CN110302772A - 一种负载型光催化材料及其制备方法 - Google Patents

一种负载型光催化材料及其制备方法 Download PDF

Info

Publication number
CN110302772A
CN110302772A CN201910727365.7A CN201910727365A CN110302772A CN 110302772 A CN110302772 A CN 110302772A CN 201910727365 A CN201910727365 A CN 201910727365A CN 110302772 A CN110302772 A CN 110302772A
Authority
CN
China
Prior art keywords
iridium
load
tio
titanium net
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910727365.7A
Other languages
English (en)
Other versions
CN110302772B (zh
Inventor
吴允苗
朱君秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Normal University
Original Assignee
Quanzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanzhou Normal University filed Critical Quanzhou Normal University
Priority to CN201910727365.7A priority Critical patent/CN110302772B/zh
Publication of CN110302772A publication Critical patent/CN110302772A/zh
Application granted granted Critical
Publication of CN110302772B publication Critical patent/CN110302772B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载型光催化材料及其制备方法,属于催化材料技术领域。本发明先利用工艺简单,可工业化生产的热分解法制备了钛网负载铱掺杂TiO2涂层,然后用电沉积法制备在铱掺杂TiO2涂层表面负载的片状纳米ZnO,从而制备获得钛网为载体,钛网表面负载的铱掺杂TiO2涂层,以及在铱掺杂TiO2涂层表面负载的片状纳米ZnO构成的光催化材料。本发明光催化材料的制备方法工艺简洁,成本低廉,制备所得光催化材料的催化效果佳,具有广阔的应该用前景。

Description

一种负载型光催化材料及其制备方法
技术领域
本发明属于光催化材料技术领域,具体涉及一种负载型光催化材料及其制备方法。
背景技术
光催化技术在废水和废气处理中显示出优异的性能。光催化技术应用中,光催化材料是关键核心技术。氧化钛和氧化锌是目前使用最广的两种光催化材料。为了提高光催化材料的光催化效率,通常采用掺杂,多种半导体光催化剂耦合等方式进行光催化剂的性能优化。另外,纳米结构的光催化剂因具有高的比表面积而表现出更高的电催化活性。纳米材料的制备通常采用化学方法,如化学沉淀法、水热法等方法制备。在多种半导体光催化材料复合材料的制备方法,通常是将两种材料均匀复合,可以是通过搅拌物理混合,也可以在制备过程同时生成复合材料。如将两种半导体材料的前驱体同时装入反应釜中进行水热处理,生成均匀混合的复合材料。或者将一种半导体粉体材料加入到另一种半导体光催化材料前驱体溶液中,进行水热处理或化学沉淀,得到均匀混合的复合光催化剂。纳米粉体催化剂的缺点是难以回收。因此,在实际的工程应用中,负载型的光催化材料更具有实用性。在负载型的催化剂中,如何用简便易行的方法制备纳米结构的催化剂,是提高光催化材料光催化性能的关键。
发明内容
本发明的目的在于提供一种负载型光催化材料及其制备方法。本发明制备的载型光催化材料具有纳米结构,比表面积高,催化效果好。
为实现上述目的,本发明采用以下技术方案。
一种负载型光催化材料,由钛网载体、钛网表面负载的铱掺杂TiO2涂层、以及铱掺杂TiO2涂层表面分散负载的片状纳米ZnO构成。
一种负载型光催化材料的制备方法,包括以下步骤:
(1)首先将含有钛离子和铱离子的前驱体溶液涂覆在钛网表面,在红外灯下烘干后在500-600℃进行热氧化,即得到钛网负载铱掺杂TiO2涂层;
(2)以步骤(1)制得的负载铱掺杂TiO2涂层的钛网作为阴极,以铅合金电极为阳极,以硫酸锌水溶液为电解液进行电沉积;在铱掺杂TiO2表面分散沉积片状结构的纳米Zn;
(3)将步骤(2)处理的钛网在350-500℃热氧化1-2小时,即得到由钛网为载体,钛网表面负载的铱掺杂TiO2涂层,以及在铱掺杂TiO2涂层表面负载的片状纳米ZnO构成的光催化材料。
上述步骤(1)中含有钛离子和铱离子的前驱体溶液的制备方法为:将氯铱酸和三氯化钛溶解在水中,控制溶液中铱离子占总金属离子的1-5wt%,制得前驱体溶液。
上述步骤(1)中热氧化时间为20min。
上述步骤(2)中硫酸锌水溶液的浓度为1mol/L。
上述步骤(2)电沉积时阴极电流密度为50 - 200 A/m2,电沉积时间为10 - 40分钟。
本发明的创新点:本发明利用工艺简单,可工业化生产的热分解法制备了钛网负载铱掺杂TiO2涂层。铱掺杂TiO2涂层中铱有两方面的作用:一是提高TiO2的光催化活性,起助催化剂的作用;二是具有控制阴极锌形貌,获得片状纳米ZnO的作用。其原理是阴极过程氧化铱是良好的析氢活性剂,阴极表面氧化铱析氢,阻止了锌在阴极表面均匀的沉积,从而只能在某些未析氢的点形核,然后以片状形式生长,从而得到纳米片结构的ZnO。经过热氧化后,TiO2涂层中铱以氧化铱的形成存在。
附图说明
图1实施例1负载型光催化材料表面显微形貌图。
图2实施例2负载型光催化材料表面显微形貌图。
图3实施例3负载型光催化材料表面显微形貌图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是下述的实例仅仅是本发明其中的例子而已,并不代表本发明所限定的权利保护范围,本发明的权利保护范围以权利要求书为准。
实施例1
采用10 cm * 10 cm * 0.1 cm的钛网为载体。将氯铱酸和三氯化钛溶解在水中,控制溶液中铱离子占总金属离子的1wt%,制得前驱体溶液。然后将前驱体溶液均匀涂覆在钛网上,在红外灯下烘干后,送入550℃的马弗炉中进行热氧化20分钟。取出冷却后即得到钛网负载铱掺杂TiO2涂层。然后以该钛网为阴极,以铅合金电极为阳极,阴极电流密度为100A/cm2,在1mol/L的硫酸锌溶液中进行电沉积20分钟。取出后,用清水清洗掉粘附的电解液。然后放入400℃的马弗炉中热氧化1h,即得到以钛网为载体、钛网表面负载的铱掺杂TiO2涂层、以及铱掺杂TiO2涂层表面分散负载的片状纳米ZnO构成的光催化剂材料。其表面形貌如图1所示,表面纳米片为ZnO,有泥裂状裂纹的涂层为铱掺杂TiO2涂层。
实施例2
采用10 cm * 10 cm * 0.1 cm的钛网为载体。将氯铱酸和三氯化钛溶解在水中,控制溶液中铱离子占总金属离子的5wt%,制得前驱体溶液。然后将前驱体溶液均匀涂覆在钛网上,在红外灯下烘干后,送入600℃的马弗炉中进行热氧化20分钟。取出冷却后即得到钛网负载铱掺杂TiO2涂层。然后以该钛网为阴极,以铅合金电极为阳极,阴极电流密度为50A/cm2,在1mol/L的硫酸锌溶液中进行电沉积10分钟。取出后,用清水清洗掉粘附的电解液。然后放入350℃的马弗炉中热氧化2h,即得到以钛网为载体、钛网表面负载的铱掺杂TiO2涂层、以及铱掺杂TiO2涂层表面分散负载的片状纳米ZnO构成的光催化剂材料。其表面形貌如图2所示,表面纳米片为ZnO,有泥裂状裂纹的涂层为铱掺杂TiO2涂层。。
实施例3
采用10 cm * 10 cm * 0.1 cm的钛网为载体。将氯铱酸和三氯化钛溶解在水中,控制溶液中铱离子占总金属离子的3wt%,制得前驱体溶液。然后将前驱体溶液均匀涂覆在钛网上,在红外灯下烘干后,送入550℃的马弗炉中进行热氧化20分钟。取出冷却后即得到钛网负载铱掺杂TiO2涂层。然后以该钛网为阴极,以铅合金电极为阳极,阴极电流密度为200A/cm2,在1mol/L的硫酸锌溶液中进行电沉积40分钟。取出后,用清水清洗掉粘附的电解液。然后放入500℃的马弗炉中热氧化1h,即得到以钛网为载体、钛网表面负载的铱掺杂TiO2涂层、以及铱掺杂TiO2涂层表面分散负载的片状纳米ZnO构成的光催化剂材料。其表面形貌如图3所示,铱掺杂TiO2涂层表面分散负载有纳米片ZnO。
实施例4
采用实施例1-3制备的负载型光催化材料进行亚甲基蓝水溶光催化降解实验。分别配置1升浓度为50 mg/L的亚甲基蓝水溶液。采用实施例1-3所制备的光催化材料进行光电催化降解实验,紫外灯再用主波长为365 nm,功率的5W的紫外灯管。经光催化降解30 min后,各溶液颜色均已退去,显示出良好的光催化降解有机染料的性能。
进一步采用实施例1-3制备的负载型光催化材料进行光电催化降解亚甲基蓝溶液。同样分别配置1升浓度为50mg/L的亚甲基蓝水溶液。以实施例1-3所制备的光催化材料为阳极,钛网为阴极,在阴阳极之间施加3V的偏压,经光电催化降解10 min后,各组亚甲蓝溶液的颜色基本褪去,显示出优异的光电催化降解有机物的能力。
为了进一步评价了所制备的光催化材料的长期稳定性。配置浓度为5g/L的亚甲基蓝溶液10 L,进行长周期光电催化降解实验。以实施例1制备的样品进行试验,在连续1个月的试验后,取出光催化材料。进行光电催化降解浓度为50 mg/L的亚甲基蓝溶液实验。实验结果表明,亚甲蓝溶液褪色时间与新制备的光催化材料一致。说明该光催化材料的活性并没有下降,证实该催化材料具有很好的稳定性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种负载型光催化材料,其特征在于:所述的负载型光催化材料由钛网载体、钛网表面负载的铱掺杂TiO2涂层、以及铱掺杂TiO2涂层表面分散负载的片状纳米ZnO构成。
2.一种如权利要求1所述的负载型光催化材料的制备方法,其特征在于,包括以下步骤:
(1)将含有钛离子和铱离子的前驱体溶液涂覆在钛网表面,在红外灯下烘干后在500-600℃进行热氧化,即得钛网负载铱掺杂TiO2涂层;
(2)以步骤(1)制得的负载铱掺杂TiO2涂层的钛网作为阴极,以铅合金电极为阳极,以硫酸锌水溶液为电解液进行电沉积;在铱掺杂TiO2表面分散沉积片状结构的纳米Zn;
(3)将步骤(2)处理的钛网在350-500℃热氧化1-2小时,即得到由钛网为载体,钛网表面负载的铱掺杂TiO2涂层,以及在铱掺杂TiO2涂层表面负载的片状纳米ZnO构成的光催化材料。
3.根据权利要求2所述的负载型光催化材料的制备方法,其特征在于:所述步骤(1)中含有钛离子和铱离子的前驱体溶液的制备方法为:将氯铱酸和三氯化钛溶解在水中,控制溶液中铱离子占总金属离子的1-5wt%,制得前驱体溶液。
4.根据权利要求2所述的负载型光催化材料的制备方法,其特征在于:所述步骤(1)中热氧化时间为20min。
5.根据权利要求2所述的负载型光催化材料的制备方法,其特征在于:所述步骤(2)中硫酸锌水溶液的浓度为1mol/L。
6.根据权利要求2所述的负载型光催化材料的制备方法,其特征在于:所述步骤(2)中电沉积时阴极电流密度为50 - 200 A/m2,电沉积时间为10 - 40分钟。
CN201910727365.7A 2019-08-07 2019-08-07 一种负载型光催化材料及其制备方法 Active CN110302772B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910727365.7A CN110302772B (zh) 2019-08-07 2019-08-07 一种负载型光催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910727365.7A CN110302772B (zh) 2019-08-07 2019-08-07 一种负载型光催化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110302772A true CN110302772A (zh) 2019-10-08
CN110302772B CN110302772B (zh) 2022-12-13

Family

ID=68082177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910727365.7A Active CN110302772B (zh) 2019-08-07 2019-08-07 一种负载型光催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110302772B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639556A (zh) * 2019-10-17 2020-01-03 扬州大学 一种复合光催化剂及其制备工艺
CN113617348A (zh) * 2021-09-13 2021-11-09 中国石油化工股份有限公司 一种分子筛负载TiO2光催化材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111276A (zh) * 2013-01-17 2013-05-22 河南科技大学 多孔阵列ZnO/TiO2复合光催化剂的制备方法
CN104120443A (zh) * 2014-06-20 2014-10-29 中国科学院广州能源研究所 一种复合结构的可见光层状阵列电极及其制备方法
CN104190416A (zh) * 2014-08-15 2014-12-10 李建明 一种制备金属掺杂的TiO2纳米晶体颗粒的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103111276A (zh) * 2013-01-17 2013-05-22 河南科技大学 多孔阵列ZnO/TiO2复合光催化剂的制备方法
CN104120443A (zh) * 2014-06-20 2014-10-29 中国科学院广州能源研究所 一种复合结构的可见光层状阵列电极及其制备方法
CN104190416A (zh) * 2014-08-15 2014-12-10 李建明 一种制备金属掺杂的TiO2纳米晶体颗粒的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.A. MOZAFFARI等: ""An investigation on the effect of electrodeposited nanostructured ZnO on the electron transfer process efficiency of TiO2 based DSSC"", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》 *
张强: ""氧化物修饰氧化钛纳米管状结构的制备及光催化性质研究"", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639556A (zh) * 2019-10-17 2020-01-03 扬州大学 一种复合光催化剂及其制备工艺
CN113617348A (zh) * 2021-09-13 2021-11-09 中国石油化工股份有限公司 一种分子筛负载TiO2光催化材料及其制备方法和应用
CN113617348B (zh) * 2021-09-13 2023-07-04 中国石油化工股份有限公司 一种分子筛负载TiO2光催化材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110302772B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
You et al. State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review
Han et al. Ni-Mo nanoparticles as co-catalyst for drastically enhanced photocatalytic hydrogen production activity over g-C3N4
Fang et al. Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting
Liu et al. In-situ fabrication of 3D hierarchical flower-like β-Bi2O3@ CoO Z-scheme heterojunction for visible-driven simultaneous degradation of multi-pollutants
Wu et al. In-situ construction of Bi/defective Bi4NbO8Cl for non-noble metal based Mott-Schottky photocatalysts towards organic pollutants removal
Yuan et al. Oxygen-deficient WO 3− x@ TiO 2− x core–shell nanosheets for efficient photoelectrochemical oxidation of neutral water solutions
CN105040025B (zh) 双金属氢氧化物复合多孔钒酸铋光电极及其制备方法
Yaw et al. Synergistic effects of dual-electrocatalyst FeOOH/NiOOH thin films as effective surface photogenerated hole extractors on a novel hierarchical heterojunction photoanode structure for solar-driven photoelectrochemical water splitting
Zhang et al. Cu (OH) 2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production
CN110270364B (zh) 一种负载型石墨相氮化碳复合材料,制备方法及其应用
CN110368962B (zh) 一种BiOI/WO3异质结高效光电催化电极的制备方法、产品及应用
CN108611653B (zh) 一种负载磁性纳米粒子的钒酸铋复合材料及其制备和应用
Ren et al. Ferrites as photocatalysts for water splitting and degradation of contaminants
CN110302772A (zh) 一种负载型光催化材料及其制备方法
Sun et al. A bridging coordination of urea tailoring metal hydroxides oxygen evolution catalysts promotes stable solar water splitting
CN105401150A (zh) 一种TiO2纳米束/掺硼金刚石薄膜复合光电催化电极、制备方法及应用
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
CN110227478A (zh) 通过旋涂煅烧制备钴氧化物/钒酸铋复合材料的方法
Dong et al. Electrochemical reduction induced self-doping of oxygen vacancies into Ti–Si–O nanotubes as efficient photoanode for boosted photoelectrochemical water splitting
CN113818043A (zh) 一种钒酸铋-金属有机配合物复合光电极及其制备方法和应用
CN108686645A (zh) 一种TiO2/BiVO4异质结复合材料的制备方法和应用
CN114653383B (zh) 一种表面钨酸钴和四氧化三钴共同修饰的硫化铟锌光催化剂及其制备方法和用途
CN103041772A (zh) 一维氧化锌/石墨化碳核壳结构异质结及其制备方法
CN105586626A (zh) 一种正八面体氧化亚铜复合二氧化钛纳米管阵列的制备方法
CN106745534B (zh) 一种光还原金属修饰四氧化三钴/二氧化钛p-n异质结的复合光催化电极及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant