CN110302809B - 一种负载型光催化剂及其制备方法 - Google Patents

一种负载型光催化剂及其制备方法 Download PDF

Info

Publication number
CN110302809B
CN110302809B CN201910611753.9A CN201910611753A CN110302809B CN 110302809 B CN110302809 B CN 110302809B CN 201910611753 A CN201910611753 A CN 201910611753A CN 110302809 B CN110302809 B CN 110302809B
Authority
CN
China
Prior art keywords
nise
photocatalyst
solid solution
supported photocatalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910611753.9A
Other languages
English (en)
Other versions
CN110302809A (zh
Inventor
黄彩进
蒋昕玮
龚海生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910611753.9A priority Critical patent/CN110302809B/zh
Publication of CN110302809A publication Critical patent/CN110302809A/zh
Application granted granted Critical
Publication of CN110302809B publication Critical patent/CN110302809B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载型光催化剂NiSe/Mn0.5Cd0.5S及其制备方法,其是先采用温和的一步水热法合成Mn0.5Cd0.5S固溶体,然后将其与六水合硫酸镍、亚硒酸钠进行反应制得。该复合催化剂中NiSe与Mn0.5Cd0.5S紧密结合形成异质结,有利于光生载流子的迁移,抑制了光生电子空穴的复合,使Mn0.5Cd0.5S固溶体的光催化产氢活性显著提高。本发明使用的新型NiSe/Mn0.5Cd0.5S光催化剂具有制备简单,可大量制备,光催化活性高和稳定性好,这使其在清洁能源开发方面具有广阔的应用前景。

