CN110404558B - 一种用于肼分解产氢的NiPt-Ni(OH)2/La(OH)3催化剂及其制备方法 - Google Patents

一种用于肼分解产氢的NiPt-Ni(OH)2/La(OH)3催化剂及其制备方法 Download PDF

Info

Publication number
CN110404558B
CN110404558B CN201910794179.5A CN201910794179A CN110404558B CN 110404558 B CN110404558 B CN 110404558B CN 201910794179 A CN201910794179 A CN 201910794179A CN 110404558 B CN110404558 B CN 110404558B
Authority
CN
China
Prior art keywords
catalyst
nipt
hydrazine
content
produce hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910794179.5A
Other languages
English (en)
Other versions
CN110404558A (zh
Inventor
卢章辉
王昆
姚淇露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201910794179.5A priority Critical patent/CN110404558B/zh
Publication of CN110404558A publication Critical patent/CN110404558A/zh
Application granted granted Critical
Publication of CN110404558B publication Critical patent/CN110404558B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种用于肼分解产氢的NiPt‑Ni(OH)2/La(OH)3催化剂及其制备方法。该催化剂由金属Ni、金属Pt、金属氢氧化物Ni(OH)2和稀土元素氢氧化物La(OH)3载体组成,结构式为NiPt‑Ni(OH)2/La(OH)3。该催化剂采用沉淀还原法,先通过加碱沉淀得到Ni(OH)2和Pt(OH)2,然后加入硼氢化钠还原得到。该催化剂能在常温常压不添加任何助剂的条件下快速催化肼分解产氢,选择性高达95%,转换频率高达303h‑1。该催化剂制备简单,催化活性高,是一种很有应用前景的催化剂。

Description

一种用于肼分解产氢的NiPt-Ni(OH)2/La(OH)3催化剂及其制 备方法
技术领域
本发明方法涉及一种用于肼分解产氢的复合纳米催化剂及其制备方法,属于储氢材料领域。
背景技术
氢能由于具有高燃烧热值和燃烧产物无污染的特点,被认为是一种理想的二次能源。但是如何安全高效的储存氢气仍然是制约着氢能的大规模使用的瓶颈。化学储氢材料由于具有较高的储氢密度,便于运输和储存,是可以替代传统增压或者低温液化储氢的新型储氢方式。在所有的化学储氢材料中,水合肼具有较高的含氢量,且可以在现有设备上直接使用,是一种极具应用前景的化学储氢材料。
水合肼(N2H4·H2O),室温下物理化学性质稳定,便于运输和储存,储氢含量为8.0wt.%,远超美国能源部制定的2017年储氢材料的要求指标(5.5wt%),具有良好的实际应用前景。有合适的催化剂存在时,水合肼的分解在温和的条件下就能进行。理论上1摩尔的水合肼分解可以产生2摩尔的氢气和氮气(反应1)。但是水合肼的分解往往伴随有生成氨气的副反应的发生(反应2),会大大降低水合肼产氢的效率。因此,水合肼产氢的关键在于制备高活性,高选择性的催化剂。
N2H4(l)→N2(g)+2H2(g) (1)
3N2H4(l)→4NH3(g)+N2(g) (2)
通常提高水合肼分解的氢气选择性的方法有升高反应温度以及添加碱作为助剂(J.Am. Chem.Soc.2010,49,6148;Eur.J.Inor.Chem.2011,2011,2232)。然而,升高温度意味着生产成本和能源消耗的增加,而氢氧化钠的引入会腐蚀设备,对设备和操作提出了更高的要求。因此,如何在室温以及无碱的条件下高效催化水合肼产氢,是实现水合肼产氢实际应用的关键。目前,已有一些报道的催化剂能够实现在室温下高选择性的催化水合肼脱氢(Angew. Chem.,Int.Ed.2012,51,1;J.Mater.Chem.A 2016,4,6595),但是这些催化剂的催化活性仍然很低,无法满足实际生产的需要。因此,制备出一种在室温无碱条件下,可高活性高选择性催化水合肼产氢的催化剂具有非常重要的理论和实际意义。
发明内容
本发明的目的在于提供一种复合纳米催化剂及其制备方法,该复合纳米催化剂可以用于液相催化肼产氢。在本文中,所述的复合纳米催化剂又称为NiPt-Ni(OH)2/La(OH)3催化剂。
本发明所述的NiPt-Ni(OH)2/La(OH)3催化剂由金属Ni、金属Pt、金属氢氧化物Ni(OH)2以及稀土氢氧化物La(OH)3组成,其化学式为NiPt-Ni(OH)2/La(OH)3,其中Ni的含量为2.1~13.0wt.%,Pt的含量为8.1~54.1wt.%,Ni(OH)2的含量为0.8~5.1wt.%,La(OH)3的含量为27.7~88.5wt.%。
本发明所述的NiPt-Ni(OH)2/La(OH)3催化剂采用沉淀还原法在常温常压下制得,具体包括以下步骤:
1)在水中加入La(OH)3并混合均匀;
2)向步骤1)得到的溶液中加入Ni和Pt的前驱体溶液,超声处理并混合均匀;
3)向步骤2)得到的溶液中加入NaOH,超声处理并混合均匀;
4)向步骤3)得到的溶液中加入NaBH4,混合均匀并反应一段时间;
5)从步骤4)得到的溶液中分离出固态物质,洗涤并干燥,得到所述的 NiPt-Ni(OH)2/La(OH)3催化剂。
上述制备方法中,Ni和Pt的前驱体溶液为Ni盐和Pt盐的水溶液,优选为NiCl2和K2PtCl4的水溶液。
上述制备方法中,Ni盐和Pt盐的摩尔比为1:1。
上述制备方法中,步骤4)所述的反应时间为10min。
上述的NiPt-Ni(OH)2/La(OH)3催化剂可以用于催化肼产氢,其催化性能优异。其中, NiPt-Ni(OH)2/La(OH)3催化剂是一种黑色粉末状物质,可通过离心从反应体系中回收,具有催化活性高,稳定性好等特点;在室温(298K)无碱的条件下能够高效催化肼产氢,其转化频率(TOF)高达303.2h-1,TOF值比目前报道的无碱添加剂下活性最高的催化剂要高一个数量级。如果加入2M NaOH,其TOF值在298K和303K下分别达到857.1h-1和1034.5h-1,比目前报道的活性最高的催化剂更好。
本发明的优点是:1)制备方法简单易行;2)所制备的复合纳米催化剂在室温无碱的情况下可高效催化肼产氢,其转化频率高达303.2h-1,氢气选择性为95%;3)该催化剂具有良好的循环稳定性;4)催化剂易于回收,可重复使用,具有良好的应用前景。
附图说明
图1是本发明实施例1所得NiPt-Ni(OH)2/La(OH)3催化剂及其对比样品的多晶X射线衍射图。
图2是本发明实施例1所得NiPt-Ni(OH)2/La(OH)3催化剂的透射电镜图。
图3是本发明对比例1所得NiPt-Ni(OH)2催化剂的拉曼光谱和红外光谱图。
图4是本发明实施例1所得NiPt-Ni(OH)2/La(OH)3催化剂的光电子能谱图(左图为Ni 2p 谱图,右图为Pt 4f谱图)。
图5是本发明实施例1所得NiPt-Ni(OH)2/La(OH)3催化剂的光电子能谱图(O 1s谱图)。
图6是本发明实施例1、对比例1和对比例2所得NiPt-Ni(OH)2/La(OH)3催化剂、NiPt-Ni(OH)2催化剂和NiPt-Ni(OH)2+La(OH)3混合物在室温下催化肼分解性能测试图。
图7是本发明实施例1所得NiPt-Ni(OH)2/La(OH)3催化剂不同温度下催化肼分解性能测试图。
具体实施方式
下面结合具体实施例对本发明做进一步说明。
实施例1:
1)在4mL水中加入40mg La(OH)3超声搅拌10min,得到均一溶液;
2)向步骤1)的溶液中加入含有0.05mmol氯化镍和0.06mmol四氯铂酸钾的溶液,超声搅拌10min;
3)向步骤2)的溶液中加入36mg的NaOH,搅拌超声10min;
4)向步骤3)的溶液中加入30mg的NaBH4,搅拌至反应完全;
5)将步骤4)所得产物离心洗涤至中性,分离干燥得到NiPt-Ni(OH)2/La(OH)3催化剂。
对比例1:
将实施例1的步骤1)的加入40mg La(OH)3改为加入0mg La(OH)3。其他步骤同实施例 1,得到NiPt-Ni(OH)2催化剂。
实施例2:
将实施例1的步骤1)的加入40mg La(OH)3改为加入5mg La(OH)3。其他步骤同实施例1,得到NiPt-Ni(OH)2/La(OH)3催化剂。
实施例3:
将实施例1的步骤1)的加入40mg La(OH)3改为加入100mg La(OH)3。其他步骤同实施例1,得到NiPt-Ni(OH)2/La(OH)3催化剂。
实施例4:
将实施例1的步骤3)的加入36mg的NaOH改为加入5mg的NaOH。其他步骤同实施例1,得到NiPt-Ni(OH)2/La(OH)3催化剂。
实施例5:
将实施例1的步骤3)的加入36mg的NaOH改为加入50mg的NaOH。其他步骤同实施例1,得到NiPt-Ni(OH)2/La(OH)3催化剂。
实施例6:
将实施例1的步骤4)的加入30mg的NaBH4改为加入15mg的NaBH4。其他步骤同实施例1,得到NiPt-Ni(OH)2/La(OH)3催化剂。
实施例7:
将实施例1的步骤4)的加入30mg的NaBH4改为加入100mg的NaBH4。其他步骤同实施例1,得到NiPt-Ni(OH)2/La(OH)3催化剂。
对比例2:
将实施例1的步骤改为加入0mg La(OH)3。其他步骤同实施例1,得到NiPt-Ni(OH)2催化剂,并加入步骤6):将所得NiPt-Ni(OH)2催化剂与40mg La(OH)3搅拌均匀,得到 NiPt-Ni(OH)2+La(OH)3混合物。
实施例9-11
采用实施例1、对比例1和对比例2所得的复合纳米催化剂用于肼分解制氢(分别对应实施例9、10和11),将催化剂置于含4mL超纯水的50mL三口烧瓶中,然后加入水合肼。在298K下进行反应(结果如图6所示),结束后得如下结果(表一):
表一
Figure BDA0002180428660000051
实施例12-16:
采用实施例1所得的NiPt-Ni(OH)2/La(OH)3催化剂在五个不同的反应温度下催化肼分解制氢(分别对应实施例12-16)。将催化剂置于含5mL超纯水的三口烧瓶中,然后加入水合肼。在不同温度下进行反应(结果如图7所示),结束后得如下结果(表二)
表二
Figure BDA0002180428660000052

Claims (7)

1.NiPt-Ni(OH)2/La(OH)3催化剂在催化肼产氢中的应用,其特征在于,所述NiPt-Ni(OH)2/La(OH)3催化剂由金属Ni、金属Pt、金属氢氧化物Ni(OH)2以及稀土氢氧化物La(OH)3组成,其化学式为NiPt-Ni(OH)2/La(OH)3,其中Ni的含量为2~15 wt.%,Pt的含量为8~55wt.%,Ni(OH)2的含量为0.5~6 wt.%,La(OH)3的含量为27~89 wt.%。
2.根据权利要求1所述的NiPt-Ni(OH)2/La(OH)3催化剂在催化肼产氢中的应用,其特征在于,Ni的含量为2.1~13.0 wt.%,Pt的含量为8.1~54.1 wt.%,Ni(OH)2的含量为0.8~5.1wt.%,La(OH)3的含量为27.7~88.5 wt.%。
3.根据权利要求1所述的NiPt-Ni(OH)2/La(OH)3催化剂在催化肼产氢中的应用,其特征在于,所述NiPt-Ni(OH)2/La(OH)3催化剂的制备方法具体包括以下步骤:
1)在水中加入La(OH)3并混合均匀;
2)向步骤1)得到的溶液中加入Ni和Pt的前驱体溶液,超声处理并混合均匀;
3)向步骤2)得到的溶液中加入NaOH,超声处理并混合均匀;
4)向步骤3)得到的溶液中加入NaBH4,混合均匀并反应一段时间;
5)从步骤4)得到的溶液中分离出固态物质,洗涤并干燥,得到所述的NiPt-Ni(OH)2/La(OH)3催化剂。
4.根据权利要求3所述的NiPt-Ni(OH)2/La(OH)3催化剂在催化肼产氢中的应用,其特征在于,Ni和Pt的前驱体溶液为Ni盐和Pt盐的水溶液。
5.根据权利要求4所述的NiPt-Ni(OH)2/La(OH)3催化剂在催化肼产氢中的应用,其特征在于,Ni和Pt的前驱体溶液为NiCl2和K2PtCl4的水溶液。
6.根据权利要求4所述的NiPt-Ni(OH)2/La(OH)3催化剂在催化肼产氢中的应用,其特征在于,Ni盐和Pt盐的摩尔比为1:1。
7.根据权利要求3所述的NiPt-Ni(OH)2/La(OH)3催化剂在催化肼产氢中的应用,其特征在于,步骤4)反应时间为10 min。
CN201910794179.5A 2019-08-27 2019-08-27 一种用于肼分解产氢的NiPt-Ni(OH)2/La(OH)3催化剂及其制备方法 Active CN110404558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910794179.5A CN110404558B (zh) 2019-08-27 2019-08-27 一种用于肼分解产氢的NiPt-Ni(OH)2/La(OH)3催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910794179.5A CN110404558B (zh) 2019-08-27 2019-08-27 一种用于肼分解产氢的NiPt-Ni(OH)2/La(OH)3催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110404558A CN110404558A (zh) 2019-11-05
CN110404558B true CN110404558B (zh) 2022-11-11

Family

ID=68369173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910794179.5A Active CN110404558B (zh) 2019-08-27 2019-08-27 一种用于肼分解产氢的NiPt-Ni(OH)2/La(OH)3催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110404558B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713839B (zh) * 2020-05-25 2023-04-07 中国科学院大连化学物理研究所 氮化硼负载金属钌催化剂、制备方法及在制亚胺中的应用
CN115445665B (zh) * 2022-08-29 2023-10-13 江西师范大学 一种用于水合肼分解产氢的复合纳米催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225340A (zh) * 2011-04-08 2011-10-26 安徽大学 一种室温高效分解肼催化剂的合成方法
CN104028284A (zh) * 2013-03-05 2014-09-10 中国科学院大连化学物理研究所 一种镍基骨架金属催化剂在肼分解制氢中的应用
CN105618065A (zh) * 2014-11-07 2016-06-01 中国科学院大连化学物理研究所 一种催化剂在肼分解制氢中的应用
CN109225295A (zh) * 2018-08-29 2019-01-18 华南理工大学 一种表面含氮镍基合金负载型催化剂及制备与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028793B2 (en) * 2009-12-02 2015-05-12 National Institute Of Advanced Industrial Science And Technology Catalyst for generating hydrogen and method for generating hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225340A (zh) * 2011-04-08 2011-10-26 安徽大学 一种室温高效分解肼催化剂的合成方法
CN104028284A (zh) * 2013-03-05 2014-09-10 中国科学院大连化学物理研究所 一种镍基骨架金属催化剂在肼分解制氢中的应用
CN105618065A (zh) * 2014-11-07 2016-06-01 中国科学院大连化学物理研究所 一种催化剂在肼分解制氢中的应用
CN109225295A (zh) * 2018-08-29 2019-01-18 华南理工大学 一种表面含氮镍基合金负载型催化剂及制备与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
La(OH)3 nanosheet-supported CoPt nanoparticles: a highly efficient and magnetically recyclable catalyst for hydrogen production from hydrazine in aqueous solution;Kun Wang等;《Journal of Materials Chemistry A》;20190419;第9903-9911页,S1-23页 *
Ruthenium–nickel–nickel hydroxide nanoparticles for room temperature catalytic hydrogenation;Lihua Zhu等;《Journal of Materials Chemistry A》;20170427;第5卷;第7869-7875页,S1-13页 *
水合肼制氢Ni-Pt/La_2O_3催化剂研制及其反应动力学研究;钟玉洁等;《金属学报》;20160411(第04期);全文 *
还原-碱溶法分离废旧镍氢电池正极中的钴与氢氧化镍;胡猛;《应用技术学报》;20170330(第01期);全文 *

Also Published As

Publication number Publication date
CN110404558A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
He et al. Air-engaged fabrication of nitrogen-doped carbon skeleton as an excellent platform for ultrafine well-dispersed RuNi alloy nanoparticles toward efficient hydrolysis of ammonia borane
EP3081294B1 (en) Catalyst for ammonia synthesis and ammonia decomposition
Yang et al. Complete dehydrogenation of hydrazine borane and hydrazine catalyzed by MIL-101 supported NiFePd nanoparticles
Yang et al. Facile in situ synthesis of copper nanoparticles supported on reduced graphene oxide for hydrolytic dehydrogenation of ammonia borane
Singh et al. Nanocatalysts for hydrogen generation from hydrazine
Zou et al. Immobilization of Ni–Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane
Patil et al. Sustainable hydrogen generation by catalytic hydrolysis of NaBH 4 using tailored nanostructured urchin-like CuCo 2 O 4 spinel catalyst
CN109759064B (zh) 一种Co@C/生物质催化剂及其制备方法和应用
CN111115649B (zh) 一种bcn纳米片的制备方法、由其制备得到的bcn纳米片及其用途
KR20160010151A (ko) 개미산의 분해 및 재생용 촉매 및 이의 제조방법
CN107128875B (zh) 一种制氢催化体系、包含所述催化体系的制氢体系及其用途
CN111889132B (zh) 一种金属氧化物-分子筛催化剂及其制备方法和应用
CN110404558B (zh) 一种用于肼分解产氢的NiPt-Ni(OH)2/La(OH)3催化剂及其制备方法
Chang et al. Effect of pore confinement of NaNH2 and KNH2 on hydrogen generation from ammonia
CN113289653A (zh) 一种负载金属单原子的g-C3N4光催化剂的制备方法
CN108160072A (zh) 一种用于氨分解制氢的氧化镁载钌催化剂及其制备和应用
Luconi et al. H2 production from lightweight inorganic hydrides catalyzed by 3d transition metals
Filiz et al. Insight into the role of solvents in enhancing hydrogen production: Ru-Co nanoparticles catalyzed sodium borohydride dehydrogenation
CN109821540A (zh) Mof衍生碳载非贵金属合金催化剂的制备方法及催化产氢应用
CN102489308A (zh) 一种用于氨分解制备零COx氢气的催化剂及其制备方法
CN110368999B (zh) 一种催化剂及其制备方法和用途
CN113083297A (zh) 一种高活性极低负载量钌催化剂Ru@ZIF-8的制备及其在催化加氢方面的应用
İZGİ et al. Studies on catalytic behavior of Co–Cr–B/Al2O3 in hydrogen generation by hydrolysis of NaBH4
CN106861708B (zh) 一种用于肼硼烷完全产氢的非贵金属催化剂及其制备方法
CN112827501A (zh) α-MoC负载铟及其改性催化剂的可控合成及在二氧化碳加氢制甲醇反应中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant