CN110380036B - 一种合金材料复合碳纳米管及其制备方法和应用 - Google Patents

一种合金材料复合碳纳米管及其制备方法和应用 Download PDF

Info

Publication number
CN110380036B
CN110380036B CN201910668813.0A CN201910668813A CN110380036B CN 110380036 B CN110380036 B CN 110380036B CN 201910668813 A CN201910668813 A CN 201910668813A CN 110380036 B CN110380036 B CN 110380036B
Authority
CN
China
Prior art keywords
carbon nanotube
alloy material
cnt
composite carbon
material composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910668813.0A
Other languages
English (en)
Other versions
CN110380036A (zh
Inventor
魏明灯
武俊秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910668813.0A priority Critical patent/CN110380036B/zh
Publication of CN110380036A publication Critical patent/CN110380036A/zh
Application granted granted Critical
Publication of CN110380036B publication Critical patent/CN110380036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种新型合金材料复合碳纳米管及其制备方法和应用。本发明首次通过以Co5Ge3合金纳米材料作为催化剂原位生长碳纳米管的方法合成Co5Ge3@CNT锂离子电池负极材料,在2 A/g的电流密度下,循环500圈之后,比容量为890 mAh/g,与一般的锗复合材料,具有更加优异的稳定性;为锗基材料的开发应用提供了一种可行的方案。

Description

一种合金材料复合碳纳米管及其制备方法和应用
技术领域
本发明属于锂电池电极材料技术领域,具体涉及一种新型合金材料复合碳纳米管及其制备方法和应用。
背景技术
锗基材料因具有较高的理论储锂容量而受到广泛的关注,然而,由于价格昂贵,并且嵌脱锂过程中伴随着较大的体积膨胀,使得该材料在应用上受到了极大的限制。近期,有研究表明,复合碳材料可以有效地缓解材料在充放电过程中产生的体积膨胀,并且能有效地提高材料的导电性。同时,合金类材料也被认为是一种极具前景的储能材料。
发明内容
本发明首次原位合成了碳纳米管限域钴化锗纳米合金复合材料,降低成本的同时显著地提高了锗基材料的导电性和循环稳定性;且碳纳米管为竹节状生长,每个节点处的钴化锗纳米颗粒作为催化剂催化碳纳米管的进一步生长,碳纳米管不仅搭建了导电网络,而且对钴化锗纳米合金的生长起到了良好的限域作用。同时,因其良好的拉伸性能对锗在嵌锂过程中造成的体积膨胀具有极好的缓冲效果。钴化锗合金材料可以在保证容量的同时极大地降低经济成本,此外,合金材料对提高导电性以及缓冲体积膨胀具有很好的效果。
为实现上述目的,本发明采用如下技术方案:
一种新型合金材料复合碳纳米管的制备方法,包括以下步骤:将2 mmol CoNO3·6H2O 和1 mmol GeCl4 溶解于20 ml DMF 溶液中,4 mmol 2-甲基咪唑加入到上述溶液中常温下搅拌20 min,将反应液转移到50ml的聚四氟乙烯内衬中,投入160℃烘箱反应24h,将取出的反应产物用去离子水清洗数次之后将样品烘干,接着在氢氩混合气氛围下700摄氏度煅烧2h。得到最终产物Co5Ge3@CNT。
上述新型合金材料复合碳纳米管Co5Ge3@CNT在锂电池中的应用,锂电池组装:按质量比样品:聚偏氟乙烯:乙炔黑=70:15:15混合研磨后均匀地涂在铜网上做负极,参比电极和对电极均为金属锂,电解液为1M LiPF6的EC+DMC+EMC (EC/DMC/EMC=1/1/1 v/v)溶液;所有组装均在手套箱里进行。同时采用商业化的锗单质作为对比,以同样的方法进行锂电池组装。
本发明的优点:本发明首次通过以Co5Ge3合金纳米材料作为催化剂原位生长碳纳米管的方法合成Co5Ge3@CNT锂离子电池负极材料,在2 A/g 的电流密度下,循环500圈之后,比容量为 890 mAh/g,与一般的锗复合材料,具有更加优异的稳定性;为锗基材料的开发应用提供了一种可行的方案。
附图说明
图1为本发明所合成的Co5Ge3@CNT的XRD谱图;
图2为本发明所合成的Co5Ge3@CNT 的透射电镜图;
图3为本发明所合成的Co5Ge3@CNT 作为电极的电化学性能图;
图4为纯的锗单质电极作为电极的电化学性能图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
将2 mmol CoNO3·6H2O 和1 mmol GeCl4 溶解于20 ml DMF 溶液中,4 mmol 2-甲基咪唑加入到上述溶液中常温下搅拌20 min,将反应液转移到50ml的聚四氟乙烯内衬中,投入160℃烘箱反应24h,将取出的反应产物用去离子水清洗数次之后将样品烘干,接着在氢氩混合气氛围下700摄氏度煅烧2h。得到最终产物Co5Ge3@CNT。
Co5Ge3@CNT的XRD谱图如图1所示,样品的主峰归属于Co5Ge3的特征峰,同时有少量的Co3Ge2相;从图2的TEM照片中可以看到有大量的碳纳米管生成,且碳纳米管呈竹节状包覆着金属颗粒;从图3可以看出,以Co5Ge3@CNT为锂离子电池负极材料,在2A/g电流密度下,循环500圈后仍具有890 mAh/g的高比容量。而以纯的锗单质作为电极,其电化学性能如图4,从性能图可以很明显的看出,纯的锗单质循环稳定性很差。从而说明本发明所合成的材料Co5Ge3@CNT有效地改善了锗基材料的电化学性能。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种合金材料复合碳纳米管的制备方法,其特征在于:包括以下步骤:
(1)将CoNO3·6H2O 和GeCl4 溶解于DMF 溶液中,然后再加入2-甲基咪唑常温下搅拌20min得反应液;
(2)将反应液转移到50ml的聚四氟乙烯内衬中,投入160℃烘箱反应24h,将取出的反应产物用去离子水清洗后烘干;
(3)将烘干后的产物在氢氩混合气氛围下进行煅烧得到合金材料复合碳纳米管Co5Ge3@CNT。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中CoNO3·6H2O的摩尔量为2mmol, GeCl4的摩尔量为1mmol,2-甲基咪唑的摩尔量为4mmol。
3.根据权利要求1所述的制备方法,其特征在于:步骤(3)中煅烧温度为700℃,煅烧时间为2h。
4.一种如权利要求1-3任一项所述的制备方法制得的合金材料复合碳纳米管Co5Ge3@CNT。
5.一种如权利要求4所述的合金材料复合碳纳米管Co5Ge3@CNT在锂电池中的应用,其特征在于:按合金材料复合碳纳米管Co5Ge3@CNT、聚偏氟乙烯和乙炔黑质量比为70:15:15混合研磨后均匀地涂在铜网上作为锂电池负极,参比电极和对电极均为金属锂,电解液为1MLiPF6的EC/DMC/EMC溶液。
CN201910668813.0A 2019-07-24 2019-07-24 一种合金材料复合碳纳米管及其制备方法和应用 Active CN110380036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910668813.0A CN110380036B (zh) 2019-07-24 2019-07-24 一种合金材料复合碳纳米管及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910668813.0A CN110380036B (zh) 2019-07-24 2019-07-24 一种合金材料复合碳纳米管及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110380036A CN110380036A (zh) 2019-10-25
CN110380036B true CN110380036B (zh) 2022-04-12

Family

ID=68255407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910668813.0A Active CN110380036B (zh) 2019-07-24 2019-07-24 一种合金材料复合碳纳米管及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110380036B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645309B (zh) * 2021-01-14 2023-02-24 齐鲁工业大学 一种氟化竹节状碳纳米管及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604753A (zh) * 2009-07-24 2009-12-16 成都中科来方能源科技有限公司 碳硅复合材料及其制备方法和用途
CN106025242A (zh) * 2016-07-29 2016-10-12 成都新柯力化工科技有限公司 锂离子电池用硅合金纳米线复合负极材料及其制备方法
CN106505216A (zh) * 2015-09-03 2017-03-15 韩国能量技术研究院 金属氧化物‑碳纳米物质复合体、催化剂、燃料电池电极用催化剂层及这些制造方法
CN106784766A (zh) * 2016-12-16 2017-05-31 天津理工大学 一种用于锂离子电池的多孔负极材料的制备方法及应用
CN108573949A (zh) * 2017-03-08 2018-09-25 三星电子株式会社 集成电路器件及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435676B2 (en) * 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
US8920970B2 (en) * 2008-12-30 2014-12-30 University Of Louisville Research Foundation Anode materials for lithium-ion batteries
US9472804B2 (en) * 2014-11-18 2016-10-18 StoreDot Ltd. Anodes comprising germanium for lithium-ion devices
KR102217242B1 (ko) * 2017-03-08 2021-02-18 삼성전자주식회사 집적회로 소자 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604753A (zh) * 2009-07-24 2009-12-16 成都中科来方能源科技有限公司 碳硅复合材料及其制备方法和用途
CN106505216A (zh) * 2015-09-03 2017-03-15 韩国能量技术研究院 金属氧化物‑碳纳米物质复合体、催化剂、燃料电池电极用催化剂层及这些制造方法
CN106025242A (zh) * 2016-07-29 2016-10-12 成都新柯力化工科技有限公司 锂离子电池用硅合金纳米线复合负极材料及其制备方法
CN106784766A (zh) * 2016-12-16 2017-05-31 天津理工大学 一种用于锂离子电池的多孔负极材料的制备方法及应用
CN108573949A (zh) * 2017-03-08 2018-09-25 三星电子株式会社 集成电路器件及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ge-catalyzed Vapour-Liquid-Solid growth of carbon nanotubes;T Uchino 等;《2006 EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE》;20060921;第214-216页 *

Also Published As

Publication number Publication date
CN110380036A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN109378449B (zh) 用于锂硫电池正极材料的NiCo2S4包覆多孔碳骨架的制备方法
CN111554896B (zh) 硒化钴镍氮掺杂无定形碳纳米复合负极材料及制备与应用
CN108306009B (zh) 一种氧化硅碳复合负极材料、其制备方法及锂离子电池
CN105810914A (zh) 一种钠离子电池硫掺杂多孔碳材料及其制备方法
CN113725432B (zh) 一种zif-67及其衍生硒化钴/碳电极材料制备方法
CN112216828B (zh) 一种碳纳米管/mof基硅碳复合材料及其制备方法和应用
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
CN107317008A (zh) 壳核型碳包覆金属磷化物纳米复合粒子的制备方法及应用
CN110931753B (zh) 硅负极材料及其制备方法
CN107634206B (zh) 一种锂离子电池柔性负极材料及其制备方法
Li et al. Enhancement of ZIF-8 derived N-doped carbon/silicon composites for anode in lithium ions batteries
CN108767203B (zh) 一种二氧化钛纳米管-石墨烯-硫复合材料及其制备方法和应用
CN106058193A (zh) 一种新型钠离子电池负极材料及其制备方法和应用
CN107658461B (zh) 一种以有机铁化合物为原料制备氟化铁/碳复合材料的方法
CN114388814A (zh) 一种Co0.85Se纳米颗粒@3D碳网络复合材料的制备方法及其在锂硫电池中的应用
He et al. Self-supporting ZnP2@ N, P co-doped carbon nanofibers as high-performance anode material for lithium-ion batteries
Liu et al. Implanting MnO into a three-dimensional carbon network as superior anode materials for lithium-ion batteries
CN110380036B (zh) 一种合金材料复合碳纳米管及其制备方法和应用
CN113809286B (zh) 一种mof催化生长碳纳米管包覆镍锡合金电极材料及其制备方法和应用
CN110683589B (zh) 一种四氧化三钴纳米材料的制备方法
CN115893370B (zh) 一种铁基氮掺杂多孔碳材料的普适性制备方法
Chen et al. CNTs and rGO synergistically enhance the cycling stability of yolk-shell silicon anodes for efficient lithium storage
CN110504450A (zh) 一种杂原子掺杂的多级孔碳材料的制备方法及在锂电池负极浆料中的应用
CN114420916A (zh) 一种锂硫电池正极材料及其制备方法和应用
CN114300668A (zh) 一种氮掺杂MoxC/Co/碳纳米管复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant