CN110387036A - 一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法 - Google Patents

一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法 Download PDF

Info

Publication number
CN110387036A
CN110387036A CN201910679012.4A CN201910679012A CN110387036A CN 110387036 A CN110387036 A CN 110387036A CN 201910679012 A CN201910679012 A CN 201910679012A CN 110387036 A CN110387036 A CN 110387036A
Authority
CN
China
Prior art keywords
random
polyarylether
active material
electrode active
side chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910679012.4A
Other languages
English (en)
Other versions
CN110387036B (zh
Inventor
陈栋阳
许佳琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910679012.4A priority Critical patent/CN110387036B/zh
Publication of CN110387036A publication Critical patent/CN110387036A/zh
Application granted granted Critical
Publication of CN110387036B publication Critical patent/CN110387036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法,其首先通过双酚芴、四甲基双酚芴和4,4’‑二氟二苯甲酮共聚制备具有苯甲基的含芴无规聚芳醚化合物,然后在过氧化苯甲酰的催化下用N‑溴代丁二酰亚胺将苯甲基溴化,再将其与N‑甲基‑4,4’‑联吡啶反应,最终得到含有紫精侧链的无规聚芳醚电极活性材料。用该电极活性材料制备电极,无需添加粘结剂,所得电极具有良好的电化学性能和抗弯曲性能,且其比容量可由四甲基双酚芴的投料量来调节。本发明提供的制备方法简单,成本低廉,工艺可控,所得有机电极材料对环境没有危害,满足可持续发展的要求。

Description

一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法
技术领域
本发明属于有机电极材料领域,具体涉及一种含有紫精侧链的无规聚芳醚电极活性材料的制备方法。
背景技术
随着人类社会的快速发展,环境污染和能源危机问题越来越严重,因此,解决清洁能源的存储和转化问题迫在眉睫。为了在任何时刻都能使用能源,采用化学电池储能是一类比较常见的方法。如今经常使用的储能电池有铅酸蓄电池、全钒电池、镍-镉蓄电池、锌锰干电池、锂离子电池、超级电容器等。其中,锂离子电池由于具备循环稳定性好、充放电效率高、能量密度高、温度适用范围广、安全性能好等诸多优势,非常适合储能市场,因此成为一个在储能行业中领先的热门技术。随着研究技术的不断进步,电动汽车及储能电站等领域对锂离子电池的需求不断增大,这对开发出比容量更高、成本更低的电极材料提出了要求。
与传统无机材料相比,有机电极材料不仅更环保,结构多样,其合成原料来源也更加广泛,具有廉价、可循环利用的优点,近年来逐渐成为研究的热点。但是,在有机电极材料的研究和商业化方面也充满了挑战,如活性物质在电解质中的严重溶解是有机电极材料发展的主要问题,极大限制了该类材料的应用。对于许多小的有机分子,溶解非常严重,穿梭效应使电池难以充电(Janoschka T et al,Nature,2015,527:78~81)。解决该问题的最有效策略是设计和合成具有稳定骨架和高电活性部分的有机聚合物,它们因为不溶于常用的电池电解质,能提高电池的循环稳定性(Li G et al,Angewandte Chemie InternationalEdition, 2019,58:1~7)。
聚芳醚树脂作为常见的聚合物,具有合成途径简便、成本低、热稳定性好、机械性能稳定等优点,广泛地应用于航空航天、化工、精密仪器等领域。以聚芳醚作为骨架部分能够有效提高电极材料的溶解稳定性;通过分子设计,将聚芳醚接上具有优异氧化还原活性功能的有机基团,有望得到具有良好电化学性能的改性聚芳醚,对开发具有良好稳定性且性能优异的有机电极材料具有重要意义。
发明内容
本发明为克服现有技术的不足,提供了一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法。该电极活性材料可以与乙炔黑复合制成有机电极的正极,以组装成扣式锂离子电池,并具有良好的充放电性能和循环稳定性能。
为实现上述目的,本发明采用如下技术方案:
一种含有紫精侧链的无规聚芳醚电极活性材料,其化学结构式如下所示:
式中,x=60~100,y=20~100,-R为或-H。
所述含有紫精侧链的无规聚芳醚电极活性材料的制备方法,包括如下步骤:
(1)将四甲基双酚芴、双酚芴、4,4’-二氟二苯甲酮和无水碳酸钾按一定的摩尔比混合,然后加入混合物总重量2~15倍的N,N’-二甲基乙酰胺,并加入混合物总体积4~10倍的甲苯,在惰性气体保护下,升温至140~150 ℃,利用甲苯回流带出反应所生成的水,并待甲苯完全蒸出后,升温至150~170 ℃,反应12~24小时,降至室温后,倒入去离子水中析出沉淀,过滤收集沉淀并干燥后,得到含芴无规聚芳醚化合物;其反应流程式为:
式中,x=60~100,y=20~100;
(2)将步骤(1)所得含芴无规聚芳醚化合物和N-溴代丁二酰亚胺按比例混合溶解于1,2-二氯乙烷中,混合物在1,2-二氯乙烷中的浓度为1~40wt%,以过氧化苯甲酰为引发剂,在惰性气体保护下,在60~150 ℃下反应20~50小时,然后冷却至室温,倒入甲醇中析出沉淀,过滤收集沉淀并干燥后,得到溴甲基化含芴无规聚芳醚化合物;其反应流程式为:
式中,x=60~100,y=20~100,-R1为-Br或-H;
(3)将4,4’-联吡啶溶解在二氯甲烷中制成1~40wt%的溶液,加入一定量的碘甲烷(CH3I),在惰性气体保护下,在30~80 ℃中反应2~10小时,反应结束后过滤,将所得固体溶于去离子水中,制成1~30wt%的溶液,往里加入过量六氟磷酸铵析出絮状物沉淀,收集并干燥沉淀,得到N-甲基-4,4’-联吡啶化合物;其反应流程式为:
(4)将步骤(2)所得溴甲基化含芴无规聚芳醚化合物和步骤(4)所得N-甲基-4,4’-联吡啶化合物混合溶解于极性非质子溶剂中,混合物在极性非质子溶剂中的浓度为1~40wt%,在惰性气体保护下,于60~120 ℃反应24~72小时,然后将溶液倒入去离子水中,所用去离子水的体积为极性非质子溶剂的体积的3~10倍,然后往里加入过量六氟磷酸铵析出絮状物沉淀,过滤并烘干沉淀后,得到所述含有紫精侧链的无规聚芳醚电极活性材料;其反应流程式为:
式中,x=60~100,y=20~100;-R为或-H;-R1为-Br或-H。
为了更好的实现本发明,步骤(1)中所用四甲基双酚芴、双酚芴和无水碳酸钾的摩尔比为0.6~1:0.2~1:3~6;4,4’二氟二苯甲酮的摩尔量等于四甲基双酚芴和双酚芴的摩尔量之和。
步骤(2)中所用含芴无规聚芳醚化合物与N-溴代丁二酰亚胺、过氧化苯甲酰的摩尔比为1:2~4:0.1~0.02。
步骤(3)中所用4,4’-联吡啶与碘甲烷的摩尔比为5:1~4。
步骤(3)中加入六氟磷酸铵的质量为4,4’-联吡啶与碘甲烷总质量的2~10倍。
步骤(4)中所用溴甲基化含芴无规聚芳醚化合物与N-甲基-4,4’-联吡啶化合物的摩尔比为1:2~12。
步骤(4)中所述极性非质子溶剂为N,N’-二甲基乙酰胺、N,N’-二甲基甲酰胺、N-甲基吡咯烷酮、N,N’-二甲基甲酰胺、二甲基亚砜中的任意一种。
步骤(4)中加入六氟磷酸铵的质量为溴甲基化含芴无规聚芳醚化合物与N-甲基-4,4’-联吡啶化合物总质量的10~40倍。
本发明所述的制备方法为优选方案,本领域的专业人员可以预见的合理温度、时间和其它反应条件均为本发明所要保护的范围,并不局限于上述反应条件。
本发明通过先合成含芴无规聚芳醚化合物,然后用N-溴代丁二酰亚胺将含芴无规聚芳醚化合物上的苯甲基溴化,再将其与N-甲基-4,4’-联吡啶进行反应,制得所述含有紫精侧链的无规聚芳醚电极活性材料,其具有良好电化学性能,可用于制备锂离子电池。
与现有技术相比,本发明具有如下有益效果:
(1)本发明有机电极材料不含有昂贵的过渡金属,成本低廉,废弃后对环境的影响较小。
(2)本发明提供的制备方法条件温和,工艺简单,副产物少,产率高,适合大批量生产。
(3)本发明所得有机电极材料对水和空气不敏感,具有较强的稳定性;
(4)本发明采用无规聚芳醚骨架,使产物具有优异的溶解性能和成膜性能,与无机导电添加剂的相容性好;
(5)本发明中采用具有氧化还原活性的紫精作为侧链,可实现电子传输,提高材料的电化学活性。
(6)本发明所得电极可以作为锂离子电池的正极,具有优异的充放电性能。
附图说明
图1中(a)是实施例1制得的含芴无规聚芳醚化合物PEEK-60的核磁共振氢谱;(b)是实施例2制得的含芴无规聚芳醚化合物PEEK-80的核磁共振氢谱;
图2中(a)是实施例3制得的溴甲基化含芴无规聚芳醚化合物Br-PEEK-60的核磁共振氢谱;(b)是实施例4制得的溴甲基化含芴无规聚芳醚化合物Br-PEEK-80的核磁共振氢谱;
图3中(a)是实施例6制得的含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-60的核磁共振氢谱;(b)是实施例7制得的含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-80的核磁共振氢谱;
图4是实施例6制得的含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-60和实施例7制得的含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-80的热失重曲线图;
图5是实施例8以含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-60为正极材料制备的扣式电池和以含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-80为正极材料制备的扣式电池的循环伏安曲线图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
所用四甲基双酚芴按照文献(Fabrication and properties of cross-linkedsulfonated fluorene-containing poly(arylene ether ketone) for proton exchangemembrane. Journal of Power Sources 2007, 170, 20-27)进行制备。
实施例1 含芴无规聚芳醚化合物PEEK-60的制备
在装有磁力搅拌器、温度计、回流装置和氩气通路的50 mL三口圆底烧瓶中加入1.2196g(3.0 mmol)四甲基双酚芴,0.7008 g(2.0 mmol)双酚芴,1.2196 g(5.0 mmol)4,4’-二氟二苯甲酮,2.12 g(15.0 mmol)无水碳酸钾,40 g N,N’-二甲基乙酰胺(DMAC)和12 mL甲苯,在氩气保护下,升温至140 ℃,除水2 h,除甲苯1 h,在160 ℃下反应12 h后,将温度降至室温,然后将溶液倒入去离子水中析出产物,将该产物在80 ℃鼓风干燥箱中烘12 h,再在80℃真空干燥箱中烘24 h,即得到含芴无规聚芳醚化合物PEEK-60,产率:98%,其核磁共振氢谱见图1。
实施例2 含芴无规聚芳醚化合物PEEK-80的制备
将实施例1中四甲基双酚芴的投料量改为1.6261 g(4.0 mmol),双酚芴的投料量改为0.3504 g(1.0 mmol),其余操作按实施例1,即可得到含芴无规聚芳醚化合物PEEK-80,产率:98%,其核磁共振氢谱见图1。
实施例3 溴甲基化含芴无规聚芳醚化合物Br-PEEK-60的制备
在装有磁力搅拌器、温度计、回流装置和氩气通路的50 mL三口圆底烧瓶中加入0.56 g(1.00 mmol)实施例1制得的含芴无规聚芳醚化合物PEEK-60,0.43 g (2.40 mmol) N-溴代丁二酰亚胺,0.03 g (0.12 mmol)过氧化苯甲酰以及20 mL 1,2-二氯乙烷,在80 ℃下反应24 h。反应结束后,将产物倒入甲醇中析出,将该产物放入80 ℃鼓风干燥箱中烘12 h,再在80 ℃真空干燥箱中烘24 h,即可得到溴甲基化含芴无规聚芳醚化合物Br-PEEK-60,产率:90%,其核磁共振氢谱见图2。
实施例4 溴甲基化含芴无规聚芳醚化合物Br-PEEK-80的制备
取0.57 g (1.00 mmol)实施例2制得的含芴无规聚芳醚化合物PEEK-80,0.57 g (3.20mmol) N-溴代丁二酰亚胺和0.04 g (0.16 mmol)过氧化苯甲酰,其余操作按照实施例3,即可得到溴甲基化含芴无规聚芳醚化合物Br-PEEK-80,产率:91%,其核磁共振氢谱见图2。
实施例5 N-甲基-4,4’-联吡啶化合物的制备
将7.8 g(50.0 mmol)4,4’-联吡啶置于250 ml的三口烧瓶中,加入2.5 mL(40 mmol)的碘甲烷(CH3I),以120 mL的二氯甲烷为反应溶剂,在氩气保护下,在45 ℃中反应4小时。当反应结束后过滤,所得的固体溶于100mL去离子水当中,加入20 g六氟磷酸铵析出絮状物,收集固体,即可得到N-甲基-4,4’-联吡啶化合物,产率:95%。
实施例6 含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-60的制备
在装有磁力搅拌器、温度计、回流装置和氩气通路的50 mL三口圆底烧瓶中加入0.3758g(0.5 mmol)实施例3制得的溴甲基化含芴无规聚芳醚Br-PEEK-60、1.2648 g(4 mmol)实施例5制得的N-甲基-4,4’-联吡啶化合物和25 mL N-甲基吡咯烷酮,在80 ℃下反应3天。反应结束后,将其倒入500mL去离子水中,加入25 g六氟磷酸铵析出产物,将产物在真空干燥箱中80 ℃干燥12 h,即得到紫精功能化聚芳醚电极活性材料MV-PEEK-60,产率:96%,其核磁共振氢谱见图3。
实施例7 含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-80的制备
将实施例6中所用Br-PEEK-60替换为实施例4制备的溴甲基化含芴无规聚芳醚Br-PEEK-80,其余投料量及操作按实施例6进行制备,即可得到含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-80,产率:95%,其核磁共振氢谱见图3。
实施例8 基于上述含有紫精侧链的无规聚芳醚电极活性材料而制备锂离子扣式电池
取0.3 g制备好的含有紫精侧链的无规聚芳醚电极活性材料和0.2 g乙炔黑导电剂,在0.2 mL N-甲基吡咯烷酮中研磨成浆状,均匀涂覆于铝箔上,在80 ℃的真空烘箱中干燥12小时。将干燥后的电极片切成直径为14 mm的圆片,以此为正极,金属锂为负极,于充满氩气的手套箱中组装成CR2025的扣式电池。采用新威尔电池充放电测试仪及辰华电化学工作站测试上述扣式电池。
结果显示,所得以含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-60为正极材料制备的扣式电池的充放电容量为73 mAh g-1;以含有紫精侧链的无规聚芳醚电极活性材料MV-PEEK-80为正极材料制备的扣式电池的充放电容量为80 mAh g-1
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

1.一种含有紫精侧链的无规聚芳醚电极活性材料,其特征在于,其化学结构式如下所示:
式中,x=60~100,y=20~100,-R为或-H。
2.一种如权利要求1所述的含有紫精侧链的无规聚芳醚电极活性材料的制备方法,其特征在于,包括如下步骤:
(1)将四甲基双酚芴、双酚芴、4,4’-二氟二苯甲酮和无水碳酸钾按一定的摩尔比混合,然后加入混合物总重量2~15倍的N,N’-二甲基乙酰胺,并加入混合物总体积4~10倍的甲苯,在惰性气体保护下,升温至140~150 ℃,利用甲苯回流带出反应所生成的水,并待甲苯完全蒸出后,升温至150~170 ℃,反应12~24小时,降至室温后,倒入去离子水中析出沉淀,过滤收集沉淀并干燥后,得到含芴无规聚芳醚化合物,其化学结构式如下所示:
式中,x=60~100,y=20~100;
所用四甲基双酚芴的化学结构式如下所示:
(2)将步骤(1)所得含芴无规聚芳醚化合物和N-溴代丁二酰亚胺按比例混合溶解于1,2-二氯乙烷中,以过氧化苯甲酰为引发剂,在惰性气体保护下,在60~150 ℃下反应20~50小时,然后冷却至室温,倒入甲醇中析出沉淀,过滤收集沉淀并干燥后,得到溴甲基化含芴无规聚芳醚化合物,其化学结构式如下所示:
式中,x=60~100,y=20~100,-R1为-Br或-H;
(3)将4,4’-联吡啶溶解在二氯甲烷中,加入一定量的碘甲烷,在惰性气体保护下,在30~80 ℃中反应2~10小时,反应结束后过滤,所得固体溶于去离子水中,加入六氟磷酸铵析出絮状物沉淀,收集并干燥沉淀,得到N-甲基-4,4’-联吡啶化合物,其化学结构式如下所示:
(4)将步骤(2)所得溴甲基化含芴无规聚芳醚化合物和步骤(4)所得N-甲基-4,4’-联吡啶化合物混合溶解于极性非质子溶剂中,在惰性气体保护下,于60~120 ℃反应24~72小时,然后将溶液倒入去离子水中,加入六氟磷酸铵析出絮状物沉淀,过滤并烘干沉淀后,得到所述含有紫精侧链的无规聚芳醚电极活性材料。
3.根据权利要求2所述的含有紫精侧链的无规聚芳醚电极活性材料的制备方法,其特征在于,步骤(1)中所用四甲基双酚芴、双酚芴和无水碳酸钾的摩尔比为0.6~1:0.2~1:3~6;
4,4’二氟二苯甲酮的摩尔量等于四甲基双酚芴和双酚芴的摩尔量之和。
4.根据权利要求2所述的含有紫精侧链的无规聚芳醚电极活性材料的制备方法,其特征在于,步骤(2)中所用含芴无规聚芳醚化合物与N-溴代丁二酰亚胺、过氧化苯甲酰的摩尔比为1:2~4:0.1~0.02。
5.根据权利要求2所述的含有紫精侧链的无规聚芳醚电极活性材料的制备方法,其特征在于,步骤(3)中所用4,4’-联吡啶与碘甲烷的摩尔比为5:1~4。
6.根据权利要求2所述的含有紫精侧链的无规聚芳醚电极活性材料的制备方法,其特征在于,步骤(4)中所用溴甲基化含芴无规聚芳醚化合物与N-甲基-4,4’-联吡啶化合物的摩尔比为1:2~12。
7.根据权利要求2所述的含有紫精侧链的无规聚芳醚电极活性材料的制备方法,其特征在于,步骤(4)中所述极性非质子溶剂为N,N’-二甲基乙酰胺、N,N’-二甲基甲酰胺、N-甲基吡咯烷酮、N,N’-二甲基甲酰胺、二甲基亚砜中的任意一种。
8.一种如权利要求1所述含有紫精侧链的无规聚芳醚电极活性材料在制备锂离子电池中的应用。
CN201910679012.4A 2019-07-25 2019-07-25 一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法 Active CN110387036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910679012.4A CN110387036B (zh) 2019-07-25 2019-07-25 一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910679012.4A CN110387036B (zh) 2019-07-25 2019-07-25 一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110387036A true CN110387036A (zh) 2019-10-29
CN110387036B CN110387036B (zh) 2021-06-22

Family

ID=68287545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910679012.4A Active CN110387036B (zh) 2019-07-25 2019-07-25 一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110387036B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773260A (zh) * 2022-04-18 2022-07-22 福州大学 一种紫精π-聚集体的卤化铅光致变色化合物
CN115819752A (zh) * 2023-01-03 2023-03-21 福州大学 一种用于环氧树脂增韧的羧基化含氟聚芴醚酮化合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280991A1 (en) * 2005-06-08 2006-12-14 Honda Motor Co., Ltd. Membrane-electrode assembly for solid polymer electrolyte fuel cell
CN104356379A (zh) * 2014-10-22 2015-02-18 常州大学 一类含二异丙基芴结构的可溶性聚芳醚酮及其制备方法
CN108530660A (zh) * 2018-04-17 2018-09-14 福州大学 一种局部密集季铵化聚芴醚酮化合物及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280991A1 (en) * 2005-06-08 2006-12-14 Honda Motor Co., Ltd. Membrane-electrode assembly for solid polymer electrolyte fuel cell
CN104356379A (zh) * 2014-10-22 2015-02-18 常州大学 一类含二异丙基芴结构的可溶性聚芳醚酮及其制备方法
CN108530660A (zh) * 2018-04-17 2018-09-14 福州大学 一种局部密集季铵化聚芴醚酮化合物及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN Y, ET AL.: "Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries", 《SCI CHINA MATER》 *
CHEN Y, ET AL: "Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries", 《SCIENCE CHINA CHEMISTY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773260A (zh) * 2022-04-18 2022-07-22 福州大学 一种紫精π-聚集体的卤化铅光致变色化合物
CN114773260B (zh) * 2022-04-18 2023-11-07 福州大学 一种紫精π-聚集体的卤化铅光致变色化合物
CN115819752A (zh) * 2023-01-03 2023-03-21 福州大学 一种用于环氧树脂增韧的羧基化含氟聚芴醚酮化合物及其制备方法

Also Published As

Publication number Publication date
CN110387036B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
Oubaha et al. Carbonyl‐based π‐conjugated materials: from synthesis to applications in lithium‐ion batteries
CN110071289B (zh) 一种锂离子电池硅基负极复合粘结剂及其制备方法和应用
CN110429279B (zh) 一种锂离子电池有机正极材料及其应用
CN107275601B (zh) 芳香族超共轭二羧酸盐及其石墨烯复合材料的用途
CN108923064B (zh) 一种固体高分子电解质及其制备方法及锂离子二次电池
CN104810522A (zh) 一种有机正极活性材料及其制备方法与应用
CN111205460B (zh) 聚酰亚胺结构的有机席夫碱聚合物锂离子电池负极材料、制备方法及其应用
CN103515595A (zh) 硫/聚吡咯-石墨烯复合材料、其制备方法、电池正极以及锂硫电池
Shi et al. Challenges and advances of organic electrode materials for sustainable secondary batteries
CN103531810A (zh) 一类芳香杂环酮类化合物的锂离子二次电池正极材料及应用
Zhang et al. Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries
CN106207182A (zh) 一种应用于锂电池的微介孔聚三苯胺衍生物及其制备方法
CN110387036A (zh) 一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法
CN102569724B (zh) 一种用于锂离子电池正极的复合材料的制备方法
Li et al. Investigations on the electrochemical behaviors of hexaazatriphenylene derivative as high-performance electrode for batteries
CN107317022A (zh) 一种锂离子电池正极的制备方法
CN110305313B (zh) 一种紫精功能化聚芳醚电极活性材料及其制备方法
CN111211327B (zh) 一种用于锂离子电池正极材料的化合物及制备方法和应用
CN109671978B (zh) 一种耐高电压的固态聚合物电解质、制备方法及其应用
CN113278151A (zh) 一类含密集型烷基硫柔性侧链结构聚芳醚砜聚合物及其制备方法和应用
CN105826563A (zh) 一种自由基聚合物材料及其制备和应用
CN106910895B (zh) 一种有机电极材料及其制备方法和应用
CN115353471B (zh) 一种蒽嵌蒽醌聚合物有机电极材料及其制备方法与应用
CN114479078B (zh) 萘酰亚胺类聚合物、其制备方法及在锂/钠电池中的应用
CN117362602B (zh) 一种聚均苯四甲酸二酰亚胺噻吩二茂铁及其制备方法、锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant