CN110405226B - 一种水溶性银微纳米晶及其可控制备方法 - Google Patents

一种水溶性银微纳米晶及其可控制备方法 Download PDF

Info

Publication number
CN110405226B
CN110405226B CN201910793222.6A CN201910793222A CN110405226B CN 110405226 B CN110405226 B CN 110405226B CN 201910793222 A CN201910793222 A CN 201910793222A CN 110405226 B CN110405226 B CN 110405226B
Authority
CN
China
Prior art keywords
water
micro
surfactant
soluble silver
nanocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910793222.6A
Other languages
English (en)
Other versions
CN110405226A (zh
Inventor
韩成良
万力新
李明华
沈寿国
姚李
徐泽忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Zhongga Nanotechnology Co ltd
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN201910793222.6A priority Critical patent/CN110405226B/zh
Publication of CN110405226A publication Critical patent/CN110405226A/zh
Application granted granted Critical
Publication of CN110405226B publication Critical patent/CN110405226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种水溶性银微纳米晶及其可控制备方法,涉及银微纳米晶制备技术领域。包括反应前驱液的配制和室温快速还原反应两个过程,首先配制硝酸银溶液,然后将抗坏血酸(VC)固体加入到硝酸银溶液中,最后在室温下通过快速还原反应得到水溶性银微纳米晶;也可以在配制硝酸银溶液时加入表面活性剂的水溶液。本发明所制备的Ag微纳米晶是由无数Ag纳米颗粒构成的微晶,通过改变表面活性剂的种类和用量可分别获得准球状(不添加表面活性剂)、树枝晶状(采用蓝月亮洗手液LYL作为表面活性剂)和颗粒链状Ag微纳米晶(采用硬脂酸微乳液ALA作为表面活性剂)。本发明所获得的产物水溶性、分散性和稳定性好,可望用于水性抗菌涂料生产行业。

Description

一种水溶性银微纳米晶及其可控制备方法
技术领域
本发明涉及银微纳米晶制备技术领域,具体是涉及一种水溶性银微纳米晶及其可控制备方法。
背景技术
水溶性Ag纳米粉体在抗菌涂料生产中起着关键的作用。银(Ag)微纳米晶由于其优异的光学、催化和抗菌等性质,以及在表面等离子体共振、表面增强拉曼散射和抗菌等方面应用广泛。Ag纳米晶所具备的独特的性质是由其尺寸和形貌决定的,因此不同尺寸和形貌的银纳米晶的合成一直备受关注,例如球形、立方体、三棱柱、片状、棒状和线状等银纳米晶。
已报道的诸多形态Ag纳米晶通常均是在氯仿和甲酰胺等有机相中,同时利用PVP、SDS和CTAB为修饰剂来控制Ag纳米晶形貌。该方法尽管重复性好,形态可控,但是此方法获得的Ag纳米晶表面常包覆有机配体,水溶性较差,从而大大限制了其在生物医学、催化和水性功能涂料等方面的实际应用。而已有以硼氢化钠、抗坏血酸和柠檬酸钠等还原剂在水相中合成的Ag纳米晶尺寸小、分散性差和易氧化等。
发明内容
本发明针对已有制备水溶性银微纳米晶中所存在的不足之处,提供一种水溶性银微纳米晶及其可控制备方法。采用自制的水溶性阴离子表面活性剂——蓝月亮洗手液(LYL)和硬脂酸微乳液(ALA),来可控制备Ag纳米晶生长,为水性抗菌功能涂料生产提供助剂保障。
为了实现上述目的,本发明所采用的技术方案为:一种水溶性银微纳米晶的可控制备方法,包括反应前驱液的配制和室温快速还原反应两个过程,首先配制硝酸银溶液,然后将抗坏血酸(VC)固体加入到硝酸银溶液中,最后在室温下通过快速还原反应得到水溶性银微纳米晶;
或者,首先配制硝酸银溶液,然后加入表面活性剂的水溶剂,均匀混合后,再将抗坏血酸(VC)固体加入到混合溶液中,最后在室温下通过快速还原反应得到水溶性银微纳米晶。
作为本发明可控制备方法的优选技术方案,方法包括如下步骤:
1)、将50-200mL浓度为0.01-0.1mol/L的AgNO3溶液和0-25mL浓度为0.1-0.4mol/L的表面活性剂的水溶液混合后得到活性反应前驱体溶液;
2)、将0.1-0.6g的VC固体加入到反应前驱体溶液中,通过快速还原反应得到水溶性银微纳米晶。
进一步优选地,可控制备方法中,快速还原反应时间为1-5min。步骤2)中得到的水溶性银微纳米晶溶液体系的pH值为6-7.5。VC的使用量与AgNO3的体积和浓度有关,当AgNO3的体积一定时,随着VC固体的使用量增加,反应所需时间缩短。
本发明在室温下,采用自制的LYL和ALA绿色水性试剂来调控Ag微纳米晶的生成,整个工艺原料易得、方法简便易行,操作简单而且产率高。
与现有技术相比,本发明的有益效果表现在:
1)、本发明的可控制备方法得到的Ag微纳米晶是由无数Ag纳米颗粒构成的微晶,通过改变表面活性剂的种类和用量可分别获得准球状(不添加表面活性剂)、树枝晶状(采用蓝月亮洗手液LYL作为表面活性剂)和颗粒链状Ag微纳米晶(采用硬脂酸微乳液ALA作为表面活性剂)。
2)、本发明利用廉价绿色的水性修饰剂来调控Ag纳米晶组装和生长,得到了光学性能优异的银微纳米材料,为高性能抗菌助剂生产提供了新的策略。整个制备工艺简单、所需原料易得且产率高,获得的产物水溶性、分散性和稳定性好,可望用于水性抗菌涂料生产行业。
附图说明
图1为实施例1-4制备的水溶性银微纳米晶的外观形态、微观形态及化学组成。
图2为实施例1-3制备的水溶性银微纳米晶的XRD对比分析图。
图3为实施例1-3制备的水溶性银微纳米晶的UV-vis谱图。
具体实施方式
以下结合实施例和附图对本发明的水溶性银微纳米晶及其可控制备方法作出进一步的详述。本发明方法所得产物的结构、形态性能分别采用场发射扫描电子显微镜(FE-SEM,SU8010)、X射线粉末衍射(XRD,D3500)和紫外-可见光谱仪(Vb300)来表征和分析。
实施例1
一种水溶性银微纳米晶的制备方法,步骤如下:
将100mL浓度为0.01mol/L的AgNO3溶液和0.2g的VC固体混合均匀,通过还原反应2min得到水溶性银微纳米晶。
实施例2
一种水溶性银微纳米晶的制备方法,步骤如下:
1)、将100mL浓度为0.01mol/L的AgNO3溶液和10mL浓度为0.2mol/L的蓝月亮洗手液LYL的水溶液混合后得到活性反应前驱体溶液。
2)、将0.4g的VC固体加入到反应前驱体溶液中,通过还原反应3min得到水溶性银微纳米晶。
实施例3
一种水溶性银微纳米晶的制备方法,步骤如下:
1)、将100mL浓度为0.01mol/L的AgNO3溶液和10mL浓度为0.2mol/L的硬脂酸微乳液ALA的水溶液混合后得到活性反应前驱体溶液。
2)、将0.4g的VC固体加入到反应前驱体溶液中,通过还原反应3min得到水溶性银微纳米晶。
实施例4
一种水溶性银微纳米晶的制备方法,步骤如下:
1)、将100mL浓度为0.01mol/L的AgNO3溶液和10mL浓度为0.4mol/L的硬脂酸微乳液ALA的水溶液混合后得到活性反应前驱体溶液。
2)、将0.6g的VC固体加入到反应前驱体溶液中,通过还原反应1min得到水溶性银微纳米晶。
实施例5
制备产物的形态结构分析:
图1为实施例1-4制备的水溶性银微纳米晶的外观形态、微观形态及化学组成。通过图1可以看出,实施例1不添加表面活性剂所制备的产物为浅黄色Ag微晶(见图1E)。采用扫描电子显微镜对上述产物进行表征可知,该实验获得的产物的形状为准球状,直径可达2μm(见图1A及图1F左上图)。XRD测试结果表明,得到的产物为Ag微纳米晶(见图2)。
实施例2利用蓝月亮洗手液LYL作为表面活性剂所制备的为浅灰色产物(见图1E)。扫描电镜观察结果表明,灰色产物形状为树枝状(见图1B及图1F右上图)。
实施例3利用硬脂酸微乳液ALA作为表面活性剂所制备的为浅黑色产物(见图1E)。扫描电镜观察结果表明,浅黑色产物形状为颗粒链状(见图1C及图1F左下图)。
最后,通过在实施例3的基础上,增大表面活性剂的添加量,实施例4所制备的产物颜色呈深黑色(见图1E),扫描电镜观察结果表明,深黑色产物形状仍然为颗粒链状(见图1D),较之实施例3,可以看出,随着表面活性剂的添加量的增大,所制备产物的颗粒链的尺寸逐渐变大。
基于上述实验结果,Ag微纳米晶形成过程可以看成由以下3个过程组成:
首先,VC发生氧化反应释放出电子(e)(见反应式子(1));
接着,Ag+将与电子结合发生还原反应生成Ag0纳米颗粒(见反应式子(2));
最后,若干Ag纳米颗粒在LYL和ALA形态控制剂作用下自组装形成各种形态Ag微纳米晶。
上述还原反应生成Ag可用下面两个式子来表示。
Figure GDA0002198204880000031
Ag++e→Ag0 (2)
实施例6
Ag微纳米晶的结构与可见光吸收特征。
首先,利用X衍射手段对各种颜色和形态的Ag微纳米晶产物进行物相分析并与块体Ag标准XRD衍射普(PDF,No.040783)进行比较后得知,实施例1-3所得到的准球状、树枝状和颗粒链状Ag微纳米晶物相纯度很高(见图2及图1F右下图)。
通过UV-vis.比较分析结果(见图3)可知,准球状Ag微纳米晶吸收波长约为420nm。树枝状Ag微纳米晶吸收峰有两个,分别位于310nm和420nm处。而颗粒链状Ag微纳米晶吸收峰也有两个,分别位于315nm和370nm处。Ag微纳米晶不同的光吸收特征峰与其尺寸大小和微结构有关。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (4)

