CN110305313B - 一种紫精功能化聚芳醚电极活性材料及其制备方法 - Google Patents

一种紫精功能化聚芳醚电极活性材料及其制备方法 Download PDF

Info

Publication number
CN110305313B
CN110305313B CN201910679011.XA CN201910679011A CN110305313B CN 110305313 B CN110305313 B CN 110305313B CN 201910679011 A CN201910679011 A CN 201910679011A CN 110305313 B CN110305313 B CN 110305313B
Authority
CN
China
Prior art keywords
polyarylether
fluorene
active material
electrode active
viologen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910679011.XA
Other languages
English (en)
Other versions
CN110305313A (zh
Inventor
陈栋阳
许佳琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910679011.XA priority Critical patent/CN110305313B/zh
Publication of CN110305313A publication Critical patent/CN110305313A/zh
Application granted granted Critical
Publication of CN110305313B publication Critical patent/CN110305313B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种紫精功能化聚芳醚电极活性材料及其制备方法,该材料包含可氧化还原的紫精侧链和高分子量的聚芳醚骨架,其是先制备具苯甲基的含芴聚芳醚化合物,然后用N‑溴代丁二酰亚胺将苯甲基溴化,再将其与N‑甲基‑4,4’‑联吡啶反应而制得。本发明提供的制备方法条件温和,工艺简单,适合大批量生产。由该方法制备的电极活性材料可以直接与乙炔黑复合制备有机电极,无需添加粘结剂,所得电极具有可逆的充放电性能和稳定的循环性能,可以作为锂离子电池的正极。本发明所得有机电极材料不含有昂贵的过渡金属,成本低廉,废弃后对环境的影响较小。

Description

一种紫精功能化聚芳醚电极活性材料及其制备方法
技术领域
本发明属于有机电极材料领域,具体涉及一种紫精功能化聚芳醚电极活性材料及其制备方法。
背景技术
随着现代社会的高速发展,人们对高能量和高功率的电子仪器和设备的需求也在不断增长,可充电二次电池与日常生活密切相关,广泛用于电网存储、笔记本电脑、移动电话和各种可穿戴电子设备。在各种电池中,锂离子电池具有高工作电压、低自放电和高能量存储密度,被认为是下一代储能设备的理想选择。
目前商业化的锂离子电池的活性材料通常是无机过渡金属(Co、Mn、Ni和Fe),然而,这些金属的处理可能导致严重的健康和环境问题。而通过使用安全、灵活的有机材料作为活性物质可以克服这些缺点(Liang Y et al,Advanced Energy Materials,2012,2(7):742~769)。有机材料由于其丰富,设计独特性和环境友好性,最近作为可充电锂电池的电极重新受到关注。
有机电极材料的关键挑战之一是在充放电循环期间活性材料会溶解到电解质中,从而导致不良的循环性能(Kim D et al,Journal of the American Chemical Society,2017,139:6635~6643)。目前业界已经提出了几种方法来解决溶解问题,例如氧化还原分子与底物的非共价或共价连接,活性化合物的聚合,分子结构的优化以及固体电解质的使用。活性化合物的聚合因其通用性、改进的热稳定性和增加了通过聚合物链的电子转移动力学的优点,特别令人感兴趣。有机聚合物具有结构多样、资源丰富等优点,采用氧化还原活性聚合物开发有机二次电池,正成为能源领域的研究热点(Wei W et al,ElectrochemistryCommunications,2018,90:21~25)。
在已经存在的多种聚合物中,聚芳醚具有优异的综合性能,其优良的耐热、耐腐蚀、耐摩擦及生物相容性好等特点,在国防军工、武器装备、航空航天、电子、汽车、机械、石油工业、核能及理疗卫生等高技术领域有广泛的应用。通过在功能化的高分子量聚芳醚骨架上使用不同种类的有机基团作为氧化还原反应活性位点来实现电子传输,能够得到具有氧化还原功能的有机电极材料。
发明内容
本发明为克服现有技术的不足,提供了一种紫精功能化聚芳醚电极活性材料及其制备方法。该电极活性材料可以直接与乙炔黑复合制备有机电极,无需添加粘结剂,所得电极具有可逆的充放电性能和稳定的循环性能,可以作为锂离子电池的正极。
为实现上述目的,本发明采用如下技术方案:
一种紫精功能化聚芳醚电极活性材料,其化学结构式如下所示:
Figure DEST_PATH_IMAGE001
式中,n=20~200,-R为
Figure 904823DEST_PATH_IMAGE002
或-H。
所述紫精功能化聚芳醚电极活性材料的制备方法,包括如下步骤:
(1)在N,N’-二甲基乙酰胺中,将四甲基双酚芴、4,4’-二氟二苯甲酮和无水碳酸钾按一定的摩尔比混合,并加入所得混合液0.4~10倍体积的甲苯,在惰性气体保护下,升温至140~150 ℃,利用甲苯回流带出反应所生成的水,并待甲苯完全蒸出后,升温至150~170℃,反应12~24小时,降至室温后,倒入去离子水中析出沉淀,过滤收集沉淀并干燥,得到含芴聚芳醚化合物;其反应流程式为:
Figure DEST_PATH_IMAGE003
,式中,n=20~200;
(2)将步骤(1)所得含芴聚芳醚化合物和N-溴代丁二酰亚胺按比例混合溶解于1,2-二氯乙烷中,混合物在1,2-二氯乙烷中的浓度为1~40wt%,并以过氧化苯甲酰为引发剂,在惰性气体保护下,60~150 ℃反应10~50小时,然后冷却至室温,倒入甲醇中析出沉淀,过滤收集沉淀并干燥后,得到溴甲基化含芴聚芳醚化合物;其反应流程式为:
Figure 402669DEST_PATH_IMAGE004
,式中,n=20~200,-R1为-Br或-H;
(3)将4,4’-联吡啶溶解在二氯甲烷中制成1~40wt%的溶液,加入一定量的碘甲烷(CH3I),在惰性气体保护下,在30~80 ℃中反应2~10小时,反应结束后过滤,将所得固体溶于去离子水中制成1~30wt%的溶液,加入过量六氟磷酸铵析出絮状沉淀,收集并干燥沉淀,得到N-甲基-4,4’-联吡啶化合物;其反应流程式为:
Figure DEST_PATH_IMAGE005
(4)将步骤(2)所得溴甲基化含芴聚芳醚化合物和步骤(4)所得N-甲基-4,4’-联吡啶化合物混合溶解于极性非质子溶剂中,混合物在极性非质子溶剂中的浓度为1~40wt%,在惰性气体保护下,于60~120 ℃反应24~72小时,然后将溶液倒入去离子水中,所用去离子水的体积为极性非质子溶剂的体积的3~10倍,然后往里加入过量六氟磷酸铵析出固体沉淀,过滤并烘干沉淀后,得到所述紫精功能化聚芳醚电极活性材料;其反应流程式为:
Figure 312725DEST_PATH_IMAGE006
式中,n=20~200,-R为
Figure 189414DEST_PATH_IMAGE002
或-H;-R1为-Br或-H。
为了更好的实现本发明,步骤(1)中所用四甲基双酚芴、4,4’-二氟二苯甲酮与无水碳酸钾的摩尔比为1:1:3~6。
步骤(1)中所用N,N’-二甲基乙酰胺的质量为所用四甲基双酚芴、4,4’-二氟二苯甲酮与无水碳酸钾总质量的2~15倍。
步骤(2)中所用含芴聚芳醚化合物与N-溴代丁二酰亚胺、过氧化苯甲酰的摩尔比为1:2~4:0.1~0.02。
步骤(3)中所用4,4’-联吡啶与碘甲烷的摩尔比为5:1~4。
步骤(3)中加入六氟磷酸铵的质量为4,4’-联吡啶与碘甲烷总质量的2~10倍。
步骤(4)中所用溴甲基化含芴聚芳醚化合物与N-甲基-4,4’-联吡啶化合物的摩尔比为1:2~12。
步骤(4)中所述极性非质子溶剂为N,N’-二甲基乙酰胺、N,N’-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜中的任意一种。
步骤(4)中加入六氟磷酸铵的质量为溴甲基化含芴聚芳醚化合物与N-甲基-4,4’-联吡啶化合物总质量的10~40倍。
本发明所提供的制备方法为优选方案,本领域的专业人员可以预见的合理温度、时间和其它反应条件均为本发明所要保护的范围,并不局限于上述反应条件。
本发明通过先合成含芴聚芳醚化合物,然后用N-溴代丁二酰亚胺将含芴聚芳醚化合物上的苯甲基溴化,再将其与N-甲基-4,4’-联吡啶进行反应,制得所述紫精功能化聚芳醚电极活性材料。
与现有技术相比,本发明具有如下有益效果:
(1)本发明采用的原料为常见的化工原料,价格低廉,容易获得;
(2)本发明反应过程对环境没有危害,满足可持续发展的要求;
(3)本发明有机电极材料的制备工艺易控,制备方法简单;
(4)相对于其他有机小分子材料,本发明利用高分子量聚合物进一步缓解了有机电极材料在电解液中的溶解,可延长电极材料的循环寿命;
(5)本发明所得有机电极材料具有良好的热稳定性及电化学性能,且可实现较高的充放电容量。
附图说明
图1是实施例1制得的含芴聚芳醚化合物PEEK的核磁共振氢谱;
图2中(a)是实施例2制得的溴甲基化含芴聚芳醚化合物Br-PEEK-63的核磁共振氢谱;(b)是实施例3制得的溴甲基化含芴聚芳醚化合物Br-PEEK-96的核磁共振氢谱;
图3中(a)是实施例5制得的紫精功能化聚芳醚电极活性材料MV-PEEK-63的核磁共振氢谱;(b)是实施例6制得的紫精功能化聚芳醚电极活性材料MV-PEEK-96的核磁共振氢谱;
图4是本发明实施例5制得的紫精功能化聚芳醚电极活性材料MV-PEEK-63和实施例6制得的紫精功能化聚芳醚电极活性材料MV-PEEK-96的热失重曲线图;
图5是实施例7以紫精功能化聚芳醚电极活性材料MV-PEEK-63为正极材料制备的扣式电池和以紫精功能化聚芳醚电极活性材料MV-PEEK-96为正极材料制备的扣式电池的循环伏安曲线图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
所用四甲基双酚芴按照文献(Fabrication and properties of cross-linkedsulfonated fluorene-containing poly(arylene ether ketone) for proton exchangemembrane. Journal of Power Sources 2007, 170, 20-27)进行制备。
实施例1 含芴聚芳醚化合物PEEK的制备
4.0653 g(10.0 mmol)的四甲基双酚芴,2.1820 g(10.0 mmol)的4,4’-二氟二苯甲酮,4.14 g(30.0 mmol)的无水碳酸钾,40 g的N,N’-二甲基乙酰胺(DMAC)和12 mL的甲苯加入到100 mL的三口烧瓶中,在氩气保护下,升温至140 ℃,除水两小时,除甲苯一小时,升温至160 ℃反应12小时,反应结束后,将温度降至室温,然后溶液倒入去离子水中析出产物,过滤收集沉淀后重新溶解在二氯甲烷里,倒入甲醇中析出沉淀,过滤收集沉淀,将产物在80 ℃鼓风箱中烘12小时,再在真空烘箱中80 ℃烘24小时,即得到含芴聚芳醚PEEK,产率:98%,其核磁共振氢谱见图1。
实施例2 溴甲基化含芴聚芳醚化合物Br-PEEK-63的制备
取0.58 g(1.00 mmol)实施例1制得的含芴聚芳醚,0.45 g(2.52 mmol)的N-溴代丁二酰亚胺(NBS),0.03 g(0.13 mmol)的过氧化苯甲酰(BPO)和20 mL的1,2-二氯乙烷加入到50 mL的三口烧瓶中,然后在80 ℃下反应24小时。反应结束后,将反应产物倒入甲醇中析出,过滤收集沉淀,将沉淀在80 ℃的鼓风箱中烘12小时,再在真空烘箱中80 ℃烘24小时,即可得到溴甲基化含芴聚芳醚Br-PEEK-63,产率:90%,其核磁共振氢谱见图2。
实施例3 溴甲基化含芴聚芳醚化合物Br-PEEK-96的制备
将实施例2中N-溴代丁二酰亚胺(NBS)的投料量改为0.68 g(3.84 mmol),过氧化苯甲酰(BPO)的投料量改为0.05 g(0.19 mmol),其余操作按实施例2,即可得到溴甲基化含芴聚芳醚化合物Br-PEEK-96,产率:89%,其核磁共振氢谱见图2。
实施例4 N-甲基-4,4’-联吡啶化合物的制备
将7.8 g(50.0 mmol)4,4’-联吡啶置于250 ml的三口烧瓶中,加入2.5 mL(40mmol)的碘甲烷(CH3I),以120 mL的二氯甲烷为反应溶剂,在氩气保护下,在45 ℃中反应4小时。当反应结束后过滤,所得的固体溶于100mL去离子水当中,加入20 g六氟磷酸铵析出絮状物,收集固体,即可得到N-甲基-4,4’-联吡啶化合物,产率:95%。
实施例5 紫精功能化聚芳醚电极活性材料MV-PEEK-63的制备
在装有磁力搅拌器、温度计、回流装置和氩气通路的50 mL三口圆底烧瓶中加入0.3918 g(0.5 mmol)实施例2制得的溴甲基化聚芳醚Br-PEEK-63、1.2648 g(4 mmol)实施例4制得的N-甲基-4,4’-联吡啶化合物和25 mL的N-甲基吡咯烷酮,在80 ℃下反应72小时。反应结束后,将其倒入500mL去离子水中,加入20 g的六氟磷酸铵析出其产物,沉淀过滤烘干后,放置在真空烘箱中以80 ℃干燥12小时,即得到紫精功能化聚芳醚电极活性材料MV-PEEK-63,产率:96%,其核磁共振氢谱见图3。
实施例6 紫精功能化聚芳醚电极活性材料MV-PEEK-96的制备
将实施例5中所用Br-PEEK-63替换为0.4441 g(0.5 mmol)实施例3制得的溴甲基化含芴聚芳醚化合物Br-PEEK-96,其余投料量及操作按实施例5进行制备,即可得到紫精功能化聚芳醚电极活性材料MV-PEEK-96,产率:95%,其核磁共振氢谱见图3。
实施例7 基于上述紫精功能化聚芳醚电极活性材料而制备锂离子扣式电池
取0.3 g制备好的紫精功能化聚芳醚电极活性材料和0.2 g乙炔黑导电剂,在0.2mL N-甲基吡咯烷酮中研磨成浆状,均匀涂覆于铝箔上,在80 ℃的真空烘箱中干燥12小时。将干燥后的电极片切成直径为14 mm的圆片,以此为正极,金属锂为对电极,于充满氩气的手套箱中组装成CR2025的扣式电池。采用新威尔电池充放电测试仪及辰华电化学工作站测试上述扣式电池。
结果显示,所得以紫精功能化聚芳醚电极活性材料MV-PEEK-63为正极材料制备的扣式电池的充放电容量为76 mAh g-1;以紫精功能化聚芳醚电极活性材料MV-PEEK-96为正极材料制备的扣式电池的充放电容量为90 mAh g-1
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

1.一种紫精功能化聚芳醚电极活性材料,其特征在于,其化学结构式如下所示:
Figure DEST_PATH_IMAGE002
式中,n=20~200,-R为
Figure DEST_PATH_IMAGE004
或-H。
2.一种如权利要求1所述的紫精功能化聚芳醚电极活性材料的制备方法,其特征在于,包括如下步骤:
(1)在N,N’-二甲基乙酰胺中,将四甲基双酚芴、4,4’-二氟二苯甲酮和无水碳酸钾按一定的摩尔比混合,并加入所得混合液0.4~10倍体积的甲苯,在惰性气体保护下,升温至140~150 ℃,利用甲苯回流带出反应所生成的水,并待甲苯完全蒸出后,升温至150~170 ℃,反应12~24小时,降至室温后,倒入去离子水中析出沉淀,过滤收集沉淀并干燥,得到含芴聚芳醚化合物,其化学结构式如下所示:
Figure DEST_PATH_IMAGE006
,式中,n=20~200;
所用四甲基双酚芴的化学结构式如下所示:
Figure DEST_PATH_IMAGE008
(2)将步骤(1)所得含芴聚芳醚化合物和N-溴代丁二酰亚胺按比例混合溶解于1,2-二氯乙烷中,以过氧化苯甲酰为引发剂,在惰性气体保护下,60~150 ℃反应10~50小时,然后冷却至室温,倒入甲醇中析出沉淀,过滤收集沉淀并干燥后,得到溴甲基化含芴聚芳醚化合物,其化学结构式如下所示:
Figure DEST_PATH_IMAGE010
,式中,n=20~200,-R1为-Br或-H;
(3)将4,4’-联吡啶溶解在二氯甲烷中,加入一定量的碘甲烷,在惰性气体保护下,在30~80 ℃中反应2~10小时,反应结束后过滤,所得固体溶于去离子水中,加入六氟磷酸铵析出絮状沉淀,收集并干燥沉淀,得到N-甲基-4,4’-联吡啶化合物,其化学结构式如下所示:
Figure DEST_PATH_IMAGE012
(4)将步骤(2)所得溴甲基化含芴聚芳醚化合物和步骤( 3 ) 所得N-甲基-4,4’-联吡啶化合物混合溶解于极性非质子溶剂中,在惰性气体保护下,于60~120 ℃反应24~72小时,然后将溶液倒入去离子水中,加入六氟磷酸铵析出固体沉淀,过滤并烘干沉淀后,得到所述紫精功能化聚芳醚电极活性材料。
3.根据权利要求2所述的紫精功能化聚芳醚电极活性材料的制备方法,其特征在于,步骤(1)中所用四甲基双酚芴、4,4’-二氟二苯甲酮与无水碳酸钾的摩尔比为1:1:3~6。
4.根据权利要求2所述的紫精功能化聚芳醚电极活性材料的制备方法,其特征在于,步骤(1)中所用N,N’-二甲基乙酰胺的质量为所用四甲基双酚芴、4,4’-二氟二苯甲酮与无水碳酸钾总质量的2~15倍。
5.根据权利要求2所述的紫精功能化聚芳醚电极活性材料的制备方法,其特征在于,步骤(3)中所用4,4’-联吡啶与碘甲烷的摩尔比为5:1~4。
6.根据权利要求2所述的紫精功能化聚芳醚电极活性材料的制备方法,其特征在于,步骤(4)中所用溴甲基化含芴聚芳醚化合物与N-甲基-4,4’-联吡啶化合物的摩尔比为1:2~12。
7.根据权利要求2所述的紫精功能化聚芳醚电极活性材料的制备方法,其特征在于,步骤(4)中所述极性非质子溶剂为N,N’-二甲基乙酰胺、N,N’-二甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜中的任意一种。
CN201910679011.XA 2019-07-25 2019-07-25 一种紫精功能化聚芳醚电极活性材料及其制备方法 Expired - Fee Related CN110305313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910679011.XA CN110305313B (zh) 2019-07-25 2019-07-25 一种紫精功能化聚芳醚电极活性材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910679011.XA CN110305313B (zh) 2019-07-25 2019-07-25 一种紫精功能化聚芳醚电极活性材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110305313A CN110305313A (zh) 2019-10-08
CN110305313B true CN110305313B (zh) 2021-04-27

Family

ID=68081725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910679011.XA Expired - Fee Related CN110305313B (zh) 2019-07-25 2019-07-25 一种紫精功能化聚芳醚电极活性材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110305313B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773260B (zh) * 2022-04-18 2023-11-07 福州大学 一种紫精π-聚集体的卤化铅光致变色化合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226575A (ja) * 2001-01-31 2002-08-14 Jsr Corp ポリエーテル系共重合体およびプロトン伝導膜
JP2006070126A (ja) * 2004-09-01 2006-03-16 Toray Ind Inc 耐熱性樹脂、ならびにそれを用いた樹脂組成物および成型体
CN102516526A (zh) * 2011-12-01 2012-06-27 中山大学 一种含季铵盐侧基和芴基的聚芳醚化合物及其制备方法和应用
CN104356379A (zh) * 2014-10-22 2015-02-18 常州大学 一类含二异丙基芴结构的可溶性聚芳醚酮及其制备方法
CN108530660A (zh) * 2018-04-17 2018-09-14 福州大学 一种局部密集季铵化聚芴醚酮化合物及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344438A (ja) * 2005-06-08 2006-12-21 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226575A (ja) * 2001-01-31 2002-08-14 Jsr Corp ポリエーテル系共重合体およびプロトン伝導膜
JP2006070126A (ja) * 2004-09-01 2006-03-16 Toray Ind Inc 耐熱性樹脂、ならびにそれを用いた樹脂組成物および成型体
CN102516526A (zh) * 2011-12-01 2012-06-27 中山大学 一种含季铵盐侧基和芴基的聚芳醚化合物及其制备方法和应用
CN104356379A (zh) * 2014-10-22 2015-02-18 常州大学 一类含二异丙基芴结构的可溶性聚芳醚酮及其制备方法
CN108530660A (zh) * 2018-04-17 2018-09-14 福州大学 一种局部密集季铵化聚芴醚酮化合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries;Chen Y, et al.;《Sci China Mater》;20180608;第62卷(第2期);第211-224页 *

Also Published As

Publication number Publication date
CN110305313A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
Han et al. Organic quinones towards advanced electrochemical energy storage: recent advances and challenges
Hu et al. Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery
CN109888380B (zh) 一种固态聚合物电解质及其在锂金属电池中的应用
CN105348303B (zh) 一种卟啉二维共价有机框架共轭聚合物、其制备方法和应用
CN111193065B (zh) 一种固态电解质膜、制备方法和用途与包含它的锂电池
Wang et al. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries
US8242213B2 (en) Method for manufacturing polyradical compound and battery
Zhong et al. Ultrahigh Li-ion conductive single-ion polymer electrolyte containing fluorinated polysulfonamide for quasi-solid-state Li-ion batteries
CN110071289B (zh) 一种锂离子电池硅基负极复合粘结剂及其制备方法和应用
Wei et al. Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in Li–S batteries
US6866963B2 (en) Cathode active material and lithium battery employing the same
CN109768320A (zh) 全固态聚合物电解质及其制备方法和全固态锂离子电池
CN107887573B (zh) 具有拓扑结构的正极活性物质及其应用
CN111769320B (zh) 一种固态聚合物电解质膜及其制备方法
CN105703003A (zh) 一种锂电池用梳状聚合物、电解质、复合电极及其应用
Hu et al. Hydroxyl-rich single-ion conductors enable solid hybrid polymer electrolytes with excellent compatibility for dendrite-free lithium metal batteries
Luo et al. A Four‐Armed Polyacrylic Acid Homopolymer Binder with Enhanced Performance for SiOx/Graphite Anode
Su et al. Organic polytriphenylamine derivative-based cathode with tailored potential and its electrochemical performances
CN113594453A (zh) 一种钠离子电池负极材料及其制备方法
CN110387036B (zh) 一种含有紫精侧链的无规聚芳醚电极活性材料及其制备方法
Tan et al. A flexible solid-state electrolyte based on comb-like PEG-functionalized covalent organic frameworks for lithium metal batteries
CN110305313B (zh) 一种紫精功能化聚芳醚电极活性材料及其制备方法
Li et al. Investigations on the electrochemical behaviors of hexaazatriphenylene derivative as high-performance electrode for batteries
CN110590789B (zh) 富氮三苯胺衍生物共轭聚合物材料及其单体的制备和应用
CN110556537B (zh) 一种改善阴离子嵌入型电极材料电化学性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210427

CF01 Termination of patent right due to non-payment of annual fee