CN110354885A - 一种三氧化二钕掺杂氮化碳光催化剂及其制备方法 - Google Patents

一种三氧化二钕掺杂氮化碳光催化剂及其制备方法 Download PDF

Info

Publication number
CN110354885A
CN110354885A CN201910707521.3A CN201910707521A CN110354885A CN 110354885 A CN110354885 A CN 110354885A CN 201910707521 A CN201910707521 A CN 201910707521A CN 110354885 A CN110354885 A CN 110354885A
Authority
CN
China
Prior art keywords
carbon nitride
preparation
neodymium oxide
under
oxide doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910707521.3A
Other languages
English (en)
Inventor
贺有周
谭雨薇
李厚樊
姜光镁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN201910707521.3A priority Critical patent/CN110354885A/zh
Publication of CN110354885A publication Critical patent/CN110354885A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种三氧化二钕掺杂氮化碳光催化剂及其制备方法,属于光催化领域。石墨相氮化碳(g‑C3N4)由于其良好的稳定性、易得性和有吸引力的电子结构而受到越来越多的关注,但由于光生载流子的快速重组和低效的太阳能利用,其应用受到很大限制。本发明是引入稀土金属元素,利用金属掺杂可以改善g‑C3N4表面状况、增大比表面积、抑制光生电子和空穴的复合以及增加表面活性基团,改善光催化活性。通过调节金属钕(Nd)的投加量,发现掺杂3%Nd离子时,生成Nd2O3/g‑C3N4时,光催化产氢效果最高。

Description

一种三氧化二钕掺杂氮化碳光催化剂及其制备方法
技术领域
本发明涉及一种三氧化二钕掺杂氮化碳的制备方法及其用途,属于光催化剂技术领域。
背景技术
清洁和可再生能源的发展是满足日益增长的全球能源需求和解决因过度使用化石燃料而引起的环境问题的关键途径。最有吸引力的选择之一是在半导体光催化剂的帮助下,通过水分解过程将太阳能转化为氢气,所以光催化技术被认为是解决环境污染和能源短缺等问题理想途径,表现出巨大的应用前景。
近年来,可见光驱动的非金属聚合光催化剂石墨相氮化碳(g-C3N4) ,一种类石墨烯的层状材料,其禁带宽度约为2.7eV,可广泛应用于可见光的光催化转化中。自Wang等人在2009年开展的关于g-C3N4上可见光光催化水分解的开创性研究以来,特别关注石墨氮化碳(g-C3N4)[Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76−80.]。在环境条件下,g-C3N4被认为是各种碳氮化物中最稳定的同素异形体。所提出的g-C3N4结构是通过叔胺连接的三-s-三嗪的二维骨架,这使得它具有高稳定的热(在空气中高达600℃)和化学稳定性(对抗酸,碱)[Wang, Y.; Wang, X.; Antonietti, M. Angew. Chem., Int. Ed.2012, 51, 68−89.]。因此,g-C3N4迅速成为光催化领域的热点材料。关于用作制氢的高性能g-C3N4的设计,在g-C3N4 /水界面处发生的光催化H2产生高度依赖于g-C3N4的大小,形态和缺陷。g-C3N4微/纳米结构的控制可赋予其大的表面积,丰富的表面状态,甚至延长的光捕获,所有这些都有利于光催化H2的产生。
实验证实多孔石墨相氮化碳催化剂由于具有更高的比表面积和更多的催化活性位点,表现出比不具有孔结构的石墨相氮化碳催化剂更具有更优异的催化性能典型的文献报道:Angew.Chem.Int.Ed.,2012,51,3892;2014,26,3151。Hong等人于J.Mater.Chem. 杂志(2012 年第 22 期第 15006-15012 页)以硫脲为反应物,SiO2纳米粒子作为硬模板,制备出介孔 g-C3N4,合成步骤繁琐;Liu 等人于J.Am.Chem.Soc.杂志(2010 年第 132 期第11642-11648页)在H2S气氛中 450℃下加热 g-C3N4合成出硫掺杂的 g-C3N4,但是合成条件比较苛刻;Ge等人于Mater.Res.Bull.杂志(2013 年第 48 期第 3919-3925 页)氮气下煅烧氰胺与硫脲合成块状硫掺杂的 g-C3N4,由于比表面积较小,光催化活性较低。
现有的用于产氢的氮化碳光催化剂由于光生载流子的快速重组和低效的太阳能利用,因此光催化效果增加不明显,如何对现有的氮化碳材料进行改进,从而提高其光催化产氢效果,是本领域技术人员研究的方向。而向石墨相氮化碳中掺杂稀土金属元素可以为氮化碳材料提供新的研究思路。
发明内容
本发明的目的在于提供一种三氧化二钕氮化碳光催化剂及其制备方法,该方法工艺简单、成本低廉,制备的三氧化二钕氮化碳光催化剂催化活性较高。
本发明是通过以下技术方案实现的:
本发明提供了一种三氧化二钕掺杂氮化碳光催化剂的制备方法,其包括如下步骤:
(1)石墨相氮化碳(g-C3N4):将10g尿素置于30ml坩埚中,在马弗炉中以5℃/min的升温速率,550℃保持3h,得到石墨相氮化碳(g-C3N4);
(2)将适量Nd(NO3)3 6H2O溶于20ml去离子水中,随后加入5g的g-C3N4,在70℃水浴下密封搅拌6h;
(3)让混合液与空气接触,在70℃水浴搅拌下,蒸发至干燥,得到固体粉末;
(4)将固体粉末在550℃氮气保护下保持4h,以5℃/min的升温速率,得到产物:三氧化二钕掺杂氮化碳(Nd2O3/g-C3N4)。
步骤(2)中Nd(NO3)3 6H2O与g-C3N4的质量比为1~5:100。
步骤(2)中水浴锅内搅拌,条件是70℃搅拌6h。
步骤(4)中所使用的惰性气氛是在氮气条件下。
所得的三氧化二钕掺杂氮化碳光催化剂可用于可见光下催化水制取氢气。
与现有技术相比,本发明的有益效果是:
(1)本发明制备的三氧化二钕掺杂氮化碳光催化剂,别于传统的石墨相氮化碳;
(2)本发明制备的三氧化二钕掺杂氮化碳光催化剂,本发明简便易行,所用试剂污染小,合成过程耗时短,反应条件温和,对设备的要求不高;
(3)本发明合成的三氧化二钕掺杂氮化碳光催化剂具有成本低廉、轻质、环保等优点;
(4)本发明合成的三氧化二钕掺杂氮化碳光催化剂与氮化碳相比,具有更多分散开的活性位点。
附图说明
图1 为g-C3N4、1.0%Nd2O3/ g-C3N4、3.0%Nd2O3/ g-C3N4、5.0%Nd2O3/ g-C3N4光催化剂的XRD图。
图2 为g-C3N4与1.0%Nd2O3/ g-C3N4、3.0%Nd2O3/ g-C3N4、5.0%Nd2O3/ g-C3N4光催化剂光催化性能测试。
具体实施方式
以下是本发明的几个实施例,进一步说明本发明,但是本发明不仅限于此。
实施例1
石墨相氮化碳(g-C3N4):将10g尿素置于30ml坩埚中,在马弗炉中以5℃/min的升温速率,550℃保持3h,得到石墨相氮化碳(g-C3N4)。
实施例2
石墨相氮化碳(g-C3N4):将10g尿素置于30ml坩埚中,在马弗炉中以5℃/min的升温速率,550℃保持3h,得到石墨相氮化碳(g-C3N4);将0.0122g的Nd(NO3)3∙6H2O溶于20ml去离子水中,随后加入5g的g-C3N4,在70℃水浴下密封搅拌6h;让混合液与空气接触,在70℃水浴搅拌下,蒸发至干燥,得到固体粉末;将固体粉末在550℃氮气保护下保持4h,以5℃/min的升温速率,得到产物:三氧化二钕掺杂氮化碳(Nd2O3/g-C3N4)。生成的产物是按照反应物原料Nd: g-C3N4的量为1:100制备得到的。
实施例3
石墨相氮化碳(g-C3N4):将10g尿素置于30ml坩埚中,在马弗炉中以5℃/min的升温速率,550℃保持3h,得到石墨相氮化碳(g-C3N4);将0.0365g的Nd(NO3)3∙6H2O溶于20ml去离子水中,随后加入5g的g-C3N4,在70℃水浴下密封搅拌6h;让混合液与空气接触,在70℃水浴搅拌下,蒸发至干燥,得到固体粉末;将固体粉末在550℃氮气保护下保持4h,以5℃/min的升温速率,得到产物:三氧化二钕掺杂氮化碳(Nd2O3/g-C3N4)。生成的产物是按照反应物原料Nd: g-C3N4的量为3:100制备得到的。
实施例4
石墨相氮化碳(g-C3N4):将10g尿素置于30ml坩埚中,在马弗炉中以5℃/min的升温速率,550℃保持3h,得到石墨相氮化碳(g-C3N4);将0.0608g的Nd(NO3)3∙6H2O溶于20ml去离子水中,随后加入5g的g-C3N4,在70℃水浴下密封搅拌6h;让混合液与空气接触,在70℃水浴搅拌下,蒸发至干燥,得到固体粉末;将固体粉末在550℃氮气保护下保持4h,以5℃/min的升温速率,得到产物:三氧化二钕掺杂氮化碳(Nd2O3/g-C3N4)。生成的产物是按照反应物原料Nd: g-C3N4的量为5:100制备得到的。
实施例5:催化特性测定
向石英反应器中分别加入5mL三乙醇胺作为牺牲还原剂、50mg的实施例1~4中所得三氧化二钕掺杂氮化碳材料、43.5mL H2O作为质子源、1.5mlH2PtCl6(Pt浓度~1mg/ml),再将石英反应器加盖并通入氮气鼓泡,脱氧20分钟;然后接入产氢光催化系统中,循环冷凝水保持10℃。将接有石英反应器的产氢光催化系统抽真空。在石英反应器上部5cm处放置氙灯光源,在开灯后保持0.5h,光照产生电子和空穴,牺牲剂可以和空穴反应,防止电子和空穴的复合,电子将氯铂酸还原成Pt,负载在催化剂上。0.5h后,在氙灯光源加420nm的滤光片,每个一小时取一次样通过产氢光催化系统进入气相色谱中,检测氢气的量。实施例1~4制备的MOF材料的产氢量(单位为umol/(g·h))如表1所示。
表1实施例1~4制备的材料的产气量
1h 2h 3h 4h
实施例1 651.61 1022.12 1347.08 1681.23
实施例2 960.03 1980.76 2912.79 3927.56
实施例3 2579.49 4588.03 6596.73 8421.71
实施例4 1782.13 2418.52 2947.00 3493.36
参见图2,实施例1表现出低的H2产率,而实施例2~4样品表现出作为照射时间的函数的明显促进的产生。其中,实施例2的催化剂的最大产氢量为8421.71μmol/(g·h),几乎是实施例1的5.0倍。优异的性能可归因于增加的比表面积和增强的可见光吸收。然而,从实施例4看出,随着Nd含量的进一步增加,光催化活性降低,这可能是由于表面光生载流子复合中心增多,降低光催化效率。
性能测试
图1为实施例1~4所得的光催化剂的XRD图。从图中可以发现g-C3N4在13.0°和27.1°处出现两个明显的归属于石墨相氮化碳(100)和(002)晶面的XRD衍射峰,证实制备的产物是为石墨相氮化碳;同时,实施例2~4所得材料的XRD图也是在13.0°和27.1°处出现两个明显的归属于石墨相氮化碳(100)和(002)晶面的XRD衍射峰,故在制备过程中g-C3N4的晶型还在。
图2为实施例1~4所得的光催化剂光催化性能测试图。从图中可以发现3.0%Nd2O3/g-C3N4在可见光(λ>420nm)下的产氢速率达到了8421.71umol/(g·h),与g-C3N4(1681.23umol/(g·h))相比提高了5.0倍。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (5)

1.一种三氧化二钕掺杂氮化碳光催化剂及其制备方法,其特征在于,包括如下步骤:
(1)石墨相氮化碳(g-C3N4):将10g尿素置于30ml坩埚中,在马弗炉中以5℃/min的升温速率,550℃保持3h,得到石墨相氮化碳(g-C3N4);
(2)将适量Nd(NO3)3 6H2O溶于20ml去离子水中,随后加入5g的g-C3N4,在70℃水浴下密封搅拌6h;
(3)让混合液与空气接触,在70℃水浴搅拌下,蒸发至干燥,得到固体粉末;
(4)将固体粉末在550℃氮气保护下保持4h,以5℃/min的升温速率,得到产物:三氧化二钕掺杂氮化碳(Nd2O3/g-C3N4)。
2.根据权利要求1所述的三氧化二钕掺杂氮化碳光催化剂的制备方法,其特征在于步骤(2)中Nd(NO3)3 6H2O与g-C3N4的质量比为1~5:100。
3.根据权利要求1所述的三氧化二钕掺杂氮化碳光催化剂的制备方法,其特征在于步骤(2)中所述的在70℃条件下搅拌6h。
4.根据权利要求1所述的三氧化二钕掺杂氮化碳光催化剂的制备方法,其特征在于步骤(4)中所述的惰性气氛是在氮气条件下。
5.一种由权利要求1所述制备方法得到的三氧化二钕掺杂氮化碳在光催化产氢中的用途。
CN201910707521.3A 2019-08-01 2019-08-01 一种三氧化二钕掺杂氮化碳光催化剂及其制备方法 Pending CN110354885A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910707521.3A CN110354885A (zh) 2019-08-01 2019-08-01 一种三氧化二钕掺杂氮化碳光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910707521.3A CN110354885A (zh) 2019-08-01 2019-08-01 一种三氧化二钕掺杂氮化碳光催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN110354885A true CN110354885A (zh) 2019-10-22

Family

ID=68223104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910707521.3A Pending CN110354885A (zh) 2019-08-01 2019-08-01 一种三氧化二钕掺杂氮化碳光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110354885A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885039A4 (en) * 2020-01-06 2022-11-09 Southeast University GRAPHITE-LIKE CARBON NITRIDE-DOped MODIFIED MICROSPHERE CATALYST, PROCESS FOR ITS PREPARATION AND ITS USE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885039A4 (en) * 2020-01-06 2022-11-09 Southeast University GRAPHITE-LIKE CARBON NITRIDE-DOped MODIFIED MICROSPHERE CATALYST, PROCESS FOR ITS PREPARATION AND ITS USE

Similar Documents

Publication Publication Date Title
CN111384407B (zh) 一种金属单原子分散的有序介孔碳球的制备方法
CN105344369B (zh) 具有三维分级多孔结构的钴氮共掺杂炭基氧还原催化剂及其制备和应用
CN108588748B (zh) 一种二氧化碳电化学还原制备甲烷和乙烯的方法
CN112371146B (zh) 含氮缺陷结构z型氮化碳-氧化铁催化剂的制备方法及应用
CN107020075B (zh) 二氧化碳电化学还原单质铋催化剂及其制备和应用
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
CN108607593B (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用
CN113416975A (zh) 一步煅烧法制备生物质碳负载的碳化钼电极材料的方法
CN107321372B (zh) CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
CN110116015B (zh) 完全分解水的光催化剂及其制备方法和应用、光催化完全分解水的反应方法和催化混合液
CN114588925A (zh) 一种无贵金属负载的磷化镍/氮化碳可见光催化剂及其制备方法
CN113600221B (zh) 一种Au/g-C3N4单原子光催化剂及其制备方法和应用
CN111068717A (zh) 一种钌单质修饰的硫掺杂石墨烯二维材料及其制备与应用
CN110854396A (zh) 一种多孔双空心球结构的PtAg纳米晶及其制备方法和应用
CN110064426A (zh) 一种LixMoS2/CdS/g-C3N4复合光催化剂的制备及其分解水产氢应用
CN110026224A (zh) 一种四氧化三钴修饰介孔氮化碳纳米复合材料的制备方法
CN111905783B (zh) 利用墨水合成的碳化钼/碳纳米制氢催化剂
CN110354885A (zh) 一种三氧化二钕掺杂氮化碳光催化剂及其制备方法
CN113019400A (zh) 一种MoS2量子点掺杂的ZnIn2S4复合光催化剂的制备方法及其应用
CN115069270B (zh) 一种CuSAP/CdS光解水制氢催化剂及其制备方法
CN116173987A (zh) CdIn2S4/CeO2异质结光催化剂及其制备方法和应用
CN114146719B (zh) 一种碳片-非分相硼碳氮面内异质结构及其制备方法
CN115286757A (zh) 基于多氮烯烃连接的共价有机框架材料及其制备方法和应用
CN112864402B (zh) 一种Fe-N共掺杂介孔碳的氧还原催化剂的制备和应用
CN110433850B (zh) 一种催化藜芦醇加氢脱氧的双金属催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191022