1.一种水溶性银微纳米晶的可控制备方法,其特征在于,包括反应前驱液的配制和室温快速还原反应两个过程,首先配制硝酸银溶液,然后加入表面活性剂的水溶剂,均匀混合后,再将抗坏血酸(VC)固体加入到混合溶液中,最后在室温下通过快速还原反应得到水溶性银微纳米晶;采用硬脂酸微乳液ALA作为表面活性剂制备的水溶性银微纳米晶的微观形态呈颗粒链状。
2.如权利要求1所述的可控制备方法,其特征在于,包括如下步骤:
1)、将50-200 mL浓度为0.01-0.1 mol/L的AgNO3溶液和0-25 mL浓度为0.1-0.4 mol/L的表面活性剂的水溶液混合后得到活性反应前驱体溶液,表面活性剂的添加量不为0;
2)、将0.1-0.6 g的VC固体加入到反应前驱体溶液中,通过快速还原反应得到水溶性银微纳米晶。
3.如权利要求2所述的可控制备方法,其特征在于,快速还原反应时间为1-5 min。
4.如权利要求2所述的可控制备方法,其特征在于,步骤2)中得到的水溶性银微纳米晶溶液体系的pH值为6-7.5。
CN201910793222.6A 2019-08-27 2019-08-27 一种水溶性银微纳米晶及其可控制备方法 Active CN110405226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910793222.6A CN110405226B (zh) 2019-08-27 2019-08-27 一种水溶性银微纳米晶及其可控制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910793222.6A CN110405226B (zh) 2019-08-27 2019-08-27 一种水溶性银微纳米晶及其可控制备方法

Publications (2)

Publication Number Publication Date
CN110405226A CN110405226A (zh) 2019-11-05
CN110405226B true CN110405226B (zh) 2022-01-18

Family

ID=68369059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910793222.6A Active CN110405226B (zh) 2019-08-27 2019-08-27 一种水溶性银微纳米晶及其可控制备方法

Country Status (1)

Country Link
CN (1) CN110405226B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111364095B (zh) * 2020-03-18 2021-04-30 青岛大学 一种合成小尺寸金属纳米晶的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690288A (zh) * 2014-11-27 2015-06-10 南京邮电大学 花状金纳米颗粒的制备方法及其作为sers增强基底的应用
CN105710386A (zh) * 2016-02-25 2016-06-29 天津工业大学 一维银链纳米结构、自组装制备方法及sers应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062055A (zh) * 2007-06-06 2007-10-31 崔彬 一种缓释型纳米银抗菌凝胶剂及其制备方法与应用
CN101569935A (zh) * 2009-06-05 2009-11-04 中国乐凯胶片集团公司 一种片状微米银粉的制备方法
CN102218541A (zh) * 2010-04-16 2011-10-19 上海赛瓦纳米银材料科技有限公司 一种水溶性纳米银的新型大规模制备方法
CN101999412B (zh) * 2010-11-19 2014-05-28 深圳兰度生物材料有限公司 一种纳米银溶液及其制备方法
KR101353995B1 (ko) * 2012-06-20 2014-01-22 (주)이건이엔씨 은나노 입자가 응집된 마이크로 크기의 클러스터 은 입자의 제조방법
CN102756131B (zh) * 2012-07-31 2014-04-30 中南大学 一种微米级片状银粉的制备方法
JP6065788B2 (ja) * 2013-09-10 2017-01-25 住友金属鉱山株式会社 銀粉及びその製造方法
CN103551589B (zh) * 2013-10-30 2015-07-29 江苏理工学院 花状银微米颗粒的合成方法
CN107498063A (zh) * 2017-08-03 2017-12-22 昆明贵金属研究所 一种高分散微米级类球形银粉的制备方法
CN108907228A (zh) * 2018-07-24 2018-11-30 郑州阿弗雷德化工科技有限公司 纳米银溶液及其低成本合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104690288A (zh) * 2014-11-27 2015-06-10 南京邮电大学 花状金纳米颗粒的制备方法及其作为sers增强基底的应用
CN105710386A (zh) * 2016-02-25 2016-06-29 天津工业大学 一维银链纳米结构、自组装制备方法及sers应用

Also Published As

Publication number Publication date
CN110405226A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
Carbó-Argibay et al. Chemical sharpening of gold nanorods: the rod-to-octahedron transition
Washio et al. Reduction by the end groups of poly (vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates
Andreescu et al. A simple route for manufacturing highly dispersed silver nanoparticles
US11077499B2 (en) Large-scale controllable preparation method for plasmonic nanonail structure
EP2254692B1 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
Ayuk et al. A review on synthetic methods of nanostructured materials
WO2009044389A2 (en) A process for synthesising silver nanoparticles
JP2008013846A (ja) 金属ナノ粒子の製造方法および金属ナノ粒子
Gao et al. Novel tunable hierarchical Ni–Co hydroxide and oxide assembled from two-wheeled units
US9937556B2 (en) Templated synthesis of metal nanorods in silica nanotubes
Nootchanat et al. Formation of large H 2 O 2-reduced gold nanosheets via starch-induced two-dimensional oriented attachment
KR20160053352A (ko) 다기능성 고분자와 환원제를 이용한 금속나노입자의 제조방법
Mukherjee et al. Synthesis of uniform gold nanoparticles using non-pathogenic bio-control agent: Evolution of morphology from nano-spheres to triangular nanoprisms
CN104028775A (zh) 一种单分散均匀粒径银纳米颗粒的制备方法
Adhikari et al. Synthesis and photocatalytic performance of quasi-fibrous ZnO
Sun et al. A green method for synthesis of silver nanodendrites
KR101842763B1 (ko) 구리 나노구조물의 제조방법
Kim et al. Size-controlled synthesis of monodisperse gold nanooctahedrons and their surface-enhanced Raman scattering properties
Wang et al. From gold nanorods to nanodumbbells: a different way to tailor surface plasmon resonances by a chemical route
CN110405226B (zh) 一种水溶性银微纳米晶及其可控制备方法
SADEGHI Green synthesis of silver nanoparticles using seed aqueous extract of Olea europaea
Xu et al. High-yield synthesis of gold nanoribbons by using binary surfactants
Li et al. Bromine anion-induced synthesis of copper nanoplates and their recyclable catalytic activity towards 4-nitrophenol reduction
Shahzad et al. Hierarchically structured 2D silver sheets with fractal network
Chen et al. Synthesis of uniform hexagonal Ag nanoprisms with controlled thickness and tunable surface plasmon bands

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231221

Address after: 230601 Hefei Innovation and Entrepreneurship Park Incubator 1 # c304-1, No. 268 Furong Road, Economic Development Zone, Hefei City, Anhui Province

Patentee after: Hefei zhongga nanotechnology Co.,Ltd.

Address before: No.99, Jinxiu Avenue, Jingkai District, Hefei City, Anhui Province

Patentee before: HEFEI University

TR01 Transfer of patent right