Description

一种负载型光催化剂及其制备方法
技术领域
本发明属于光催化剂制备和应用领域,具体涉及一种负载型光催化剂NiSe/Mn0.5Cd0.5S及其制备方法。
背景技术
化石燃料的燃烧产物带来了严重的环境问题,通过利用可持续发展的能源来解决全球日益增长的能源短缺问题是一个挑战。自1972年Fujishima A和Honda K首次报道以TiO2作为光催化制氢的半导体电极,通过太阳能驱动水分解获得最清洁的能源——氢气,这一途径立刻引起了全球科学家的高度关注。TiO2是研究最广泛的光催化剂,但由于其带隙较宽(3.2 eV),光催化活性较低,限制了对太阳能的吸收。为了最大限度地利用太阳能,可见光驱动光催化剂是光催化的重要研究方向。
CdS因其适合可见光吸收的带隙(2.4 eV)和光催化水裂解的导带位置,近年来备受关注。然而,CdS严重的光腐蚀现象限制了其在光解水反应中的应用。为了改善这个现象,有效方法之一是将CdS与其他金属硫化物结合形成固溶体。MnxCd1-xS固溶体就是其中的一种。通过调节MnxCd1-xS中的x值来调节带隙,可具有比纯CdS更好的光催化活性和稳定性,并且具有更好的耐光腐蚀性能。然而,为实现更高效地利用太阳能、提高经济效益,有必要进一步提高MnxCd1-xS固溶体的光催化活性。
负载助催化剂形成异质结构有利于光生载流子的迁移。铂、金等贵金属被广泛用作助催化剂并有较好的光催化活性,但由于贵金属成本高,研究者们趋向寻找可替代的非贵金属助催化剂。因此,寻求和拓展新型高效的可替代贵金属类复合型光催化材料成为光解水方向的一个重要课题。
发明内容
本发明的目的在于提供一种负载型光催化剂NiSe/Mn0.5Cd0.5S及其制备方法,其利用NiSe作为助催化剂,显著提高了Mn0.5Cd0.5S在可见光下的催化活性,使所得负载型光催化剂具有良好光催化分解水产氢性能。
为实现上述目的,本发明采用如下技术方案:
一种负载型光催化剂NiSe/Mn0.5Cd0.5S,其中NiSe的含量为1 wt%-10 wt%。
所述负载型光催化剂的制备方法包括以下步骤:
(1)以乙酸锰、乙酸镉和硫代乙酰胺分别作为锰源、镉源和硫源,采用温和的一步水热法制备Mn0.5Cd0.5S固溶体;
(2)将六水合硫酸镍和亚硒酸钠溶解于乙二醇中,然后再加入制备好的Mn0.5Cd0.5S固溶体,搅拌30min后得均匀分散的悬浊液,将其转入50 mL高压反应釜,180℃下反应24 h,然后自然冷却至室温;
(3)将步骤(2)所得产物分别用去离子水和无水乙醇离心洗涤,80℃烘干,得到所述NiSe/Mn0.5Cd0.5S光催化剂。
步骤(1)中所用乙酸锰、乙酸镉和硫代乙酰胺的摩尔比为1:1:2。
步骤(1)中所述一步水热法的反应温度为160℃,反应时间为24h。
步骤(2)中所用六水合硫酸镍和亚硒酸钠的摩尔比为1:1。
本发明所得负载型光催化剂NiSe/Mn0.5Cd0.5S具有很好的光催化分解水的性能,可用于可见光下光催化分解水产氢。
本发明的有益效果在于:
(1)本发明首次将复合物NiSe/Mn0.5Cd0.5S应用于光催化领域,两种单一的物质具有相匹配的导价带结构,有利于光生载流子的转移,从而提高其光催化产氢活性。
(2)本发明利用NiSe作为助催化剂制得修饰的NiSe/Mn0.5Cd0.5S光催化剂,其可有效地增大催化剂对可见光的吸收,使其在可见光下的光催化活性增强,最高可达28.08mmol/h/g,是单纯Mn0.5Cd0.5S的两倍,且高于1 wt% Pt/Mn0.5Cd0.5S的产氢量。
(3)本发明NiSe/Mn0.5Cd0.5S紧密的异质结构中,光生载流子的有效分离延长了载流子的寿命,增强了光催化产氢活性。
(4)本发明所得NiSe/Mn0.5Cd0.5S异质结光催化剂具有制备方法绿色环保、操作简单、产氢活性高、稳定性好、成本低等优点,有利于大规模工业化生产,具有显著的经济和社会效益。
附图说明
图1为实施例1-6所得催化剂样品的XRD图(a)及单纯NiSe的XRD(b)。
图2为实施例5所得NiSe/Mn0.5Cd0.5S的TEM形貌图(a)和高倍TEM图(b)。
图3为实施例1-6所得催化剂样品的DRS图。
图4为纯Mn0.5Cd0.5S、不同负载量NiSe/Mn0.5Cd0.5S与纯NiSe在可见光下的催化性能对比图。
图5为实施例5所得催化剂的循环性能实验图。
具体实施方式
本发明负载型光催化剂NiSe/Mn0.5Cd0.5S的制备方法如下:
1)将摩尔比1:1的乙酸镉·二水合物和乙酸锰·四水合物溶于40 mL去离子水中,之后在搅拌下加入乙酸镉·二水合物两倍摩尔量的硫代乙酰胺,搅拌30 min,然后将溶液转移至聚四氟乙烯反应釜内衬并密封在不锈钢反应釜内,160 ℃保温24h,待降温冷却至室温后,将沉淀用去离子水和无水乙醇分别离心洗涤并干燥,得到Mn0.5Cd0.5S固溶体;
2)将摩尔比为1:1的六水合硫酸镍和亚硒酸钠溶解于40 mL乙二醇中,搅拌均匀后加入一定量上述合成的Mn0.5Cd0.5S固溶体,搅拌30 min后将溶液转入50 mL聚四氟乙烯反应釜内衬并密封在不锈钢反应釜内,180℃保持24小时,最后自然冷却至室温;
3)所得样品用去离子水和无水乙醇离心洗涤,80 ℃烘箱烘干后得到所述负载型光催化剂NiSe/Cd0.5Zn0.5S,其中NiSe的含量范围为1wt% -10 wt%。
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
将5mmol乙酸镉·二水合物和5mmol乙酸锰·四水合物溶于含40 mL去离子水的烧杯中搅拌溶解,之后加入10mmol硫代乙酰胺,搅拌30 min,然后将溶液转移至聚四氟乙烯反应釜内衬并密封在不锈钢反应釜内,160 ℃保温24h,待降温冷却至室温后,将沉淀用去离子水和无水乙醇分别离心洗涤并干燥,得到Mn0.5Cd0.5S固溶体样品。
实施例2
将7.3 μmoL六水合硫酸镍和7.3 μmoL亚硒酸钠溶解于含40 mL的乙二醇溶剂的烧杯中,再加入100 mg实施例1制得的Mn0.5Cd0.5S固溶体,搅拌30 min后转入50 mL聚四氟乙烯内衬中,高压反应釜密闭后,180 ℃保持24h,最后自然降温至室温。所得样品分别用去离子水和无水乙醇离心洗涤,80 ℃烘箱烘干后得到1 wt%-NiSe/Mn0.5Cd0.5S样品。
实施例3
将22 μmoL六水合硫酸镍和22 μmoL亚硒酸钠溶解于含40mL的乙二醇溶剂的烧杯中,后再加入100 mg实施例1制得的Mn0.5Cd0.5S固溶体,搅拌30 min后转入50 mL聚四氟乙烯内衬中,高压反应釜密闭后,180 ℃保持24h,最后自然降温至室温。所得样品分别用去离子水和无水乙醇离心洗涤,80 ℃烘箱烘干后得到3 wt%-NiSe/Mn0.5Cd0.5S样品。
实施例4
将36.3 μmoL六水合硫酸镍和36.3 μmoL亚硒酸钠溶解于含40mL的乙二醇溶剂的烧杯中,再加入100 mg实施例1制得的Mn0.5Cd0.5S固溶体,搅拌30 min后转入50 mL聚四氟乙烯内衬中,高压反应釜密闭后,180 ℃保持24h,最后自然降温至室温。所得样品分别用去离子水和无水乙醇离心洗涤,80 ℃烘箱烘干后得到5 wt%-NiSe/Mn0.5Cd0.5S样品。
实施例5
将51.1 μmoL六水合硫酸镍和51.1 μmoL亚硒酸钠溶解于含40mL的乙二醇溶剂的烧杯中,再加入100 mg实施例1制得的Mn0.5Cd0.5S固溶体,搅拌30 min后转入50 mL聚四氟乙烯内衬中,高压反应釜密闭后,180 ℃保持24h,最后自然降温至室温。所得样品分别用去离子水和无水乙醇离心洗涤,80 ℃烘箱烘干后得到7 wt%-NiSe/Mn0.5Cd0.5S样品。
实施例6
将72.6 μmoL六水合硫酸镍和72.6 μmoL亚硒酸钠溶解于含40mL的乙二醇溶剂的烧杯中,再加入100 mg实施例1制得的Mn0.5Cd0.5S固溶体,搅拌30 min后转入50 mL聚四氟乙烯内衬中,高压反应釜密闭后,180 ℃保持24h,最后自然降温至室温。所得样品分别用去离子水和无水乙醇离心洗涤,80 ℃烘箱烘干后得到10 wt%-NiSe/Mn0.5Cd0.5S样品。
性能测试
光催化产氢在密闭循环系统中进行的。首先,将5 mg催化剂样品分散在50 mL含有Na2S (0.35 mol/L)和Na2SO3 (0.25 mol/L)作为牺牲试剂的水中。反应前,将系统抽真空15分钟以除去空气。用循环冷凝水控制反应温度为5 ℃,用200 rpm搅拌反应悬浮液,在可见光下进行光催化产氢反应,反应时间为3小时。产氢量由配有灵敏导热检测器(TCD)的在线气相色谱仪(GC)进行分析。
图1为实施例1-6所得催化剂样品的X射线粉末衍射图(a)及单纯NiSe的X射线粉末衍射图(b)。由图中可见,随着NiSe含量的增加,催化剂样品中并没有出现明显的NiSe的特征峰,这表明NiSe的负载没有改变Mn0.5Cd0.5S的表面结构。
图2为实施例5所得NiSe/Mn0.5Cd0.5S的TEM形貌图(a)和高倍TEM图(b)。由图2可知,晶格条纹宽度0.336 nm对应着Mn0.5Cd0.5S的(111)晶面,而晶格条纹宽度0.204 nm对应着NiSe的(102)晶面,说明NiSe成功负载在Mn0.5Cd0.5S的表面,且形成紧密异质结构。
图3为实施例1-6所得催化剂样品的漫反射谱图(DRS)。从图中可以很明显的看出Mn0.5Cd0.5S在紫外-可见光下有吸收,而NiSe/Mn0.5Cd0.5S的吸收带边有明显的红移且在可见光区域的吸收大大增强。
图4为纯Mn0.5Cd0.5S、不同负载量NiSe/Mn0.5Cd0.5S与纯NiSe在可见光下产氢量的活性对比图。从图中可以看出,5 wt%-NiSe/Mn0.5Cd0.5S表现出最佳的产氢活性,达到了28.08mmol/h/g。
图5为实施例5所得催化剂经过5轮循环实验的活性图。从图中可以看出,在经历了长达5轮的循环实验(每轮3小时)后,催化剂的反应活性变化不大,说明制备的光催化剂稳定性较好。
表1为NiSe/Mn0.5Cd0.5S与现有其他文献中相似催化剂产氢量的比较。
表1
Figure DEST_PATH_IMAGE002
由表1可见,在可见光下本发明新型复合物NiSe/Mn0.5Cd0.5S展现出最高的产氢活性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1. 一种用于可见光下光催化分解水产氢的负载型光催化剂,其特征在于:所述负载型光催化剂为NiSe/Mn0.5Cd0.5S,其中NiSe的含量为1 wt%-10 wt%;其制备方法包括以下步骤:
(1)以乙酸锰、乙酸镉和硫代乙酰胺分别作为锰源、镉源和硫源,采用温和的一步水热法制备Mn0.5Cd0.5S固溶体;
(2)将六水合硫酸镍和亚硒酸钠溶解于乙二醇中,然后再加入制备好的Mn0.5Cd0.5S固溶体,搅拌30min后得到均匀的悬浊液,将其转入高压反应釜,180℃下反应24 h,然后自然冷却至室温;
(3)将步骤(2)所得产物分别用去离子水和无水乙醇离心洗涤,80℃烘干,得到所述NiSe/Mn0.5Cd0.5S光催化剂。
2.根据权利要求1所述的负载型光催化剂,其特征在于:步骤(1)中所用乙酸锰、乙酸镉和硫代乙酰胺的摩尔比为1:1:2。
3.根据权利要求1所述的负载型光催化剂,其特征在于:步骤(1)中所述一步水热法的反应温度为160℃,反应时间为24h。
4.根据权利要求1所述的负载型光催化剂,其特征在于:步骤(2)中所用六水合硫酸镍和亚硒酸钠的摩尔比为1:1。
CN201910611753.9A 2019-07-08 2019-07-08 一种负载型光催化剂及其制备方法 Active CN110302809B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910611753.9A CN110302809B (zh) 2019-07-08 2019-07-08 一种负载型光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910611753.9A CN110302809B (zh) 2019-07-08 2019-07-08 一种负载型光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110302809A CN110302809A (zh) 2019-10-08
CN110302809B true CN110302809B (zh) 2021-08-31

Family

ID=68079620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910611753.9A Active CN110302809B (zh) 2019-07-08 2019-07-08 一种负载型光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110302809B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110756203B (zh) * 2019-10-25 2021-09-21 华南理工大学 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法及应用
CN110841679A (zh) * 2019-10-29 2020-02-28 广州大学 一种柔性负载型N-WO3/Ce2S3光催化剂及其制备方法
CN113318755A (zh) * 2021-06-23 2021-08-31 淮北师范大学 一种有机无机杂化MnxCd1-xS固溶体光催化剂的制备方法
CN114849738A (zh) * 2022-06-01 2022-08-05 常州大学 一种硫化锰镉@氧化镍复合光催化剂的制备方法及其应用
CN116651467A (zh) * 2023-06-02 2023-08-29 常州大学 一种空心Cu2-xS@硫化锰镉复合光催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376944A (zh) * 2017-07-25 2017-11-24 山东大学 过渡金属硫化物负载Mn‑Cd‑S固溶体在光催化产氢方面的应用
CN108993546A (zh) * 2018-07-12 2018-12-14 福州大学 高效光催化水裂解产氢和醇氧化的异质结光催化剂
CN109647439A (zh) * 2019-01-07 2019-04-19 福州大学 一种用于光解水产氢的钙钛矿-固溶体复合光催化剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376944A (zh) * 2017-07-25 2017-11-24 山东大学 过渡金属硫化物负载Mn‑Cd‑S固溶体在光催化产氢方面的应用
CN108993546A (zh) * 2018-07-12 2018-12-14 福州大学 高效光催化水裂解产氢和醇氧化的异质结光催化剂
CN109647439A (zh) * 2019-01-07 2019-04-19 福州大学 一种用于光解水产氢的钙钛矿-固溶体复合光催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Highly efficient and noble metal-free NiS modified MnxCd1-xS solidsolutions with enhanced photocatalytic activity for hydrogenevolution under visible light irradiation";Xiaolei Liu et al.,;《Applied Catalysis B: Environmental》;20161017;第203卷;第282-288页 *
"An amorphous CoSx modified Mn0.5Cd0.5S solid solution with enhanced visible-light photocatalytic H2-production activity";Mengdi Wang et al.;《Catal. Sci. Technol.》;20180717;第8卷;第4122–4128 页 *

Also Published As

Publication number Publication date
CN110302809A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
CN110302809B (zh) 一种负载型光催化剂及其制备方法
CN109331883B (zh) 一种CdS/金属有机框架复合光催化材料及其制备方法和应用
CN105664977B (zh) 二硫化钼-硫化镉纳米复合材料及其制备方法和应用
Song et al. WO3 cocatalyst improves hydrogen evolution capacity of ZnCdS under visible light irradiation
CN107349937B (zh) 一种石墨烯基双金属硫化物纳米复合光催化剂的制备方法
CN109908959B (zh) 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用
CN108525677B (zh) 一种二氧化铈/硫化铟锌纳米片复合催化剂及其在可见光催化co2转化中的应用
CN110624550B (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN110280276B (zh) 负载型光催化剂NiSe2/CdS的制备方法及其应用
Zhang et al. g‐C3N4 Nanosheet Nanoarchitectonics: H2 Generation and CO2 Reduction
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
CN114308079A (zh) 一种硫化镉-双助催化剂复合光催化材料及其制备方法与应用
Chen et al. A direct Z-scheme Bi2WO6/La2Ti2O7 photocatalyst for selective reduction of CO2 to CO
CN110026207B (zh) CaTiO3@ZnIn2S4纳米复合材料及其制备方法与应用
Yuan et al. Synergistically enhanced photothermal catalytic CO2 reduction by spatially separated oxygen and sulphur dual vacancy regulated redox half-reactions
Guo et al. Low-concentration CO2 conversion on AgxNa1− xTaO3-AgCl heterojunction photocatalyst
Wang et al. Construction of a heterojunction with fast charge transport channels for photocatalytic hydrogen evolution via a synergistic strategy of Co-doping and crystal plane modulation
CN112892607A (zh) 一种稳定的光催化分解水制氢的三元复合材料及其制备方法
CN111054394A (zh) 一种p-n异质结光催化剂及制备方法和应用
CN112547097A (zh) CoWO4-CdS一维纳米复合光催化剂的制备方法及光催化剂的应用
CN114471624B (zh) 一种NiSe2/Mn0.3Cd0.7S异质结光催化剂及其原位合成方法与应用
CN112657516B (zh) 一种直接z型光催化剂及其制备方法和应用
Zhang et al. Assembling CeO 2 nanoparticles on ZIF-8 via the hydrothermal method to promote the CO 2 photoreduction performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant