫磷的浓度为20μg/L。
实施例7-8分别测量三次,取平均值,如表1所示,自来水中辛硫磷的浓度根部为10μg/L、20μg/L时,其回收率分别为94.6%、96.55%,即可证明体系中形成MOF对检测辛硫磷的灵敏性较高。
表1
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种基于有机金属框架检测辛硫磷的方法,其特征在于,包括如下步骤:
将有机金属框架与含有辛硫磷的样品混合均匀,反应一段时间,测量混合物的荧光特性;
其中,所述有机金属框架由稀土盐与有机羧酸配体形成。
2.根据权利要求1所述的方法,其特征在于,所述稀土盐包括GdCl3·6H2O和EuCl3·6H2O。
3.根据权利要求1所述的方法,其特征在于,所述稀土盐为GdCl3·6H2O。
4.根据权利要求1所述的方法,其特征在于,所述有机羧酸配体包括中-四(3,5-二羧基苯基)卟吩和中-四(4-羧基苯基)卟吩。
5.根据权利要求1所述的方法,其特征在于,所述有机羧酸配体为中-四(4-羧基苯基)卟吩。
6.根据权利要求1所述的方法,其特征在于,所述样品为化学样品和水。
7.根据权利要求1所述的方法,其特征在于,通过辛硫磷与有机金属框架的荧光强度绘制标准曲线。
8.根据权利要求7所述的方法,其特征在于,通过所述标准曲线可以得到样品中辛硫磷的浓度。
9.根据权利要求7所述的方法,其特征在于,所述辛硫磷的线性检测方法为5μg/L~25μg/L。
10.根据权利要求7所述的方法,其特征在于,所述方法的检测限为5μg/L。
CN201910654651.5A 2019-07-19 2019-07-19 基于有机金属框架检测辛硫磷的方法 Active CN110411996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910654651.5A CN110411996B (zh) 2019-07-19 2019-07-19 基于有机金属框架检测辛硫磷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910654651.5A CN110411996B (zh) 2019-07-19 2019-07-19 基于有机金属框架检测辛硫磷的方法

Publications (2)

Publication Number Publication Date
CN110411996A true CN110411996A (zh) 2019-11-05
CN110411996B CN110411996B (zh) 2022-03-18

Family

ID=68362054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910654651.5A Active CN110411996B (zh) 2019-07-19 2019-07-19 基于有机金属框架检测辛硫磷的方法

Country Status (1)

Country Link
CN (1) CN110411996B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945923A (zh) * 2021-02-03 2021-06-11 长沙理工大学 一种界面增敏型检测试剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617615A (zh) * 2012-02-23 2012-08-01 山东师范大学 一种基于稀土离子的金属有机框架、其合成方法和应用
US20130043407A1 (en) * 2011-08-19 2013-02-21 Banglin Chen Zn5(BTA)6(TDA)2 - A ROBUST HIGHLY INTERPENETRATED METAL-ORGANIC FRAMEWORK CONSTRUCTED FROM PENTANUCLEAR CLUSTERS FOR SELECTIVE SORPTION OF GAS MOLECULES
CN104073250A (zh) * 2014-07-08 2014-10-01 天津工业大学 发光金属有机框架在痕量苯胺类污染物检测中的应用
CN106905537A (zh) * 2017-02-23 2017-06-30 浙江省农业科学院 具有荧光性能的金属‑有机框架材料的合成方法及其应用
CN106905538A (zh) * 2017-02-24 2017-06-30 浙江省农业科学院 一种含锌金属有机框架材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043407A1 (en) * 2011-08-19 2013-02-21 Banglin Chen Zn5(BTA)6(TDA)2 - A ROBUST HIGHLY INTERPENETRATED METAL-ORGANIC FRAMEWORK CONSTRUCTED FROM PENTANUCLEAR CLUSTERS FOR SELECTIVE SORPTION OF GAS MOLECULES
CN102617615A (zh) * 2012-02-23 2012-08-01 山东师范大学 一种基于稀土离子的金属有机框架、其合成方法和应用
CN104073250A (zh) * 2014-07-08 2014-10-01 天津工业大学 发光金属有机框架在痕量苯胺类污染物检测中的应用
CN106905537A (zh) * 2017-02-23 2017-06-30 浙江省农业科学院 具有荧光性能的金属‑有机框架材料的合成方法及其应用
CN106905538A (zh) * 2017-02-24 2017-06-30 浙江省农业科学院 一种含锌金属有机框架材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐雄 等: "钆金属有机框架的制备及用于吸附辛硫磷的研究", 《食品与机械》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945923A (zh) * 2021-02-03 2021-06-11 长沙理工大学 一种界面增敏型检测试剂及其制备方法和应用

Also Published As

Publication number Publication date
CN110411996B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN105548109B (zh) 一种重金属镉的荧光检测体系以及检测方法
CN105510420B (zh) 一种基于磁珠分离和dna标记金纳米粒子探针检测atp含量的方法
CN104792852B (zh) 一种藻毒素分子印迹化学受体传感器及其制备方法和应用
US10156558B2 (en) Detection and quantification of polymeric analytes using fluorescent lanthanide detection not relying on charge transfer from polymer aromatic groups
CN104949946B (zh) 一种荧光探针在过氧化氢分子检测中的应用
CN105884806A (zh) 荧光探针的制备方法及基于荧光探针的土霉素检测方法
CN101586145A (zh) 一种检测土壤木聚糖酶活性的分析方法
CN105400781B (zh) 一种双嵌段分子探针及其快速检测核酸方法
CN106248609B (zh) 一种紫外分光光度计测定锂离子电池电解液中六氟磷酸锂含量的方法
CN110411996A (zh) 基于有机金属框架检测辛硫磷的方法
CN101586146B (zh) 一种检测土壤纤维素酶活性的分析方法
Yuan et al. A portable multi-channel fluorescent paper-based microfluidic chip based on smartphone imaging for simultaneous detection of four heavy metals
CN105238848A (zh) 一种α-L-岩藻糖苷酶检测试剂盒及制备方法
CN104764735A (zh) 一种分析铬铁中磷的方法
CN107513562A (zh) 检测水中铜绿假单胞菌和ExoU的引物、试剂盒和方法
Qin et al. Homogeneous label-free colorimetric strategy for convenient bleomycin detection based on bleomycin enhanced Fe (ii)–H 2 O 2–ABTS reaction
Ammann et al. Simultaneous determination of TOC and TNb in surface and wastewater by optimised high temperature catalytic combustion
CN105838790B (zh) 一种银纳米簇传感器及其制备方法和在检测病毒基因中的应用
CN104760960B (zh) 纳米SiO2表面两步改性方法
CN103123356B (zh) 一种时间分辨荧光法综合检测子宫癌试剂盒及其应用
EP2028250A1 (en) Luminescence enhancer
CN114835634A (zh) 一种可检测水中邻硝基苯酚的超分子荧光探针的制备及应用
CN107356577A (zh) 一种通用型磺基转移酶活性分析方法
Ma et al. Highly sensitive alkaline phosphatase biosensor based on internal filtration effect between G-quadruplex/N-methylmesoporphyrin IX and p-nitrophenol
CN107447001A (zh) 检测水中铜绿假单胞菌和ExoS的引物、试剂盒和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant