CN110295355A - 一种实现连续光解水的钨酸亚锡薄膜的制备方法 - Google Patents

一种实现连续光解水的钨酸亚锡薄膜的制备方法 Download PDF

Info

Publication number
CN110295355A
CN110295355A CN201910741354.4A CN201910741354A CN110295355A CN 110295355 A CN110295355 A CN 110295355A CN 201910741354 A CN201910741354 A CN 201910741354A CN 110295355 A CN110295355 A CN 110295355A
Authority
CN
China
Prior art keywords
wolframic acid
film
preparation
photocatalytic water
realizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910741354.4A
Other languages
English (en)
Inventor
博热耶夫·法拉比
埃泽尔·阿金诺古
冯柯
金名亮
米夏埃尔·吉尔斯西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Original Assignee
Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing South China Normal University Optoelectronics Industry Research Institute filed Critical Zhaoqing South China Normal University Optoelectronics Industry Research Institute
Priority to CN201910741354.4A priority Critical patent/CN110295355A/zh
Publication of CN110295355A publication Critical patent/CN110295355A/zh
Priority to PCT/CN2020/095418 priority patent/WO2021027381A1/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

本发明属于钨酸亚锡薄膜制备技术领域,具体涉及一种实现连续光解水的钨酸亚锡薄膜的制备方法,所述制备方法包括采用射频反应磁控溅射法,将反应室抽真空,使其真空度达到4~6×10‑4 Pa,硅片和氧化锡充当基底,通入氩气,反应的压强为1~3Pa,先沉积制备钨酸锡薄膜,然后再采用磁控溅射法镀镍,沉积时间为20~30min,最后在400~600℃下真空退火20~30min。本发明通过在钨酸锡薄膜表面镀镍保护层,从而使薄膜稳定,使其裂解水反应稳定。

Description

一种实现连续光解水的钨酸亚锡薄膜的制备方法
技术领域
本发明属于钨酸亚锡薄膜制备技术领域,具体涉及一种实现连续光解水的钨酸亚锡薄膜的制备方法。
背景技术
近年来,由于化石燃料的过度使用对气候造成了极为严重的影响,因此必须大力开发太阳能、风能、水能、潮汐能和生物质能等可再生能源。然而,由于太阳能、风能和潮汐能等可再生能源极为不稳定,因此需要将其转化为电能或化学能的形式以便于储存。例如,可以通过电解或光电解水将其转化为氢能。为了使光电解水具有良好的工业应用前景,需要开发大面积的光电极材料。合适的光电极材料应具有较高的太阳能转化氢效率,并在电解质中应能长期稳定性。BiVO4材料具有良好的光电解制氢的特性,但其带隙较大为2.5~2.7 eV。水的裂解能为1.23eV,因此提高光电解水的有效的方法是使用带宽在1.5~2 eV的材料。α-SnWO4材料具有合适的价带和导带,其带宽接近水的裂解能。然而,它作电极使用时,稳定性较差,无法实现连续的光解水。
发明内容
为了克服上述现有技术的不足,本发明提出了一种实现连续光解水的钨酸亚锡薄膜的制备方法。本发明用在钨酸锡薄膜上镀镍保护层,从而实现薄膜稳定。
本发明所采用的技术方案是:
一种实现连续光解水的钨酸亚锡薄膜的制备方法,采用射频反应磁控溅射法,将反应室抽真空,使其真空度达到4~6*10-4 Pa,硅片和氧化锡充当基底,通入氩气,反应的压强为1~3Pa,先沉积制备钨酸锡薄膜,然后再镀镍,沉积时间为20~30min,最后在400~600℃下真空退火20~30min。
优选地,反应的压强为3Pa,先沉积制备钨酸锡薄膜,然后再采用磁控溅射法镀镍,沉积时间为30min。
优选地,镀镍采用电子束沉积、磁控溅射法或脉冲激光沉积。
更具体地,本发明采用磁控溅射法,将反应室抽真空,使其真空度达到6*10-4 Pa,硅片和氧化锡充当基底,通入氩气,反应的压强为3Pa,先沉积制备钨酸锡薄膜,然后再采用磁控溅射法镀镍,沉积时间为30min,最后在600℃下真空退火20min。
为了能实现连续的光氧化进程,必须调整保护层的厚度,在不吸收大量光的同时保持足够的透明度。为了达到这个厚度范围,必须改变磁控溅射的沉积时间。因此,本发明通过各种沉积手段制备稳定用于光水解的镍薄膜。
此外,用反应磁控溅射法镀镍保护层时,反应条件可控性强,当控制反应室压强,及加到靶上的功率相同时,所得到的膜的组成及厚度是相同的,便能得到性能相同的薄膜。
与现有技术相比,本发明的有益效果是:
本发明通过在钨酸锡薄膜表面镀镍保护层,从而使裂解水反应稳定,且操作简单,易于实现大规模产业化。
附图说明
图1为薄膜制备过程示意图。
图2为Ni/SnWO4薄膜制备步骤。
图3为在0.5 M Na2SO4电解液中,在斩波AM 1.5光照下,SnWO4光阳极的光电流密度与时间的关系
图4为在1h的斩波AM1.5照射下,1.23 VRHE的PEC测试前后,在FTO上制备的Ni-SnWO4薄膜的(a)Sn 3d和(b)W 4f的XPS光谱。
图5(a)为在0.5M Na2SO4溶液中,在斩波AM 1.5照射下,在FTO基底上的NiOx-SnWO4光阳极的线性扫描电压(JV)曲线。(b) 在斩波AM 1.5光照下,1.83和2.23VRHE时,NiOx-SnWO4光阳极的光电流随时间的变化。
图6为在斩波AM1.5照射1h下,在1.83VRHE的PEC测试前后,在FTO上制备的Ni-SnWO4膜的(a)Sn 3d和(b)W4f的XPS光谱。
具体实施方式
下面对本发明的具体实施方式和附图作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
首先,将n型硅片和FTO依次用丙醇,无水乙醇及去离子水在超声清洗仪中分别清洗10min,然后将其放进磁控溅射反应室的样品台上。然后,将反应室抽真空,使其真空度达到6*10-4 Pa,如图1所示。然后,通入氩气使反应室的压强为3Pa。
然后,用射频反应磁控溅射法在室温下制备锡钨酸锡薄膜。
接着,用射频反应磁控溅射法在SnWO4表面镀镍薄膜。在相同的压强(3Pa)及室温的条件下,通过控制沉积时间来控制镍层厚度。
当沉积时间为30min时,镍层厚度最佳,为10nm。
最后,将Ni/SnWO4 样品在马弗炉中600℃下真空退火20min。制备步骤如图2所示。
应用实验例
在0.5 M Na2SO4溶液中,在相对于标准氢电极为1.23V 时,对300 nm厚的SnWO4光阳极进行了1小时的斩波光照试验 (图3)。实验表明,由于膜表面大量Sn2+被氧化为Sn4+态,使得光电流密度从0.27 mA cm-2快速下降到0.03 mA cm-2。XPS谱图(图4)显示,原始薄膜在486.4 eV和494.84 eV处显示出Sn 3d3/2和Sn 3d5/2峰,与文献值接近。PEC测试后,这两个峰分别移至486.97 eV和495.44 eV,即由于Sn4+氧化态的形成,其能量位升高。钨峰也表现出类似的行为,由于WO3相形成SnWO4相,钨峰W 4f5/2和W 4f7/2从35ev和35.73 eV移到37.15 eV和37.88 eV。 (图4)
为了提高光电化学稳定性,采用射频磁控溅射法在SnWO4光阳极上镀厚度为10nm的镍保护层(实施例1制备得到的材料)。在0.5 M Na2SO4电解质(pH = 7)的暗/光条件下,FTO上Ni-SnWO4光阳极的线性扫描伏特朗姆曲线如图5a所示。在第一个JV循环中,1.4到2 VRHE之间的暗电流是由镍层氧化形成NiOx层 (Ni2++2OH- ↔ NiO2+2H++2e-, E = 1.59 VRHE)形成的。钨酸锡薄膜中含有氧,在施加电势和光照时,氧扩散到镍薄膜中形成氧空位。光照后,SnWO4薄膜上产生电子空穴,空穴通过Ni薄膜扩散,进一步被氧化。在NiOx空穴层形成后,水分子被到达其表面的空穴裂解。连续测试1小时,薄膜在1.83 VRHE时光电流密度稳定在0.16mA*cm-2,在2.23 VRHE时光电流密度稳定在0.75 mA*cm-2(图5b)。图5b中的光电流密度值与图5a中的电势值能很好地对应。0-750s时,光电流密度曲线有很大的噪声,这是由于光电极表面产生O2气体,影响了入射光子的吸收和半导体-电解质界面的电荷转移。在2.23 VRHE下,薄膜稳定进行2 h的JV循环后,其光电流略低于第一次JV循环,但没有暗电流肩峰,这说明Ni薄膜没有进一步被氧化(图5)。PEC测试前后的NiOx- SnWO4的XPS光谱显示,经过1小时的测试,Sn 3d和W 4f峰的成分没有明显变化,说明NiOx层能有效保护光阳极,使其稳定的在溶液中工作(图6)。
图5b为薄膜在电势为1.83 VRHE 时在溶液中的稳定测试,实验结果表明,增加NiOx后,薄膜在溶液中连续工作一小时后,电流密度几乎没有改变,稳定在0.16 mA*cm-2表明材料光电稳定性良好。
图6的XPS图谱中, PEC测试前后Sn 3d和W 4f峰的成分没有明显变化,也同样说明NiOx能有效提升SnWO4的稳定性。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (8)

1.一种实现连续光解水的钨酸亚锡薄膜的制备方法,其特征在于,采用射频反应磁控溅射法,将反应室抽真空,通入氩气,反应的压强为1~3Pa,先沉积制备钨酸锡薄膜,然后再镀镍,沉积时间为20~30min,最后在400~600℃下真空退火20~30min。
2.根据权利要求1所述实现连续光解水的钨酸亚锡薄膜的制备方法,其特征在于,反应的压强为3Pa,先沉积制备钨酸锡薄膜,然后再采用磁控溅射法镀镍,沉积时间为30min。
3.根据权利要求1所述实现连续光解水的钨酸亚锡薄膜的制备方法,其特征在于,镀镍采用电子束沉积、磁控溅射法或脉冲激光沉积。
4.根据权利要求1所述实现连续光解水的钨酸亚锡薄膜的制备方法,其特征在于,镀镍后镍层厚度为5~15nm。
5.根据权利要求1所述实现连续光解水的钨酸亚锡薄膜的制备方法,其特征在于,硅片和氧化锡充当基底。
6.根据权利要求1所述实现连续光解水的钨酸亚锡薄膜的制备方法,其特征在于,真空度为4~6*10-4 Pa。
7.一种权利要求1至6所述实现连续光解水的钨酸亚锡薄膜的制备方法制备得到的钨酸亚锡薄膜。
8.权利要求7所述钨酸亚锡薄膜作为光电极材料应用于光解水中。
CN201910741354.4A 2019-08-12 2019-08-12 一种实现连续光解水的钨酸亚锡薄膜的制备方法 Pending CN110295355A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910741354.4A CN110295355A (zh) 2019-08-12 2019-08-12 一种实现连续光解水的钨酸亚锡薄膜的制备方法
PCT/CN2020/095418 WO2021027381A1 (zh) 2019-08-12 2020-06-10 一种实现连续光解水的钨酸亚锡薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910741354.4A CN110295355A (zh) 2019-08-12 2019-08-12 一种实现连续光解水的钨酸亚锡薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN110295355A true CN110295355A (zh) 2019-10-01

Family

ID=68033020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910741354.4A Pending CN110295355A (zh) 2019-08-12 2019-08-12 一种实现连续光解水的钨酸亚锡薄膜的制备方法

Country Status (2)

Country Link
CN (1) CN110295355A (zh)
WO (1) WO2021027381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027381A1 (zh) * 2019-08-12 2021-02-18 肇庆市华师大光电产业研究院 一种实现连续光解水的钨酸亚锡薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225663A (ja) * 1999-02-08 2000-08-15 Toyo Ink Mfg Co Ltd 光触媒フィルム
CN101690891A (zh) * 2009-09-25 2010-04-07 南京大学 一种可见光催化剂SnWO4的合成方法
CN110065970A (zh) * 2019-05-13 2019-07-30 大连工业大学 一种制备SnWO4纳米线的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961421B1 (ko) * 2005-03-25 2010-06-09 아사히 가라스 가부시키가이샤 전기 전도성 재료
CN102751341A (zh) * 2012-06-20 2012-10-24 常州天合光能有限公司 透明导电薄膜及其制备方法
CN109187705B (zh) * 2018-10-18 2021-05-04 宁波诺丁汉大学 一种光电化学池
CN110331367B (zh) * 2019-08-12 2021-08-03 肇庆市华师大光电产业研究院 一种钨酸亚锡薄膜的制备方法
CN110295355A (zh) * 2019-08-12 2019-10-01 肇庆市华师大光电产业研究院 一种实现连续光解水的钨酸亚锡薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000225663A (ja) * 1999-02-08 2000-08-15 Toyo Ink Mfg Co Ltd 光触媒フィルム
CN101690891A (zh) * 2009-09-25 2010-04-07 南京大学 一种可见光催化剂SnWO4的合成方法
CN110065970A (zh) * 2019-05-13 2019-07-30 大连工业大学 一种制备SnWO4纳米线的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORITZ KÖLBACH ET AL: "Revealing the Performance-Limiting Factors in α-SnWO4 Photoanodes for Solar Water Splitting", 《CHEMISTRY OF MATERIALS》 *
SOLIS,JL ET AL: "A study of Gas-sensing Properties of Sputtered Alpha-SnWO4 Thin-films", 《5TH INTERNATIONAL MEETING ON CHEMICAL SENSORS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027381A1 (zh) * 2019-08-12 2021-02-18 肇庆市华师大光电产业研究院 一种实现连续光解水的钨酸亚锡薄膜的制备方法

Also Published As

Publication number Publication date
WO2021027381A1 (zh) 2021-02-18

Similar Documents

Publication Publication Date Title
Wu et al. A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN104362412B (zh) 一种ZnO/g-C3N4纳米复合材料及其制备方法
CN108796532B (zh) 氧化镍—氧化亚铜同质结光电阴极及其制备方法和在光催化中的应用
Wu et al. Co/Se and Ni/Se nanocomposite films prepared by magnetron sputtering as counter electrodes for dye-sensitized solar cells
CN109943857B (zh) 一种硅基光电极、及其制备方法和用途
CN103132120B (zh) 一种制备可高效降解有机污染物的光电催化电极材料的方法
CN106257729A (zh) 自呼吸式光助生物质燃料电池及其应用
KR102015341B1 (ko) 산화구리 및 전이금속 황화물을 포함하는 환원전극, 이의 제조방법, 이를 포함하는 미생물 전기분해전지 및 폐수처리 방법
Tolod et al. Visible light-driven catalysts for water oxidation: towards solar fuel biorefineries
CN109825851A (zh) 一种改性水铁矿/赤铁矿纳米棒核壳结构复合光阳极及其应用
CN106637285B (zh) Cu2O量子点修饰二氧化钛纳米管光电极及其制备与应用
CN114481192B (zh) 一种Cd掺杂的二氧化钛/硫化铟锌光阳极及其制备方法
CN103117173A (zh) 可双面进光的量子点敏化太阳能电池及其制备方法
CN109574096B (zh) 一种金属硫化物的制备方法及应用
Wang et al. Influence of grain size on photoelectrocatalytic performance of CuBi2O4 photocathodes
CN110295355A (zh) 一种实现连续光解水的钨酸亚锡薄膜的制备方法
CN104409218B (zh) 一种用于量子点敏化太阳能电池的CuXS对电极及其制备和应用
WO2021103478A1 (zh) 一种铋酸铜薄膜的制备方法
CN103219565B (zh) 逆光电化学电池
CN110444402B (zh) 一种提高BiVO4光阳极光电化学性能的方法
CN109234761B (zh) 一种用于光电催化产氢的Co3O4/Pt复合薄膜的制备方法
CN113289622B (zh) 一种水分解制氢复合材料及其制备方法
CN110359058B (zh) 一种锆钛酸铅修饰的赤铁矿纳米棒阵列光阳极的制备方法
CN113718288A (zh) 一种新型CuCoOx负载的Mo-BiVO4复合光阳极的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191001

RJ01 Rejection of invention patent application after publication