CN110310793A - 一种硬磁高熵合金及其制备方法 - Google Patents
一种硬磁高熵合金及其制备方法 Download PDFInfo
- Publication number
- CN110310793A CN110310793A CN201910574724.XA CN201910574724A CN110310793A CN 110310793 A CN110310793 A CN 110310793A CN 201910574724 A CN201910574724 A CN 201910574724A CN 110310793 A CN110310793 A CN 110310793A
- Authority
- CN
- China
- Prior art keywords
- phase
- hard magnetic
- entropy alloy
- powder
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 96
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 94
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 76
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 229910052796 boron Inorganic materials 0.000 claims abstract description 27
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 19
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 14
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims description 31
- 229910001172 neodymium magnet Inorganic materials 0.000 claims description 28
- 238000000498 ball milling Methods 0.000 claims description 22
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 10
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 230000005389 magnetism Effects 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000004615 ingredient Substances 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 238000001238 wet grinding Methods 0.000 claims description 6
- RKJODJKIEYTHEV-UHFFFAOYSA-N [Fe].[B].[Y] Chemical compound [Fe].[B].[Y] RKJODJKIEYTHEV-UHFFFAOYSA-N 0.000 claims description 5
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 claims description 5
- 229960000935 dehydrated alcohol Drugs 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 5
- 229910000905 alloy phase Inorganic materials 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 229910002545 FeCoNi Inorganic materials 0.000 claims description 3
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 238000005275 alloying Methods 0.000 claims description 3
- 238000000748 compression moulding Methods 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims description 2
- 238000009837 dry grinding Methods 0.000 claims description 2
- 238000003701 mechanical milling Methods 0.000 claims description 2
- 238000009768 microwave sintering Methods 0.000 claims description 2
- 238000004663 powder metallurgy Methods 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 241000208340 Araliaceae Species 0.000 claims 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 claims 1
- 235000003140 Panax quinquefolius Nutrition 0.000 claims 1
- 235000008434 ginseng Nutrition 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 claims 1
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 16
- 150000002910 rare earth metals Chemical class 0.000 abstract description 9
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000696 magnetic material Substances 0.000 abstract description 7
- 238000005260 corrosion Methods 0.000 abstract description 6
- 230000007797 corrosion Effects 0.000 abstract description 5
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 abstract description 4
- 229910017052 cobalt Inorganic materials 0.000 abstract description 3
- 239000010941 cobalt Substances 0.000 abstract description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005551 mechanical alloying Methods 0.000 abstract description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 229910001004 magnetic alloy Inorganic materials 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 241001330002 Bambuseae Species 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PXAWCNYZAWMWIC-UHFFFAOYSA-N [Fe].[Nd] Chemical compound [Fe].[Nd] PXAWCNYZAWMWIC-UHFFFAOYSA-N 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- QAVFANVPBSEGTQ-UHFFFAOYSA-N boron;yttrium Chemical compound [Y]#B QAVFANVPBSEGTQ-UHFFFAOYSA-N 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000010431 corundum Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- BVPWJMCABCPUQY-UHFFFAOYSA-N 4-amino-5-chloro-2-methoxy-N-[1-(phenylmethyl)-4-piperidinyl]benzamide Chemical compound COC1=CC(N)=C(Cl)C=C1C(=O)NC1CCN(CC=2C=CC=CC=2)CC1 BVPWJMCABCPUQY-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910003406 FeNiCu Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1017—Multiple heating or additional steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/002—Alloys based on nickel or cobalt with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1054—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by microwave
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/042—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Fluid Mechanics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明提供了一种硬磁高熵合金及其制备方法,通过加入适量的硼元素以及稀土金属钐、钇、钕等稀有金属元素,在机械合金化的过程中与高熵合金中的铁元素和钴元素生成硬磁相,合金中的硬磁相与高熵合金原有的软磁相产生良好的磁性交互作用,从而制得一种具有高硬磁性能的高熵合金材料,使其既具有高熵合金较高的力学性能及耐磨抗腐蚀性能,同时拥有较强的硬磁性能,可应用于对腐蚀性环境及强度要求较高的磁性材料领域。
Description
技术领域
本发明属于金属冶金技术领域,涉及高熵合金或硬磁材料,具体地说是一种Fe-Co-Ni-Cu-B稀土硬磁高熵合金及其制备方法。
背景技术
高熵合金(简称HEAs)是由五种或以上元素按照等原子比或近等原子比的原则合金化,形成高固溶体相的一类合金,从传统的合金理论来说,合金的元素种类越多,会析出复杂相和脆性相。而对于高熵合金,研究发现高熵合金反而易于形成单相面心或体心立方固溶体或者这两者的混合物,这是因为高熵合金的高熵效应。一方面,较高的熵值使得体系的自由能降低,趋于形成简单稳定的结构。另一方面,高熵可能减少电负性差,增大原子在各种元素间的固溶度,促进元素间的混合,抑制复杂化合相形成,形成单相固溶体。这种特殊的结构特点使得高熵合金具有高温热稳定性、高强度、高硬度、耐磨性好、优异的抗氧化和抗腐蚀能力等特性,HEAs在高速切削用刀具、模具和核电工程、船舶的耐蚀高强度材料、磁性材料及电池材料等方面具有广泛的应用前景,是一种极具发展潜力的新兴材料。
传统的钕铁硼磁铁虽然磁性强,但是无法适用于高温环境,并且极易受到腐蚀,即便可在表面镀上防腐层,但由于镀层本身电位比钕铁硼基体相高,镀层一旦外界液体渗入内部,镀层与基体构成腐蚀源电池,反而会加速腐蚀,基体的耐蚀状态会直接影响镀层的结合力以及耐蚀保护性能,也无法长期使用。磁性仅次于钕铁硼磁铁的是钐钴合金,依据成份的不同分为SmCo5和Sm2Co17,分别为笫一代和笫二代稀土永磁材料。不但有着较高的磁能积(14-32MGOe)和可靠的矫顽力,而且在稀土永磁系列中表现出良好的温度特性。与钕铁硼相比,钐钴更适合工作在高温环境中,由于其原材料十分稀缺,价格昂贵而使其发展受到限制。
目前所研发出来的高熵合金均为软磁材料或半硬磁材料,这是基于高熵合金中含有较高比例的Fe、Co、Ni等元素的作用导致的。如何利用其丰富的铁磁元素使之转化成硬磁材料是一个有待解决的问题。因此,开发一种无加工的强韧化HEAs硬磁复合材料及其制备技术就具有重大的工程价值。
发明内容
针对现有技术中存在不足,本发明提供了一种硬磁稀土高熵合金及其制备方法,在保障其优异的力学性能的同时,具有良好的硬磁性能。
本发明所设计的硬磁高熵合金,其特征在于,主要成分由Fe、Co、Ni、Cu、B、Y、Sm、Nd组成,其合金成分原子比表达式为FeCoNi1.5CuBmREn其中,RE为稀土金属元素:Nd、Sm、Y中的一种或多种,其中0.5≤m≤1.5;0≤n≤1。
本发明所设计的硬磁高熵合金材料,其特征在于,所述硬磁高熵合金由具有面心立方结构的基底相与硬磁相组成,所述的硬磁相包括:钕铁硼相、钐钴合金相、钇铁硼相中的一种或多种。
进一步地,所述钕铁硼相具有以主磁性相Nd2Fe14B相为基底、富钕相与富硼相并存的三相结构,富钕相主要分布在Nd2Fe14B相晶界周围,可有效提高合金的磁能积和矫顽力,而且在稀土永磁合金中表现出良好的温度特性。
进一步地,所述合金中B与RE的含量符合等摩尔比的配料规则。
本发明的高熵合金在常规FeCoNi1.5Cu合金组分外按近等摩尔比同时添加硼元素和稀土元素;从原子半径差异看,Fe、Co、Ni、Cu原子半径分别为1.17埃、1.16埃、1.15埃和1.14埃,其中的硼元素尺寸小,原子半径0.82埃,而稀土元素尺寸较大,其中钇元素原子半径1.62埃,具有“大原子尺寸差”的结构特点,计算得到的混合焓值高于常规文献报道,此时合金化学稳定性高,并同时具有优异的力学性能,即高硬度高韧性。
同时,合金体系中的钐元素易于合金体系中的钴元素生成钐钴相产生可以耐高温的硬磁相,硼元素与稀土元素以及铁元素生成易产生常温强磁性的钕铁硼相,这种钕铁硼相由Nd2Fe14B相、富钕相与富硼相三相组成,Nd2Fe14B相是主磁性相,富钕相主要分布在主磁性相晶界周围,可有效提高合金的磁能积和矫顽力,而且在稀土永磁合金中表现出良好的温度特性。
进一步地,所述硬磁高熵合金的硬度值范围450~650HV,断裂韧性范围50~60MPa·m1/2,剩磁为0.43~0.76T,矫顽力达到690~860kA·m-1,磁能积max达到165~210kJ·m-3。
所述的硬磁高熵合金的制备方法,其特征在于,为铜模吸铸法、磁控溅射镀膜、粉末冶金法中的一种。
所述的硬磁高熵合金的制备方法,其特征在于,为粉末冶金微波烧结法,按照以下“原料选择→机械合金化→烧结成型”三步骤来制备,包括以下具体步骤:
步骤一、以金属粉末Fe、Co、Ni、Cu、Y、Sm、Nd和非金属元素B为原料,按照设计成分进行配比;
步骤二、将配比好的粉末放入球磨罐中球磨,使粉末混合均匀后合金化,同时合金后的粉末粒径持续下降;再将球磨后的粉末干燥后真空保存,等待烧结。
步骤三、将干燥后的粉末填充橡胶模具中,放入等静压成型机内压制成型。
步骤四、将压制好的式样放入微波烧结炉内,抽真空通入氩气。设置烧结参数后完成烧结。
进一步地,步骤一中各种元素的粉末纯度应为99.99wt%,粒度小于45μm。
进一步地,所述步骤二中,球磨之前,先用真空机抽真空至0.01MPa,之后充入0.5MPa氩气作为保护气体,球磨过程实验参数为:球料比为球:粉料=5:1,各种尺寸的球的质量比为5mm:10mm:15mm=4:2:1,干磨转速250r/min,40h后加入质量分数20%的无水乙醇进行湿磨,湿磨转速300r/min,时间10h;球磨后的粉末粒径范围为0.5~5μm,球磨结束后将粉体置于真空干燥箱,20h后取出。
进一步地,所述的步骤三中压制成型的参数为:保压时间1min,成型压强为250Mpa。
进一步地,所述的步骤四中烧结过程的参数为:烧结温度为1000℃,前9分钟以100℃/min的升温速率从室温升温到800℃,并在800℃保温30min,接着以50℃/min的升温速率从800℃升到1000℃,在1000℃下保温45min完成烧结。
硼与稀土元素的加入可以大幅度的提高HEAs基底的强度,硼元素在HEAs中能起到显著的固溶强化效果,但在合金中易生成脆性硼化物析出相从而降低塑性,单独加钇也会生成脆性含钇相而加剧脆性,而从热力学计算和理论分析角度看,混合添加这两种元素能起到性能改善效果,机理在于:第一,稀土钇可降低FeNiCu等元素的活度,减少它们与B结合析出硼化物的趋势,促进硼以固溶体溶于基体中,减少因硼化物生成对高熵合金结构的破坏作用;第二,金属性强的稀土钇会优先与B反应生成有益硼钇相,减少了单独加硼加钇时的脆性相生成;第三,生成的硼钇相具有细小弥散特点,对改善合金强韧性有利。
本发明所制备高熵合金具有特殊组织特征,即具有面心立方结构与多种磁性相结构混合的合金结构。从理论上看,较高的混合焓与原子尺寸差理论上无法得到较为良好的高熵合金组织,但本高熵合金配方取得了较独特的结构特征,这是合金取得优异力学性能的组织保证。合金体系中的钐元素易与合金体系中的钴元素生成钐钴相产生可以耐高温的硬磁相,硼元素与铁元素以及钕元素等稀土元素生成常温强磁性的钕铁硼相,这种钕铁硼相具有以主磁性相Nd2Fe14B相为基底、富钕相与富硼相并存的三相结构,富钕相主要分布在Nd2Fe14B相晶界周围,可有效提高合金的磁能积和矫顽力,而且在稀土永磁合金中表现出良好的温度特性。
所制备合金具有高硬度高韧性力学性能,硬度值范围450~650HV,断裂韧性范围50~60MPa·m1/2,高于单独加硼加稀土的性能值,也高于低含量同时加硼加稀土的性能值。多次实验数据显示,加入适量的硼元素后,基底高熵合金由软磁性能逐渐向硬磁性能转化,并在等摩尔比时得到最高的矫顽力与最大的磁能积。后期加入稀土元素后硬磁性能进一步提高,单一加入稀土元素的作用效果:Nd>Sm>Y,同时加入Sm、Y和Nd元素后,合金中同时产了钐钴合金相、钇铁硼相和钕铁硼相,这些合金相并未破坏高熵合金结构。
本发明与现有技术相比较,本发明独特性在于新型高熵合金具有大原子尺寸差、高混合焓以及独特的FCC+多种磁性相结构,对改善材料性能有益,且具有高的组织致密度,合金具有高的力学性能,同时兼有良好的硬磁性能,在高速切削用刀具、模具、磁性材料及电池材料等方面具有广泛的应用前景,是一种极具发展潜力的新兴材料。
附图说明
图1是本发明实施例1制备的FeCoNi1.5CuB0.5Nd高熵合金XRD图谱。
图2是FeCoNi1.5CuB0.5Nd高熵合金的微观组织。
图3是本发明实施例2制备的FeCoNiCuB1.25Y0.3Nd0.7高熵合金的微观组织。
图4是本发明实施例3制备的FeCoNiCuB1.5Sm0.5Nd0.7高熵合金的微观组织。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
本发明所述的硬磁高熵合金,主要成分由Fe、Co、Ni、Cu、B、Y、Sm、Nd组成,其合金成分原子比表达式为FeCoNi1.5CuBmREn,其中,RE为稀土金属元素:Nd、Sm、Y中的一种或多种,其中0.5≤m≤1.5;0≤n≤1。所述硬磁高熵合金由具有面心立方结构的基底相与硬磁相组成,所述的硬磁相包括:钕铁硼相、钐钴合金相、钇铁硼相中的一种或多种。所述钕铁硼相具有以主磁性相Nd2Fe14B相为基底、富钕相与富硼相并存的三相结构,富钕相主要分布在Nd2Fe14B相晶界周围,可有效提高合金的磁能积和矫顽力,而且在稀土永磁合金中表现出良好的温度特性。
所述合金中B与RE的含量符合等摩尔比的配料规则,在合金中B与RE的含量符合等摩尔比时得到最高的矫顽力与最大的磁能积。
实施例1:FeCoNi1.5CuB0.5Nd高熵合金
第一步、原料选择:以纯度为99.99wt%且粒径小于200目的高纯金属粉末Fe、Co、Ni、Cu、Y、Sm、Nd和非金属元素B为原料,按照设计成分FeCoNi1.5CuBNd进行称量配比;金属粉末的具体粒径为45μm。
第二步、机械合金化:将配比好的粉末放入球磨罐中球磨,主要球磨参数控制如下:
气氛控制:球磨开始前将球磨罐抽真空充入氩气保护;
球料比:球:粉料=5:1;
球配比:各种尺寸球的质量比为5mm:10mm:15mm=4:2:1;
球磨时间:干磨转速250r/min,40h后加入质量分数20%的无水乙醇,湿磨转速300r/min,时间10h。
具体操作为:
将待球磨的粉体放入刚玉球磨罐中,以氧化锆球作为研磨体,按照5:1的球粉质量比球磨。球磨之前,先用真空机抽真空至0.01MPa。之后充入0.5MPa氩气作为保护气体;球磨机的转速为250r/min,并且每60min需要调整旋转方向一次,调整方向时球磨机暂停10min,避免球磨罐中温度过高气压过大使刚玉罐破损。
将20wt.%无水乙醇加入球磨40h的粉末中进行湿磨10h。球磨结束之后,取出球磨罐。用镊子将研磨球经过装有无水乙醇的烧杯洗涤后夹出,将烧杯内洗过球混有合金粉末的酒精重新倒入罐中,避免浪费。粉体放入50℃真空干燥箱,20h后取出待用。
球磨后的粉末粒径范围控制在0.5~5μm,粒径过大压制后的致密度降低,致密度降低将会影响材料组织从而影响性能。压胚致密度越高烧结后式样致密度越高,呈正相关。粒径越小压胚致密度越高,烧结后的晶粒尺寸越小,具有细晶强化的效果,力学性能越好。但一味追求过小的粒径将会在球磨阶段引入杂质,例如研磨球与研磨罐碰撞产生的碎屑。所以,在压制烧结效果与粉体纯净度之间取得最佳值。
第三步、烧结成型:烧结温度为1000℃,前9分钟以100℃/min的升温速率从室温升温到800℃,并在800℃保温30min,接着以50℃/min的升温速率从800℃升到1000℃,在1000℃下保温45min完成烧结。烧结过程充入一个大气压的氩气作为保护气氛。
图1所示为按照以上制备方法得到的FeCoNi1.5CuBNd高熵合金的XRD图,具有FCC+Nd2Fe17B相特殊组织结构。
试样致密度96.7%,具有高致密特征。
微观组织中由具有面心立方结构的高熵合金基底相与钕铁硼硬磁相组成,该钕铁硼相具有以主磁性相Nd2Fe14B相为基底、富钕相与富硼相并存的三相结构,富钕相主要分布在Nd2Fe14B相晶界周围,组织上呈现白色,如图2所示。
合金性能值为:硬度457HV,断裂韧性43MPa·m1/2。剩磁(Br)0.61T,矫顽力(Hcj)730kA·m-1,磁能积(BH)max 140k J·m-3。
实施例2:FeCoNiCuB1.25Y0.7Nd0.3高熵合金
按照FeCoNiCuB1.25Y0.7Nd0.3的配比,使用实施例1的制备方法制备FeCoNiCuB1.25Y0.7Nd0.3。得到的FeCoNiCuB1.25Y0.3Nd0.7高熵合金具有FCC+Y2Fe17B+Nd2Fe14B特殊组织结构,如图3所示。
试样致密度97.9%,具有高致密特征。
微观组织中由具有面心立方结构的高熵合金基底相与硬磁性的钇铁硼相和钕铁硼相组成。钇铁硼相与钕铁硼相含量适中,分布均匀,尺寸适中,有利于提高材料硬度和韧性,钇的合理加入有助于钕-铁-硼中富钕相的生成,富钕相有利于合金剩磁和磁能积的提高,对合金硬磁性能十分有益。
合金性能值为:硬度590HV,断裂韧性60MPa·m1/2。剩磁(Br)要达到0.64T,矫顽力(Hcj)达到790kA·m-1,磁能积(BH)max达到162k J·m-3。
实施例3:FeCoNiCuB1.5Sm0.5Nd0.7高熵合金
按照FeCoNiCuB1.5Sm0.5Nd0.7的配比,使用实施例1的制备方法制备FeCoNiCuB1.5Sm0.5Nd0.7。制备得到的FeCoNiCuB1.5Sm0.5Nd0.7高熵合金具有FCC+SmCo5+Nd2Fe14B特殊组织结构,如图4所示。
试样致密度97.1%,具有高致密特征。
微观组织中由具有面心立方结构的高熵合金基底相与硬磁性的钐钴相和钕铁硼相组成,钐钴相与钕铁硼相含量适中,分布均匀,尺寸适中,有利于提高材料硬度和韧性,钐的合理加入有助于钕铁硼中富钕相的生成,富钕相有利于合金剩磁和磁能积的提高,对合金硬磁性能十分有益。较高的钕加入有利于SmCo5相的生成,这将有利于合金高温磁性能的保持。
合金性能值为:硬度610HV,断裂韧性50MPa·m1/2。剩磁(Br)要达到0.73T,矫顽力(Hcj)达到842kA·m-1,磁能积(BH)max达到186J·m-3。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。
Claims (11)
1.一种硬磁高熵合金,其特征在于,主要成分由Fe、Co、Ni、Cu、B、Y、Sm、Nd组成,其合金成分原子比表达式为FeCoNi1.5CuBmREn,其中,RE为稀土金属元素:Nd、Sm、Y中的一种或多种,其中0.5≤m≤1.5;0≤n≤1。
2.根据权利要求1所述的硬磁高熵合金,其特征在于,所述硬磁高熵合金由具有面心立方结构的基底相与硬磁相组成,所述的硬磁相包括:钕铁硼相、钐钴合金相、钇铁硼相中的一种或多种。
3.根据权利要求1所述的硬磁高熵合金,其特征在于,所述钕铁硼相具有以主磁性相Nd2Fe14B相为基底、富钕相与富硼相并存的三相结构,富钕相主要分布在Nd2Fe14B相晶界周围。
4.根据权利要求1所述的硬磁高熵合金,其特征在于,所述合金中B与RE的含量符合等摩尔比的配料规则。
5.根据权利要求1所述的硬磁高熵合金,其特征在于,其硬度值范围450~650HV,断裂韧性范围50~60MPa·m1/2,剩磁为0.43~0.76T,矫顽力达到690~860kA·m-1,磁能积max达到165~210k J·m-3。
6.根据权利要求1所述的硬磁高熵合金的制备方法,其特征在于,为铜模吸铸法、磁控溅射镀膜、粉末冶金法中的一种。
7.根据权利要求1所述的硬磁高熵合金的制备方法,其特征在于,为粉末冶金微波烧结法包括以下具体步骤:
步骤一、以金属粉末Fe、Co、Ni、Cu、Y、Sm、Nd和非金属元素B为原料,按照设计成分进行配比;
步骤二、将配比好的粉末放入球磨罐中球磨,使粉末混合均匀后合金化,同时合金后的粉末粒径持续下降;再将球磨后的粉末干燥后真空保存,等待烧结。
步骤三、将干燥后的粉末填充橡胶模具中,放入等静压成型机内压制成型。
步骤四、将压制好的式样放入微波烧结炉内,抽真空通入氩气。设置烧结参数后完成烧结。
8.根据权利要求7所述的硬磁高熵合金的制备方法,其特征在于,步骤一中各种元素的粉末纯度应为99.99wt%,粒度小于45μm。
9.根据权利要求7所述的硬磁高熵合金的制备方法,其特征在于,所述步骤二中,球磨之前,先用真空机抽真空至0.01MPa,之后充入0.5MPa氩气作为保护气体,球磨过程实验参数为:球料比为球:粉料=5:1,各种尺寸的球的质量比为5mm:10mm:15mm=4:2:1,干磨转速250r/min,40h后加入质量分数20%的无水乙醇进行湿磨,湿磨转速300r/min,时间10h;球磨后的粉末粒径范围为0.5~5μm,球磨结束后将粉体置于真空干燥箱,20h后取出。
10.根据权利要求7所述的硬磁高熵合金的制备方法,其特征在于,所述的步骤三中压制成型的参数为:保压时间1min,成型压强为250Mpa。
11.根据权利要求7所述的硬磁高熵合金的制备方法,其特征在于,所述的步骤四中烧结过程的参数为:烧结温度为1000℃,前9分钟以100℃/min的升温速率从室温升温到800℃,并在800℃保温30min,接着以50℃/min的升温速率从800℃升到1000℃,在1000℃下保温45min完成烧结。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910574724.XA CN110310793B (zh) | 2019-06-28 | 2019-06-28 | 一种硬磁高熵合金及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910574724.XA CN110310793B (zh) | 2019-06-28 | 2019-06-28 | 一种硬磁高熵合金及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110310793A true CN110310793A (zh) | 2019-10-08 |
CN110310793B CN110310793B (zh) | 2020-11-03 |
Family
ID=68077845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910574724.XA Active CN110310793B (zh) | 2019-06-28 | 2019-06-28 | 一种硬磁高熵合金及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110310793B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111545746A (zh) * | 2020-04-22 | 2020-08-18 | 江苏大学 | 一种提升微波烧结铁磁性高熵合金致密度与性能的方法 |
CN112134374A (zh) * | 2020-09-21 | 2020-12-25 | 赣州嘉通新材料有限公司 | 一种用于新能源汽车上的耐高温抗氧化钕铁硼磁钢结构 |
CN113421764A (zh) * | 2021-07-02 | 2021-09-21 | 泮敏翔 | 一种高韧性和高矫顽力永磁体的制备方法 |
CN113517129A (zh) * | 2021-08-16 | 2021-10-19 | 江西省科学院应用物理研究所 | 一种在钕铁硼表面制备耐蚀涂层的方法 |
CN115341186A (zh) * | 2021-05-13 | 2022-11-15 | 四川大学 | 一种耐高温辐照氧化钇掺杂TaTiNbZr多主元合金涂层制备工艺 |
CN115745018A (zh) * | 2021-01-08 | 2023-03-07 | 北京航空航天大学 | 高熵MXene材料、高熵MAX相材料及其制备方法、电极和电池 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61213334A (ja) * | 1985-03-15 | 1986-09-22 | Fukuda Kinzoku Hakufun Kogyo Kk | 耐摩耗性含銅合金 |
CN104451351A (zh) * | 2014-12-25 | 2015-03-25 | 安徽工业大学 | 一种添加稀土提高含硼高熵合金强韧性的方法 |
CN105861909A (zh) * | 2016-06-14 | 2016-08-17 | 济南大学 | 一种FeSiBAlNiCo块体高熵合金及其制备方法 |
CN106868379A (zh) * | 2017-03-13 | 2017-06-20 | 北京科技大学 | 一种具有大磁致伸缩系数的高熵合金及其制备方法 |
US20170314097A1 (en) * | 2016-05-02 | 2017-11-02 | Korea Advanced Institute Of Science And Technology | High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same |
CN107824796A (zh) * | 2017-11-15 | 2018-03-23 | 安徽工业大学 | 一种结构中含有有序纳米沉积物的多主元合金粉体材料的制备方法 |
CN108133799A (zh) * | 2017-12-20 | 2018-06-08 | 江西理工大学 | 一种高性能纳米晶热变形钕铁硼永磁体及其制备方法 |
CN108441790A (zh) * | 2018-02-07 | 2018-08-24 | 河南中岳非晶新型材料股份有限公司 | 一种具有高塑性的高熵软磁合金及制备方法 |
-
2019
- 2019-06-28 CN CN201910574724.XA patent/CN110310793B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61213334A (ja) * | 1985-03-15 | 1986-09-22 | Fukuda Kinzoku Hakufun Kogyo Kk | 耐摩耗性含銅合金 |
CN104451351A (zh) * | 2014-12-25 | 2015-03-25 | 安徽工业大学 | 一种添加稀土提高含硼高熵合金强韧性的方法 |
US20170314097A1 (en) * | 2016-05-02 | 2017-11-02 | Korea Advanced Institute Of Science And Technology | High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same |
CN105861909A (zh) * | 2016-06-14 | 2016-08-17 | 济南大学 | 一种FeSiBAlNiCo块体高熵合金及其制备方法 |
CN106868379A (zh) * | 2017-03-13 | 2017-06-20 | 北京科技大学 | 一种具有大磁致伸缩系数的高熵合金及其制备方法 |
CN107824796A (zh) * | 2017-11-15 | 2018-03-23 | 安徽工业大学 | 一种结构中含有有序纳米沉积物的多主元合金粉体材料的制备方法 |
CN108133799A (zh) * | 2017-12-20 | 2018-06-08 | 江西理工大学 | 一种高性能纳米晶热变形钕铁硼永磁体及其制备方法 |
CN108441790A (zh) * | 2018-02-07 | 2018-08-24 | 河南中岳非晶新型材料股份有限公司 | 一种具有高塑性的高熵软磁合金及制备方法 |
Non-Patent Citations (2)
Title |
---|
ZHONG LI等: "Correlation between the magnetic properties and phase constitution of FeCoNi(CuAl)0.8Gax(0≤x≤0.08)high-entropy alloys", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
李桂荣等: "稀土钇强化Al-Zn-Mg-Cu铝合金的组织特征", 《江苏大学学报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111545746A (zh) * | 2020-04-22 | 2020-08-18 | 江苏大学 | 一种提升微波烧结铁磁性高熵合金致密度与性能的方法 |
CN111545746B (zh) * | 2020-04-22 | 2022-06-21 | 江苏大学 | 一种提升微波烧结铁磁性高熵合金致密度与性能的方法 |
CN112134374A (zh) * | 2020-09-21 | 2020-12-25 | 赣州嘉通新材料有限公司 | 一种用于新能源汽车上的耐高温抗氧化钕铁硼磁钢结构 |
CN112134374B (zh) * | 2020-09-21 | 2023-07-28 | 赣州嘉通新材料有限公司 | 一种用于新能源汽车上的耐高温抗氧化钕铁硼磁钢结构 |
CN115745018A (zh) * | 2021-01-08 | 2023-03-07 | 北京航空航天大学 | 高熵MXene材料、高熵MAX相材料及其制备方法、电极和电池 |
CN115745018B (zh) * | 2021-01-08 | 2024-02-06 | 北京航空航天大学 | 高熵MXene材料、高熵MAX相材料及其制备方法、电极和电池 |
CN115341186A (zh) * | 2021-05-13 | 2022-11-15 | 四川大学 | 一种耐高温辐照氧化钇掺杂TaTiNbZr多主元合金涂层制备工艺 |
CN113421764A (zh) * | 2021-07-02 | 2021-09-21 | 泮敏翔 | 一种高韧性和高矫顽力永磁体的制备方法 |
CN113517129A (zh) * | 2021-08-16 | 2021-10-19 | 江西省科学院应用物理研究所 | 一种在钕铁硼表面制备耐蚀涂层的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110310793B (zh) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110310793A (zh) | 一种硬磁高熵合金及其制备方法 | |
CN106252009B (zh) | 一种基于稀土氢化物添加的高性能富La/Ce/Y稀土永磁体及其制备方法 | |
CN102751064B (zh) | 纳米增韧钕铁硼磁性材料及制备方法 | |
CN107604186B (zh) | 一种复合稀土氧化物强化钨基高比重合金复合材料及其制备方法 | |
EP3327734B1 (en) | Method for producing a rare earth-cobalt-based composite magnetic material | |
CN104681268B (zh) | 一种提高烧结钕铁硼磁体矫顽力的处理方法 | |
CN103103442A (zh) | 主辅合金法制备钕铁硼的方法 | |
CN105513737A (zh) | 一种不含重稀土元素烧结钕铁硼磁体的制备方法 | |
CN110273078B (zh) | 一种磁性(FeCoNi1.5CuBmREn)P/Al复合材料及其制备方法 | |
CN110911077B (zh) | 一种高矫顽力钕铈铁硼磁体的制备方法 | |
CN103065787A (zh) | 一种制备烧结钕铁硼磁体的方法 | |
CN102436889A (zh) | 钛锆镓复合添加的低失重钕铁硼磁性材料及其制备方法 | |
CN105702403B (zh) | 一种烧结钕铁硼磁体及制备方法 | |
CN106920617A (zh) | 高性能钕铁硼稀土永磁材料及其制备方法 | |
CN105931784B (zh) | 一种耐腐蚀含铈稀土永磁材料及其制备方法 | |
CN107275027B (zh) | 应用钇的富铈稀土永磁体及其制备方法 | |
CN104637643B (zh) | 白云鄂博共伴生原矿混合稀土永磁材料及其制备方法 | |
CN104112559A (zh) | R-t-b系烧结磁铁 | |
CN106158339B (zh) | 烧结钕铁硼回收废料经扩渗处理制备高性能永磁体的方法 | |
CN104505247A (zh) | 一种改善钕铁硼磁体性能的固体扩散工艺 | |
CN108281246A (zh) | 一种高性能烧结钕铁硼磁体及其制备方法 | |
CN106384637A (zh) | 一种改善边界结构制备高性能钕铁硼磁体的方法 | |
CN114210976B (zh) | 一种烧结钕铁硼双合金结合晶界扩散的方法 | |
CN103667920B (zh) | 一种Nd-Fe-B系稀土永磁合金的制备方法 | |
CN106252011A (zh) | 一种晶界相复合添加提高烧结钕铁硼矫顽力的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |