CN110372337B - 一种氧化铝陶瓷烧结体、其制备方法及应用 - Google Patents

一种氧化铝陶瓷烧结体、其制备方法及应用 Download PDF

Info

Publication number
CN110372337B
CN110372337B CN201910669558.1A CN201910669558A CN110372337B CN 110372337 B CN110372337 B CN 110372337B CN 201910669558 A CN201910669558 A CN 201910669558A CN 110372337 B CN110372337 B CN 110372337B
Authority
CN
China
Prior art keywords
alumina
sintered body
oxide
ceramic sintered
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910669558.1A
Other languages
English (en)
Other versions
CN110372337A (zh
Inventor
黄雪云
江楠
童文欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chaozhou Three Circle Group Co Ltd
Nanchong Three Circle Electronics Co Ltd
Original Assignee
Chaozhou Three Circle Group Co Ltd
Nanchong Three Circle Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chaozhou Three Circle Group Co Ltd, Nanchong Three Circle Electronics Co Ltd filed Critical Chaozhou Three Circle Group Co Ltd
Priority to CN201910669558.1A priority Critical patent/CN110372337B/zh
Publication of CN110372337A publication Critical patent/CN110372337A/zh
Application granted granted Critical
Publication of CN110372337B publication Critical patent/CN110372337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种氧化铝陶瓷烧结体,包含氧化铝和M相化合物,所述M相化合物为氧化钪、氧化钛、氧化钇、氧化镧、氧化钕、氧化铈中的至少一种;且在XRD中,所述氧化铝的[006]面XRD峰的强度为[104]面XRD峰的强度的8%‑40%。本发明通过向Al2O3基体中分散加入M相的方式促使烧结体中Al2O3各晶面均匀生长,从而达到基体热导率及抗热震性能的提升,使氧化铝基板在散热系统领域有更加广阔的应用前景。同时,本发明还公开一种包含所述烧结体的氧化铝基板及其制备方法。

Description

一种氧化铝陶瓷烧结体、其制备方法及应用
技术领域
本发明涉及一种氧化铝陶瓷烧结体,尤其是一种高抗热震氧化铝陶瓷烧结体、其制备方法及应用。
背景技术
高温陶瓷烧结体以及采用该陶瓷烧结体形成的基板,对散热效果或抗热震性能有较高的要求,可应用于功率器件封装、片式电阻,比如LED封装基座、功率模组基板、片式电阻用陶瓷基板、IGBT用陶瓷基板等等。
针对上述领域,申请号为CN201080015347.3的专利文献“陶瓷烧结体及其采用其的半导体用装置基板”中,对于适用于功率晶体管模块等的半导体装置用基板相关的发明进行公开,公开了烧结体中含有氧化锆粉体重量的上限是30wt%,且四方晶相的氧化锆比例在80%以上,氧化镁含量在0.05-0.5wt%之间,据此与以往单含氧化铝的陶瓷基板相比,能够明显提高基板的机械强度并改善散热效果。
上述技术存在以下问题:(1)产品体相内玻璃液相覆盖在晶粒表面既造成晶界间的强度下降,同时由于液态非晶相的存在,导热率较低,不利于热量在体相内氧化铝晶粒间的传递。再者,由于部分液相凝结成非晶相液珠占据体相内气孔的位置,气孔率的下降也造成晶粒受热膨胀不均,产生的应力无法释放,综合造成产品的抗热震性能不足。(2)由于氧化铝晶粒高温液相环境下传质迁移,氧化铝晶体存在沿104面和116面取向生长,但在烧结体体相内氧化铝晶体无序堆积排布造成产品104和116晶面非厚度轴向排布,造成传热效率下降。
发明内容
基于此,本发明的目的在于克服上述现有技术的不足之处而提供一种氧化铝陶瓷烧结体。
为实现上述目的,本发明所采取的技术方案为:一种氧化铝陶瓷烧结体,包含氧化铝和M相化合物,所述M相化合物为氧化钪、氧化钛、氧化钇、氧化镧、氧化钕、氧化铈中的至少一种;且在XRD中,所述氧化铝的[006]面XRD峰的强度为[104]面XRD峰的强度的8%-40%。
本发明通过加入M相物质,使氧化铝晶粒在高温液相传质生长过程中诱导氧化铝晶粒的[006]面发生取向生长,从而增加氧化铝各晶面生长的一致性(近球形),从而使氧化铝[006]面的传热效果的到提升,最终提升氧化陶瓷烧结体的导热效率得到提升。同时,因氧化铝[006]面的取向生长,氧化铝晶粒呈近球状分布,进一步减小气孔等缺陷尺寸从而达到提高抗热震性的效果。
如若I006/I104的比值低于8%,其形成的氧化铝基板抗热震性能效果不佳;如若高于40%,将导致氧化铝基板的强度和绝缘强度下降。其中,I006是指氧化铝的[006]面XRD峰的强度;I104是指氧化铝[104]面XRD峰的强度。
一般而言,基板的抗热震性效果随着I006/I104比值的提高而上升,但若比值过高,将影响其他性能。I006/I104的比值是指两个峰强度的差异,该强度的差异表示基体内各个氧化铝晶体在某一个晶面发生的取向生长(即原子在某一个面排布的比例变化),所需要达到的效果是在不影响其他性能的前提下显著提升陶瓷的抗热震性。而8%-40%是本发明所应用领域的最佳选择,尤其是DBC工艺覆铜的氧化铝基板及LED基板。
优选地,在XRD中,氧化铝的[006]面XRD峰的2θ为40°-43°,氧化铝[104]面的XRD为最强峰,其2θ为33°-37°。
优选地,所述的氧化铝陶瓷烧结体,包含以下成分:含铝化合物(以氧化铝形式计算)96-99.6wt%、含硅化合物(以氧化硅形式计算)0.01-3.0wt%、含钙化合物(以氧化钙形式计算)0-1.5wt%、含镁化合物(以氧化镁形式计算)0-1.5wt%、M相化合物(以其氧化物形式计算)0.1-2%wt%。
更优选地,所述含镁化合物为镁铝尖晶石。
优选地,所述氧化铝的平均粒径为0.8-5um。
更优选地,所述氧化铝的平均粒径为1-3.5um。
优选地,在所述烧结体中,所述M相化合物形成的M相晶体的平均粒径,是所述氧化铝形成的α-Al2O3晶体平均粒径的5-20%。如果超过20%,M相化合物无法填充/完全填充在α-Al2O3晶界之间,就不能很好的限制α-Al2O3晶体的进一步生长导致的烧结体中晶界数量下降,从而不能很好的提升烧结体的机械强度;如果低于5%,M相晶粒在α-Al2O3基体中的分散均匀性明显下降,无法充分实现“促使烧结体中Al2O3各晶面均匀生长,从而达到基体热导率及抗热震性能的提升”的技术效果。
更优选地,所述α-Al2O3晶体的平均粒径为1-5um,存在于α-Al2O3晶相之间的M相晶体的平均粒径小于1um。
本发明控制M相化合物和氧化铝颗粒尺寸的原因:当M相晶粒尺寸较小时,能够填充在α-Al2O3晶界之间,在不影响烧结体致密化程度的前提下起到颗粒的钉扎作用,有利于限制α-Al2O3晶体的进一步生长导致的烧结体中晶界数量下降,从而提升烧结体的机械强度。
同时,本发明还提供一种包含上述氧化铝陶瓷烧结体的氧化铝基板。
此外,本发明还提供一种所述氧化铝基板的制备方法,包含以下步骤:
(1)将原料粉体粉碎、分散混合;
(2)将步骤(1)分散混合后的原料粉体与有机粘合剂、分散剂进行混合;
(3)浆料脱泡、陈腐工序;
(4)流延成型工序;
(5)烧结,得到所述氧化铝基板。
优选地,所述步骤(1)中,分散混合参数为,分散时间:30-45h,粉体粒度控制范围:D50≤0.6um。
优选地,所述步骤(2)中,原料粉体与分散剂混合的参数为,分散时间:1-10h,粒度控制范围:D50≤0.6um;原料粉体与有机粘合剂混合的参数为:分散时间:10-30h,出磨粘度≤1000CPs。
优选地,所述浆料脱泡、陈腐工序的工艺参数如下:(1)浆料脱泡,脱泡压力:-0.05~-0.1MPa,搅拌速度:10-30Hz,浆料温度:15-35℃,浆料粘度:2700-3000Cps;(2)ZTA粉体与粘合剂调和,陈腐时间:5-24h,搅拌速度:0-3Hz,浆料温度控制25-30℃,浆料粘度控制:2700-3000Cps。
优选地,所述流延成型工艺参数为:流延速度:0.7-2m/s,一区温度:15-50℃,二区温度:40-70℃,三区温度:65-110℃,一区风速:0.2-1.5m/s,二区风速:0.8-5m/s,三区风速:0.5-5m/s。
优选地,所述烧结工艺参数为:测片温度:1450-1600℃,保温时间:0.5-4h。
相对于现有技术,本发明的有益效果为:
本发明通过向Al2O3基体中分散加入M相的方式促使烧结体中Al2O3各晶面均匀生长,从而达到基体热导率及抗热震性能的提升,使氧化铝基板在散热系统领域有更加广阔的应用前景。
附图说明
图1为本发明实施例1~15的XRD图;
图2为对比例1~4的XRD图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。
本发明设置实施例1~29和对比例1~6,具体实施例1~15和对比例1~4的成分及含量如表1所示,含量单位为wt%;具体实施例16-29和对比例5~6的成分及含量如表2所示,含量单位为wt%:
表1
Figure BDA0002140301090000041
Figure BDA0002140301090000051
表2
实施例 氧化钕 氧化铈 氧化钪 氧化钛 氧化镧 氧化硅 氧化钙 氧化镁 氧化铝
实施例16 0 0 0.1 0 0 1.1 1.3 1.5 96
实施例17 0 0 0.2 0 0 1.1 1.3 1.4 96
实施例18 0 0 0.5 0 0 3 0.1 0.4 96
实施例19 0 0 1 0 0 1.5 1 0.5 96
实施例20 0 0 1.5 0 0 1.5 0.5 0.5 96
实施例21 0 0 1.8 0 0 1.5 0.2 0.5 96
实施例22 0 0 2 0 0 1 0.5 0.5 96
实施例23 0 0.2 0 1 0 1 1.5 0.3 96
实施例24 0.8 0 0 0.4 0 0.9 0.4 1.5 96
实施例25 0.5 0 0.3 0.4 0 0.01 0.91 0.38 97.5
实施例26 1 0.1 0 0 0.1 0.5 0.4 0.4 97.5
实施例27 0.2 0 0.4 0.6 0 0.3 0 0.5 98
实施例28 1.1 0.1 0 0 0 0.01 0.79 0 98
实施例29 0 0.1 0.1 0 0 0.1 0 0.1 99.6
对比例5 0 0 0 0 0 3 0.5 0.5 96
对比例6 0 0 3 0 0 0.2 0.3 0.5 96
具体制备方法包括如下步骤:
(1)将原料粉体粉碎、分散混合;分散时间:30-45h,粉体粒度控制范围:D50≤0.6um;
(2)将步骤(1)分散混合后的原料粉体与有机粘合剂、分散剂进行混合;原料粉体与分散剂混合的参数为:分散时间:30-45h,粒度控制范围:D50≤0.6um;原料粉体与有机粘合剂混合的参数为:分散时间:5-15h,出磨粘度≤1000CPs。
(3)浆料脱泡、陈腐工序;浆料脱泡:脱泡压力:-0.05~-0.1MPa,搅拌速度:10-30Hz,浆料温度:15-35℃,浆料粘度:2700-3000Cps;ZTA粉体与粘合剂调和:陈腐时间:5-24h,搅拌速度:0-3Hz,浆料温度控制25-30℃,浆料粘度控制:2700-3000Cps;
(5)流延成型工序;流延速度:0.7-2m/s,一区温度:15-50℃,二区温度:40-70℃,三区温度:65-110℃,一区风速:0.2-1.5m/s,二区风速:0.8-5m/s,三区风速:0.5-5m/s;
(6)烧结,得到所述氧化铝基板;测片温度:1450-1600℃,保温时间:0.5-4h。
根据上述的实验方法,所制得的氧化铝基板的成分具体如表1和表2。
将实施例1~15和对比例1~4进行XRD图谱分析,以及对实施例16-29和对比例5-6进行绝缘强度、抗热震性和热传导系数的测试。
其中,绝缘强度的测试方法为:可按照国家标准GB/T 18791-2002中的测试方法,将实验样品放入变压器油中,对其施加直流或交流电压,并逐渐增加测试电压,直至实验样品被击穿丧失绝缘性能,得出样品的绝缘强度。
热传导系数的测试方法为:可按照国家标准GB/T 5598-2015中的测试方法,将样品制成直径d=10mm的圆片,将试样与同厚度标样在短时间间隔内经激光闪烁热扩散系数测试仪测试得到试样热扩散系数α及比热Cp,通过阿基米德法测试得到试样的体积密度,通过导热系数公式λ=α·Cp·ρ得到试样热导系数。
抗热震性评价方法为:将固定尺寸(30*30mm*0.3mm)的陶瓷基片在250℃加热平台上保持2min,然后迅速取下样品投入室温水中冷却,冷却后取出一面浸泡红墨水,在一定的时间内观测另一面是否有透红,未透红的完整样品判为OK,断开样品判为NG,透红的样品则测试其透红的面积与样品底面积的比值,采用该比值评判基片的抗热震性能。
具体实施例1-15和对比例1-4中XRD的测试结果如下表3,且实施例1~15 XRD图谱分析如附图1所示,对比例1~4的XRD图谱分析如附图2所示:
表3
Figure BDA0002140301090000061
Figure BDA0002140301090000071
备注:I006是指氧化铝的[006]面XRD峰的强度;I104是指氧化铝[104]面XRD峰的强度。
图1、图2与表3为同一个数据测试结果,只是以表格和图两种形式的区别。
经试验发现,实施例1-15的氧化铝基板抗热震效果明显优于对比例1-3,实施例1-15的氧化铝基板抗热震性能比值均低于40%,而对比例1-3的抗热震性能比值均高于50%。此外,对比例4中氧化铝基板的绝缘强度为表3中所有试验的最低值,为15.5KV/mm,推测由于基板中氧化铝含量较低,I006/I104比值过高,导致氧化铝基板强度下降。
表4
Figure BDA0002140301090000072
Figure BDA0002140301090000081
从表4可以看出,在抗热震性能测试中,对比例5没有加入M相化合物,其基板透红程度明显高于实施例,即加入M相化合物,明显使得氧化铝基板的抗热震性能得以提高。
再对比实施例16~22发现,在Al2O3含量一定的情况下,随着烧结体中M相加入量的增加,热导率呈上升的趋势,经过分析认为,这是因为M相的加入促使了Al2O3晶粒各晶面均衡发育,从而有利于热导率的提升;而且,研究中还发现,在实施例23-28中,热导率随Al2O3纯度的提升有提升趋势,分析认为体相中MgO、SiO2、CaO助熔剂杂质相的减少,有利于声子传递速率的提升,从而使热导率表现出较好的趋势。
此外,从表4中实施例16-22和对比例5中还可以看出,随着M相加入量增加,氧化铝烧结体的抗热震性呈上升趋势,与热导率呈正相关关系,如果M相进一步提升会造成氧化铝晶粒明显长大,晶界密度下降,氧空位的移动速率提升,反而导致绝缘强度呈现下降趋势。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种氧化铝陶瓷烧结体,其特征在于,包含以下成分:氧化铝96-99.6wt%、氧化硅0.01-3.0wt%、氧化钙0-1.5wt%、氧化镁0-1.5wt%、M相化合物0.1-2wt%,所述M相化合物为氧化钪、氧化钛、氧化钇、氧化镧、氧化钕、氧化铈中的至少一种;且在XRD中,所述氧化铝的[006]面XRD峰的强度为[104]面XRD峰的强度的8%-40%。
2.如权利要求1所述的氧化铝陶瓷烧结体,其特征在于,在XRD中,氧化铝的[006]面XRD峰的2θ为40°-43°,氧化铝[104]面的XRD为最强峰,其2θ为33°-37°。
3.如权利要求1所述的氧化铝陶瓷烧结体,其特征在于,所述氧化铝的平均粒径为0.8-5um。
4.如权利要求3所述的氧化铝陶瓷烧结体,其特征在于,所述氧化铝的平均粒径为1-3.5um。
5.如权利要求1所述的氧化铝陶瓷烧结体,其特征在于,在所述烧结体中,所述M相化合物形成的M相晶体的平均粒径,是所述氧化铝形成的α-Al2O3晶体平均粒径的5-20%。
6.如权利要求5所述的氧化铝陶瓷烧结体,其特征在于,所述α-Al2O3晶体的平均粒径为1-5um,存在于α-Al2O3晶相之间的M相晶体的平均粒径小于1um。
7.一种包含如权利要求1~6任一项所述氧化铝陶瓷烧结体的氧化铝基板。
8.一种如权利要求7所述氧化铝基板的制备方法,其特征在于,包含以下步骤:
(1)将原料粉体粉碎、分散混合;
(2)将步骤(1)分散混合后的原料粉体与有机粘合剂、分散剂进行混合;
(3)浆料脱泡、陈腐工序;
(4)流延成型工序;
(5)烧结,得到所述氧化铝基板。
CN201910669558.1A 2019-07-23 2019-07-23 一种氧化铝陶瓷烧结体、其制备方法及应用 Active CN110372337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910669558.1A CN110372337B (zh) 2019-07-23 2019-07-23 一种氧化铝陶瓷烧结体、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910669558.1A CN110372337B (zh) 2019-07-23 2019-07-23 一种氧化铝陶瓷烧结体、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN110372337A CN110372337A (zh) 2019-10-25
CN110372337B true CN110372337B (zh) 2021-10-22

Family

ID=68255411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910669558.1A Active CN110372337B (zh) 2019-07-23 2019-07-23 一种氧化铝陶瓷烧结体、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN110372337B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922172B (zh) * 2019-12-23 2022-01-07 潮州三环(集团)股份有限公司 一种陶瓷封装基座材料组合物及其应用
CN111138172A (zh) * 2020-01-09 2020-05-12 福建闽航电子有限公司 一种流延片及其制造方法
CN111848137A (zh) * 2020-06-12 2020-10-30 西昌学院 一种高抗热震氧化铝陶瓷及其制备方法
CN112390630A (zh) * 2020-12-23 2021-02-23 湖州聚合环保科技有限公司 一种低收缩率的陶瓷封装外壳材料
CN113087498A (zh) * 2021-03-31 2021-07-09 广东工业大学 高强度高韧性高热导的氧化铝陶瓷材料及其制备方法和应用
CN116621565A (zh) * 2023-04-13 2023-08-22 广东省先进陶瓷材料科技有限公司 一种陶瓷组合物、陶瓷基板及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227533A (ja) * 2008-03-25 2009-10-08 Ngk Insulators Ltd コーディエライトセラミックスの製造方法
CN104446460A (zh) * 2014-12-17 2015-03-25 杨瑟飞 修复全瓷基底材料的加工方法
CN106187123A (zh) * 2016-06-30 2016-12-07 广东工业大学 氧化铝陶瓷及其制备方法和等离子体刻蚀设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5559590B2 (ja) * 2009-11-18 2014-07-23 日本碍子株式会社 セラミックス焼結体、その製造方法及びセラミックス構造体
JP2012111671A (ja) * 2010-11-26 2012-06-14 Tokuyama Corp 窒化アルミニウム焼結体加工物の製造方法
KR102376825B1 (ko) * 2014-11-28 2022-03-21 엔지케이 인슐레이터 엘티디 알루미나 소결체 및 광학 소자용 하지 기판

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227533A (ja) * 2008-03-25 2009-10-08 Ngk Insulators Ltd コーディエライトセラミックスの製造方法
CN104446460A (zh) * 2014-12-17 2015-03-25 杨瑟飞 修复全瓷基底材料的加工方法
CN106187123A (zh) * 2016-06-30 2016-12-07 广东工业大学 氧化铝陶瓷及其制备方法和等离子体刻蚀设备

Also Published As

Publication number Publication date
CN110372337A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN110372337B (zh) 一种氧化铝陶瓷烧结体、其制备方法及应用
CN110330317B (zh) 一种氧化锆复合氧化铝陶瓷烧结体、其制备方法及应用
US11858850B2 (en) High-strength zirconia-alumina composite ceramic substrate applied to semiconductor device and manufacturing method thereof
CN1036379A (zh) 高温低热膨胀陶瓷
CN110540429B (zh) 一种氮化铝烧结体及应用
CN111393151A (zh) 一种掺杂氧化锆的氧化铝陶瓷基板及其制备工艺
CN112939607A (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN113307631B (zh) 一种无压烧结制备高综合性能氮化硅陶瓷的方法
Boey et al. On the effects of secondary phase on thermal conductivity of AlN ceramic substrates using a microstructural modeling approach
TW201942089A (zh) 複合燒結體、半導體製造裝置構件及複合燒結體之製造方法
CN113213894A (zh) 一种高纯氧化铝陶瓷基板及其制备工艺
CN114538932B (zh) 一种共烧氮化铝陶瓷基板的制备方法
TW202023995A (zh) 灌封組成物,電絕緣電氣或電子部件及其電絕緣方法
CN112441821B (zh) 一种陶瓷封装基座及其制备方法
CN113264544A (zh) 一种降低氧化铝吸油值和粘度的方法
Mei et al. Cordierite-based glass-ceramics processed by slip casting
CN115286409A (zh) 一种氮化硅晶须增强氮化铝的复合陶瓷材料及其制备方法
US20210246072A1 (en) Ceramic sintered body and substrate for semiconductor devices
CN103539457A (zh) 一种微电子封装用AlN陶瓷基板的制备方法
JP2001002464A (ja) 高耐電圧性アルミナ基焼結体及びその製造方法
Liu et al. Annealing of AlN guided by estimation on oxygen content
JPH0789759A (ja) テープキャスト用アルミナ、アルミナ組成物、アルミナグリーンシート、アルミナ焼結板およびその製造方法
JP4368975B2 (ja) 高耐電圧性アルミナ基焼結体およびその製造方法
JP2000313657A (ja) 高耐電圧性アルミナ基焼結体
CN101665352A (zh) 氧化铝烧结体及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant