CN110272428B - 一种可见光光控的耐酸性荧光分子开关及其合成方法 - Google Patents

一种可见光光控的耐酸性荧光分子开关及其合成方法 Download PDF

Info

Publication number
CN110272428B
CN110272428B CN201810217556.4A CN201810217556A CN110272428B CN 110272428 B CN110272428 B CN 110272428B CN 201810217556 A CN201810217556 A CN 201810217556A CN 110272428 B CN110272428 B CN 110272428B
Authority
CN
China
Prior art keywords
acid
visible light
molecular switch
resistant
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810217556.4A
Other languages
English (en)
Other versions
CN110272428A (zh
Inventor
徐兆超
祁清凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201810217556.4A priority Critical patent/CN110272428B/zh
Publication of CN110272428A publication Critical patent/CN110272428A/zh
Application granted granted Critical
Publication of CN110272428B publication Critical patent/CN110272428B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/24Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/08Naphthalimide dyes; Phthalimide dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Luminescent Compositions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种可见光光控的耐酸性荧光分子开关及其合成方法,该分子开关具体分子结构以3‑伯胺或仲胺取代的罗丹明螺酰胺为基本结构单元,其结构式如式(1)所示,本发明开发的3‑伯胺或仲胺取代罗丹明螺酰胺不仅具有耐酸的性能,而且保留了可见光激活性能。因此这类可见光激活的耐酸性荧光分子开关染料可以应用于活细胞超分辨成像技术中,且不受酸性环境的干扰。此外,本发明中的耐酸性3‑伯胺或仲胺取代的罗丹明螺酰胺类染料还可以作为分子荧光探针应用于传感及检测领域。

Description

一种可见光光控的耐酸性荧光分子开关及其合成方法
技术领域
本发明属于分子开关领域,具体涉及一种可见光光控的耐酸性荧光分子开关及其合成方法。
背景技术
近年来发展出一系列超高分辨率荧光成像技术,其中基于单分子定位的光激活定位显微技术(PLAM)和随机光学重构显微技术(STORM或dSTORM)使光学显微镜的空间分辨达到了前所未有的高度(20nm)。目前超分辨显微成像技术已经被广泛应用到生命科学研究中,然而尽管超分辨显微成像技术取得了巨大的进步,将荧光显微镜的空间分辨率推进到了20纳米,但是超分辨荧光显微成像技术仍然面临诸多技术问题,其中之一就是所必需的荧光染料性能亟需改善。基于单分子定位的超分辨显微成像技术需要荧光染料不仅满足光稳定性好和荧光亮度高的需要,还要具有光控荧光分子“开-关”功能,这样才能够实现单分子的定位和检测。因此开发高荧光强度和光稳定性,具有光控荧光分子开关性能的新型荧光染料是超分辨荧光成像的迫切需求和当前热点。
开发生物成像用单分子定位超分辨荧光染料,目前最好的方法是在高荧光强度和光稳定性的染料中引入光控分子开关。罗丹明类染料由于其突出的光性能,是目前超分辨中用的最多的一类染料。罗丹明染料的荧光分子开关“明-暗”状态是基于酰胺螺环的光控开关,即传统罗丹明螺酰胺在紫外光辐照下,会由不发光的闭环结构变为强荧光发射的开环结构。S.W.Hell等人最早利用这一独特的光控分子开关将罗丹明螺酰胺标记在固定的PtK2细胞的微丝骨架上,利用单分子定位技术实现了超分辨成像。但是,包括罗丹明螺酰胺在内,光控开关分子在细胞内应用所面临的共同难题是需要紫外光作为“开-关”激活光,例如罗丹明螺酰胺需要用波长小于375nm的光来将闭环结构打开变为有荧光的开环结构,而紫外光会对细胞产生严重的光毒性,难以在活细胞中应用。为了改善激活光波长,W.E.Moerner等人将酰胺取代基修饰为较大的共轭体系,将吸收波长向长波长移动,首次将开关激发光延长到可见光区(>400nm),实现了对细菌表面的三维超分辨荧光成像。由此,罗丹明螺酰胺在超分辨成像中表现出巨大潜力。
尽管罗丹明螺酰胺作为光控分子开关已经被用于超分辨荧光成像,但是这类分子开关还存在一些严重缺点亟需改善。首先是酸控荧光分子开关干扰,也就是普通的罗丹明酰胺螺环分子开关的刺激可以是酸控制或光控制。细胞内存在许多偏酸性的环境(如溶酶体,蛋白酸性位点等),当罗丹明螺酰胺染料应用在这些酸性环境中,其酸控分子开关产生的荧光信号会严重干扰甚至导致光控荧光分子开关性能完全失效,因此在酸性环境中基于这类染料的荧光探针目前无法应用于超分辨荧光成像。另外,目前报道的绝大多数罗丹明螺酰胺都只能用紫外光(<375nm)来控制荧光分子开关,而紫外光对生物体具有光毒性不利于活细胞成像。尽管S.W.Hell等人使用了长波长的双光子激光激活罗丹明螺酰胺的荧光并应用于超分辨成像,但是双光子激光功率要比单光子激光大几个数量级,这也会对成像的生物体造成不可修复的光损伤。W.E.Moerner等人开发的可见光控制分子开关染料最大吸收波长约为380nm,而在细胞成像可接受的405nm激光激发波长处吸收很弱,难以高效利用405nm激光实现光控荧光分子开关。综上所述,开发一类具有耐酸性的可见光(>405nm)控制的荧光分子开关对于活细胞超分辨荧光成像显得尤为迫切和重要。
发明内容
本发明提供了一种可见光光控的耐酸性荧光分子开关及其合成方法。
本发明所述的一种可见光光控的耐酸性荧光分子开关,其结构式如下所示:
Figure BDA0001598936320000021
其中:R1、R2、R3、R4、R5是相同或不同的基团,具体为H、CmH2m+1、CmH2m-1、CmH2m-3、C6+ mH5+2m、CmH2m+1CO、CmH2m+1SO2、CmH2m+1PhSO2中的任一基团;
X为O、C、Si、Ge、S、SO2基团;
Y为H、SO3Na;Z是O、NH、NCmH2m+1、NCmH2m-1、NCmH2m-3、NC6+mH5+2m、NCmH2m(C5H4N)、NCmH2m(C12H12N2O4)、NCmH2m(C12H10N5O)、或其带有单个或多个二级取代基团的衍生结构;
其中,二级取代基团是F、Cl、Br、I、R、CA0A1 3、CA0A1A2A3、NO2、OR、SR、SO2R、SOR、SO3R、NHR、NRR1、CHO、CH2OR、CO2R、OCOR、OCOCH2R、CHBCHO、CB2CHO、CHBCO2R或CHBOR中任何一种基团;
A0、A1、A2、A3和B是相同或不同的基团,具体为H、F、Cl、Br、I、NO2、OR6、SR6、NHR6、NR6R7、(CH2)mCHO、(CH2)mCO2R6、R6中的任何一种基团;
R6和R7是相同或不同的基团,具体为H、CmH2m+1、CmH2m-1、CmH2m-3或C6+mH5+2m中的任一基团。
m是1~20之间的任何整数。
本发明还提供了一种可见光光控的耐酸性荧光分子开关的合成方法,合成路线如下:
Figure BDA0001598936320000031
具体步骤为:
步骤1:将3-硝基罗丹明和三氯氧磷按物质的量比(1:3-20)溶解于1,2-二氯乙烷,升温至84℃回流,搅拌2小时后蒸除溶剂得到暗紫红色油状液体。将粗酰氯中间体溶于无水二氯甲烷,随后逐滴加入三乙胺和6-(4-氨基苯乙炔基)萘酐混合溶液中,酰氯、三乙胺和6-(4-氨基苯乙炔基)萘酐的物质的量比例关系为1:2:1,室温搅拌24小时后减压蒸除溶剂,残余物通过硅胶柱色谱分离得到3-硝基取代罗丹明6-(4-苯乙炔基)萘酐螺酰胺。
步骤2:取上述步骤1中产物3-硝基取代罗丹明6-(4-苯乙炔基)萘酐螺酰胺,二水合氯化亚锡和浓盐酸三者按物质的量比(1:4:0.1)混合于无水乙醇中,升温至78℃回流,搅拌8小时后减压蒸除溶剂,产物通过硅胶柱色谱分离提纯得到3-氨基取代罗丹明6-(4-苯乙炔基)萘酐螺酰胺。
步骤3:取上述步骤2中产物3-氨基取代罗丹明6-(4-苯乙炔基)萘酐螺酰胺产物与酰氯(R5-COCl)按一定物质的量比例(1:1-10)混合于无水二氯甲烷中,室温搅拌反应2小时后通过硅胶柱色谱分离提纯,得到3-酰胺取代的罗丹明6-(4-苯乙炔基)萘酐螺酰胺。
步骤4:取上述步骤3中产物3-酰胺取代的罗丹明6-(4-苯乙炔基)萘酐螺酰胺产物与伯氨分子(R6-NH2)按一定物质的量比例(1:1-10)置于无水乙醇中回流,通过硅胶柱色谱提纯得到不同种类的酰胺取代的罗丹明6-(4-苯乙炔基)萘酰亚胺螺酰胺。
所述的酰氯为:乙酰氯、甲磺酰氯、或对甲苯磺酰氯。
所述的伯氨为:丁胺、2-乙氨基吗啉、4-氨基甲基吡啶、4-氨甲基-1-(3-(2,5-二氧代吡咯烷基)氧代)-3-丙酰吡啶盐、或6-(4-氨甲基苄氧基)-9H-嘌呤-2-胺。
一种可见光光控的耐酸性荧光分子开关的应用,基于可见光光控的耐酸性荧光分子开关耐酸性或可见光激活的优点应用在超分辨荧光成像或被作为荧光探针分子用于生物及化学物质的传感及检测等诸多领域。
本发明开发出了一类可见光光控的耐酸性荧光分子开关,以3-伯胺或仲胺取代罗丹明螺酰胺类染料为结构单元,研究发现这类开关染料在体内和体外的酸性环境下化学稳定,随后对3-伯胺或仲胺取代罗丹明螺酰胺进一步改造,在螺酰胺上共轭修饰6-(4-苯乙炔基)萘酐和6-(4-苯乙炔基)萘酰亚胺衍生物分子,将分子最大吸收波长红移至400nm,使得405nm可见激光能够高效地激活罗丹明螺酰胺类染料的荧光。最后将琥珀酰亚胺(NHS)活性酯和苄基鸟嘌呤(BG)引入罗丹明螺酰胺,将这类荧光开关探针非特异性或特异性标记到生物蛋白上,通过STORM技术就可以对目标蛋白进行超分辨成像。
本发明的的3-伯胺或仲胺取代罗丹明螺酰胺不仅具有耐酸的性能,而且保留了可见光激活性能(如图9所示)。因此这类可见光激活的耐酸性荧光分子开关染料可以应用于活细胞超分辨成像技术中,且不受酸性环境的干扰。此外,本发明中的耐酸性3-伯胺或仲胺取代的罗丹明螺酰胺类染料还可以作为分子荧光探针应用于传感及检测领域。
附图说明
图1:P1-P4分别溶解在DMSO溶液中测定的紫外可见吸收光谱,溶液浓度均为10-5M;
图2:P6-P7分别溶解在DMSO溶液中测定的紫外可见吸收光谱,溶液浓度均为10-5M;
图3:P4的DMSO溶液(浓度为10-5M)加入2.3μL三氟乙酸(1000eq)前后测得的时间分辨紫外可见吸收光谱;
图4:掺杂有P4的聚乙烯醇薄膜,以405nm作为激活光(60W/cm2),测定分子随着激发光(561nm)功率密度增加相应的光激活性能参数的变化,包括总光子数(a),背景光子数(b)及定位精度(c);
图5:掺杂有P4的聚乙烯醇薄膜,以405nm作为激活光(60W/cm2),在最优激发光561nm(1.2kW/cm2)下的光激活性能相关的参数包括总光子数(a),背景光子数(b)及定位精度(c),每帧图像中的光子数(d)。
图6:P5标记的枯草芽孢杆菌表面的共聚焦成像及3D-STORM超分辨荧光成像图。
图7:P6标记的U2OS细胞中微管的宽场荧光图像及对应的2D-STORM超分辨图像。
图8:P7标记的U2OS细胞中微管的宽场荧光图像及对应的3D-STORM超分辨图像。
图9:光诱导的耐酸性3-伯胺或仲胺取代的罗丹明螺酰胺分子的螺环及荧光开关的示意图。
具体实施方式
本发明给出了一类耐酸性及可见光激活的3-伯胺或仲胺取代罗丹明螺酰胺类的化合物的合成方法及其作为光激活荧光染料应用于基于单分子成像的超分辨荧光成像技术领域。
实施例1
当R1=R2=R3=R4=C2H5,R5=H,X=O,Y=H,Z=O时,其分子(P1)合成路线和产物结构如下:
Figure BDA0001598936320000061
合成步骤及表征:将3-硝基罗丹明(2.92g,6mmol)和三氯氧磷(5.6mL,60mmol)置于1,2-二氯乙烷(150mL),升温至84℃回流,搅拌2小时后蒸除溶剂得到暗紫红色油状液体。将粗酰氯产物溶于二氯甲烷(100mL),随后逐滴加入三乙胺(3mL)和6-(4-氨基苯乙炔基)萘酐(1.88g,6mmol)混合溶液中,室温搅拌24小时后减压蒸除溶剂,残余物通过柱色谱(硅胶,二氯甲烷/乙酸乙酯,30:1v/v)分离得到黄色粉末状中间体(2.44g,52%)。取上述黄色粉末(1.56g,2mmol),二水合氯化亚锡(1.80g,8mmol)和浓盐酸(9mL)置于无水乙醇(50mL)中升温至78℃回流,搅拌8小时后减压蒸除溶剂,粗产物通过柱色谱(硅胶,乙酸乙酯/石油醚,1:3v/v)分离得到黄色固体P1(1.27g,85%)。
产物进行了核磁和质谱的表征:
1H NMR(400MHz,CDCl3)δ8.75(d,J=8.3Hz,1H),8.64(d,J=7.2Hz,1H),8.54(d,J=7.7Hz,1H),7.90(d,J=7.7Hz,1H),7.85(t,J=7.8Hz,1H),7.44(d,J=8.5Hz,2H),7.22(t,J=7.7Hz,1H),7.13(d,J=8.6Hz,2H),6.76(d,J=8.5Hz,2H),6.60(d,J=8.0Hz,1H),6.37(d,J=7.4Hz,1H),6.35–6.24(m,4H),5.44(s,2H),3.32(q,J=7.0Hz,8H),1.16(t,J=7.0Hz,12H)。13C NMR(101MHz,CDCl3)δ169.69,160.45,160.16,154.88,152.57,148.73,145.74,138.85,134.52,133.91,133.73,132.58,132.28,131.66,130.76,130.19,129.48,128.53,127.77,125.45,119.00,118.41,117.57,113.36,112.35,111.95,108.16,106.83,101.06,97.69,85.74,67.17,44.26,12.57。LC-MS(ESI):m/z:计算值:752.2999;实验值:753.3073[M+H]+
经上述检测,鉴定其结构为P1所示。
测试产物P1的DMSO溶液(浓度为10-5M)的紫外可见吸收光谱,如图1所示P1最大吸收波长约为400nm。
向P1的DMSO溶液(浓度为10-5M)中加入2.3μL三氟乙酸(1000eq),测定加酸前后时间分辨的紫外可见吸收光谱,结果显示P3的最大吸收波长处的吸光度没有随着酸化时间的增长而增加,表明P3分子仍然具有耐酸的特性。
将产物P1以单分子形式掺杂到聚乙烯醇水溶液(P1浓度约为10nM),经涂膜固化后制成50nm的膜层材料,随后以405nm作为激活光(60W/cm2),测定薄膜中P1分子随着激发光(561nm)功率密度增加相应的光激活性能参数的变化,包括总光子数,背景光子数及定位精度。
实施例2
当R1=R2=R3=R4=C2H5,R5=CH3CO,X=O,Y=H,Z=O时,其分子(P2)合成路线和产物结构如下:
Figure BDA0001598936320000071
合成步骤及表征:将P1(0.75g,1mmol)和乙酰氯(0.12g,1.5mmol)混合于二氯甲烷(10mL),搅拌2小时后减压蒸除溶剂,粗产物通过柱色谱(硅胶,乙酸乙酯/石油醚,1:3v/v)分离得到黄色粉末产物P2(0.76g,96%)。
产物进行了核磁和质谱的表征:
1H NMR(400MHz,CDCl3)δ10.58(s,1H),8.75(d,J=8.2Hz,1H),8.65(d,J=7.2Hz,1H),8.55(d,J=7.7Hz,1H),8.51(d,J=8.2Hz,1H),7.92(d,J=7.7Hz,1H),7.90–7.82(m,1H),7.56–7.43(m,3H),7.00(d,J=8.5Hz,2H),6.81(d,J=7.6Hz,1H),6.67(d,J=8.8Hz,2H),6.37–6.26(m,4H),3.33(q,J=7.0Hz,8H),2.31(s,3H),1.17(t,J=7.0Hz,12H)。13CNMR(101MHz,CDCl3)δ169.31,168.94,160.38,160.11,153.44,152.94,148.99,137.79,137.43,134.99,133.82,133.77,132.55,132.43,131.70,130.91,130.20,129.24,128.48,127.84,126.34,119.68,119.10,118.08,117.81,115.18,108.26,105.41,100.48,97.77,86.08,67.99,44.32,24.98,12.55。LC-MS(ESI):m/z:计算值:794.3104;实验值:795.3177[M+H]+
经上述检测,鉴定其结构为P2所示。
测试产物P2的DMSO溶液(浓度为10-5M)的紫外可见吸收光谱,如图1所示P2最大吸收波长约为400nm。
向P2的DMSO溶液(浓度为10-5M)中加入2.3μL三氟乙酸(1000eq),测定加酸前后时间分辨的紫外可见吸收光谱,结果显示P2的最大吸收波长处的吸光度没有随着酸化时间的增长而增加,表明P2分子仍然具有耐酸的特性。
将产物P2以单分子形式掺杂到聚乙烯醇水溶液(P2浓度约为10nM),经涂膜固化后制成50nm的膜层材料,随后以405nm作为激活光(60W/cm2),测定薄膜中P2分子随着激发光(561nm)功率密度增加相应的光激活性能参数的变化,包括总光子数,背景光子数及定位精度。
实施例3
当R1=R2=R3=R4=C2H5,R5=H,X=O,Y=H,Z=C6H12N2O时,其分子(P3)合成路线和产物结构如下:
Figure BDA0001598936320000091
合成步骤及表征:将P1(0.37g,0.5mmol)和2-乙氨基吗啉(0.19g,1.5mmol)混合于无水乙醇(10mL)中,升温至78℃回流,搅拌10小时后减压蒸除溶剂,残余物通过柱色谱(硅胶,乙酸乙酯/石油醚,1:2v/v)分离得到黄色粉末产物P3(0.36g,84%)。
产物进行了核磁和质谱的表征:
1H NMR(400MHz,CDCl3)δ8.66(d,J=8.3Hz,1H),8.61(d,J=7.1Hz,1H),8.52(d,J=7.7Hz,1H),7.87(d,J=7.6Hz,1H),7.79(t,J=7.8Hz,1H),7.44(d,J=8.4Hz,2H),7.22(t,J=7.7Hz,1H),7.10(d,J=8.5Hz,2H),6.76(d,J=8.6Hz,2H),6.60(d,J=8.0Hz,1H),6.37(d,J=7.4Hz,1H),6.32(d,J=10.4Hz,4H),5.44(s,2H),4.34(t,J=6.8Hz,2H),3.68(s,4H),3.32(dd,J=13.9,6.8Hz,7H),2.70(t,J=6.7Hz,2H),2.60(s,4H),1.16(t,J=6.9Hz,12H)。13C NMR(101MHz,CDCl3)δ169.69,164.07,163.79,160.61,157.75,154.91,152.65,148.78,145.75,138.50,134.50,132.53,132.22,131.62,131.60,130.55,130.46,128.62,128.13,127.89,127.39,125.65,122.86,121.79,119.00,113.39,112.54,112.04,108.20,106.90,97.75,86.27,67.22,67.04,56.15,53.82,44.32,37.25,12.63。LC-MS(ESI):m/z:计算值:864.3999,实验值:865.4061[M+H]+
经上述检测,鉴定其结构为P3所示。
测试产物P3的DMSO溶液(浓度为10-5M)的紫外可见吸收光谱,如图1所示P3最大吸收波长约为400nm。
向P3的DMSO溶液(浓度为10-5M)中加入2.3μL三氟乙酸(1000eq),测定加酸前后时间分辨的紫外可见吸收光谱,结果显示P3的最大吸收波长处的吸光度没有随着酸化时间的增长而增加,表明P3分子仍然具有耐酸的特性。
将产物P3以单分子形式掺杂到聚乙烯醇水溶液(P3浓度约为10nM),经涂膜固化后制成50nm的膜层材料,随后以405nm作为激活光(60W/cm2),测定薄膜中P3分子随着激发光(561nm)功率密度增加相应的光激活性能参数的变化,包括总光子数,背景光子数及定位精度。
实施例4
当R1=R2=R3=R4=C2H5,R5=CH3CO,X=O,Y=H,Z=C6H6N2时,其分子(P4)合成路线和产物结构如下:
Figure BDA0001598936320000101
合成步骤及表征:P2(0.40g,0.5mmol)和4-氨基甲基吡啶(0.15mL,1.5mmol)混合于无水乙醇(10mL),升温至78℃回流,搅拌8小时后减压蒸除溶剂,残余物通过柱色谱(硅胶,二氯甲烷/甲醇,20:1v/v)分离提纯得到黄色粉末产物P4(0.42g,96%)。
产物进行了核磁和质谱的表征:
1H NMR(400MHz,CDCl3)δ10.59(s,1H),8.66(dd,J=16.5,7.7Hz,2H),8.52(d,J=9.9Hz,4H),7.89(d,J=7.5Hz,1H),7.81(t,J=7.7Hz,1H),7.48(dd,J=13.1,8.0Hz,3H),7.37(d,J=4.3Hz,2H),6.98(d,J=8.1Hz,2H),6.81(d,J=7.4Hz,1H),6.67(d,J=8.7Hz,2H),6.42–6.23(m,4H),5.36(s,2H),3.33(q,J=7.0Hz,8H),2.30(s,3H),1.16(t,J=6.6Hz,12H)。13C NMR(101MHz,CDCl3)δ169.29,168.89,163.89,163.61,153.41,152.95,149.99,148.97,145.77,137.50,137.41,134.93,132.83,132.34,132.04,131.60,130.83,130.67,128.48,128.12,127.48,126.40,123.21,122.49,121.48,120.04,118.08,117.78,115.25,108.23,105.40,99.36,97.76,86.49,67.99,44.30,42.64,24.97,12.54。LC-MS(ESI):m/z:计算值:884.3686;实验值:885.3804[M+H]+
经上述检测,鉴定其结构为P4所示。
测试产物P4的DMSO溶液(浓度为10-5M)的紫外可见吸收光谱,如图1所示P4最大吸收波长约为400nm。
向P4的DMSO溶液(浓度为10-5M)中加入2.3μL三氟乙酸(1000eq),测定加酸前后时间分辨的紫外可见吸收光谱(图3),如图3所示P4的最大吸收波长处的吸光度没有随着酸化时间的增长而增加,表明P4分子仍然具有耐酸的特性。
将产物P4以单分子形式掺杂到聚乙烯醇水溶液(P4浓度约为10nM),经涂膜固化后制成50nm的膜层材料,随后以405nm作为激活光(60W/cm2),测定薄膜中P4分子随着激发光(561nm)功率密度增加相应的光激活性能参数的变化(图4),包括总光子数(4a),背景光子数(4b)及定位精度(4c);并给出以405nm作为激活光(60W/cm2),在最优激发光561nm(1.2kW/cm2)下的光激活性能相关的参数(图5),包括总光子数(5a),背景光子数(5b)及定位精度(5c),每帧图像中的光子数(5d)。
实施例5
当R1=R2=R3=R4=C2H5,R5=H,X=O,Y=H,Z=(C13H14N3O4)+I-时,其分子(P5)合成路线和产物结构如下:
Figure BDA0001598936320000111
合成步骤及表征:P4(0.26g,0.3mmol)和3-碘丙酸琥珀酰亚胺酯(0.1g,0.35mmol)混合于无水乙腈(10mL),升温至82℃回流,搅拌24小时后减压蒸除溶剂,残余物置于乙酸乙酯中搅拌过夜,抽滤得到棕色粉末产物P5(0.26g,74%)。
产物进行了核磁和质谱的表征:
1H NMR(400MHz,DMSO)δ10.41(s,1H),9.02(d,J=5.8Hz,2H),8.83(d,J=8.0Hz,1H),8.58(d,J=7.0Hz,1H),8.49(d,J=7.5Hz,1H),8.34(d,J=8.0Hz,1H),8.24(d,J=5.8Hz,2H),8.07(d,J=7.4Hz,1H),8.04–7.94(m,1H),7.66(d,J=8.1Hz,2H),7.60–7.49(m,1H),7.09(d,J=7.6Hz,2H),6.73(d,J=6.8Hz,2H),6.62–6.12(m,4H),5.50(s,2H),4.92(t,2H),3.63(t,2H),3.35(q,J=7.0Hz,8H),2.80(s,4H),2.25(s,3H),1.08(t,J=6.1Hz,12H)。13C NMR(101MHz,DMSO)δ169.99,168.86,168.05,166.49,163.52,163.23,157.90,151.96,145.00,137.69,137.05,135.13,132.44,132.38,131.53,130.98,130.93,130.25,128.36,127.94,126.44,125.39,122.76,122.12,119.02,117.65,117.38,114.52,113.45,98.45,86.69,66.59,54.76,42.98,31.27,25.45,24.63,12.17。LC-MS(ESI):m/z:计算值:1054.4134;实验值:1054.4212[M]+
经上述检测,鉴定其结构为P5所示。
测试产物P5的DMSO溶液(浓度为10-5M)的紫外可见吸收光谱,结果显示P5最大吸收波长约为400nm。
向P5的DMSO溶液(浓度为10-5M)中加入2.3μL三氟乙酸(1000eq),测定加酸前后时间分辨的紫外可见吸收光谱,结果显示P5的最大吸收波长处的吸光度没有随着酸化时间的增长而增加,表明P5分子仍然具有耐酸的特性。
将野生枯草芽孢杆菌的菌株放置于5mLLB培养基中37℃摇床摇动培养过夜,取1mL细菌培养液至于1.5mL离心管中离心,转速10000转/分,离心时间3min,离心结束后弃去上层清液,往离心管中里加入1mL PBS(pH=4.5)缓冲溶液再悬浮后接着离心并去掉上层清液。接着将P5配成浓度为10-8M的DMSO溶液,取50uL染料的DMSO母液稀释到950uLPBS(pH=4.5)缓冲溶液中,取上述混匀的母液1mL加入细菌离心管中再悬浮后置于37℃摇床摇动培养30min,随后重复上述离心-再悬浮过程7-10次,最后取20uL细菌培养液滴到琼脂糖凝胶上,将接种有细菌的琼脂糖盖到用氩等离子体清洗过的载玻片上,即可置于超分辨STORM显微镜下成像。图6为P5标记的枯草芽孢杆菌表面后分别在激光共聚焦显微镜和超分辨STORM显微镜下拍摄的图像。
实施例6
当R1=R2=R3=R4=C2H5,R5=H,X=O,Y=H,Z=C13H12N6O时,其分子(P6)合成路线和产物结构如下:
Figure BDA0001598936320000131
合成步骤及表征:P1(0.37g,0.5mmol和BG-NH2(0.19g,1.5mmol)混合于无水乙醇(10mL),升温至78℃回流,搅拌10小时后减压蒸除溶剂。粗产物通过柱色谱(硅胶,乙酸乙酯/石油醚,1:2v/v)分离提纯得到黄色粉末产物P6(0.42g,84%)。
产物进行了核磁和质谱的表征:
1H NMR(400MHz,DMSO)δ12.53(s,1H),8.75(d,J=8.4Hz,1H),8.56(d,J=7.3Hz,1H),8.46(d,J=7.7Hz,1H),8.01(d,J=7.7Hz,1H),7.99–7.90(m,1H),7.76(s,1H),7.58(d,J=8.7Hz,2H),7.40(dd,J=21.1,8.1Hz,3H),7.32–7.09(m,3H),6.63(dd,J=10.1,6.4Hz,2H),6.46(s,2H),6.37(dd,J=8.9,2.4Hz,1H),6.32(d,J=2.4Hz,1H),6.26(s,2H),6.13–5.96(m,2H),5.68(dd,J=8.9,2.9Hz,1H),5.41(s,2H),5.25(s,2H),3.29(dd,J=14.2,7.0Hz,8H),2.54(s,2H),1.06(t,J=6.9Hz,12H)。LC-MS(ESI):m/z:计算值:1004.4122,实验值:503.2012[M+2H]2+/2。
经上述检测,鉴定其结构为P6所示。
将产物P6溶于DMSO中配成溶液(浓度为10-5M),测试溶液的紫外可见吸收光谱(图2),如图1所示P6最大吸收波长约为400nm。
向P6的DMSO溶液(浓度为10-5M)中加入2.3μL三氟乙酸(1000eq),测定加酸前后时间分辨的紫外可见吸收光谱,结果显示P6的最大吸收波长处的吸光度没有随着酸化时间的增长而增加,表明P6分子仍然具有耐酸的特性。
将SNAP-微管蛋白融合质粒通过标准的基因工程方法转染U2OS细胞,培养24小时后取10uL P6的DMSO溶液(浓度为10-3M)加入1mL培养基中染色培养U2OS细胞1小时,随后弃去培养基溶液并加入1mLPBS缓冲溶液清洗掉未染色的多余染料,反复清洗5-8次后,加入1mL4%的多聚甲醛PBS溶液固定细胞10分钟后,用PBS溶液洗涤3-4次即可通过超分辨STORM成像技术重叠重构出微管形貌,如图7所示,超分辨成像得到的微管图像比宽场荧光图像分辨率大大提高。
实施例7
当R1=R2=R3=R4=C2H5,R5=CH3CO,X=O,Y=H,Z=C13H12N6O时,其分子(P7)合成路线和产物结构如下:
Figure BDA0001598936320000141
合成步骤及表征:P2(0.39g,0.5mmol)和BG-NH2(0.19g,1.5mmol)混合于无水乙醇(10mL),升温至78℃回流,搅拌10小时后减压蒸除溶剂。粗产物通过柱色谱(硅胶,乙酸乙酯/石油醚,1:2v/v)分离提纯得到黄色粉末产物P7(0.44g,84%)。
产物进行了核磁和质谱的表征:
1H NMR(400MHz,DMSO)δ12.40(s,1H),10.42(s,1H),8.71(d,J=8.5Hz,1H),8.55(d,J=6.9Hz,1H),8.45(d,J=7.7Hz,1H),8.33(d,J=8.2Hz,1H),7.99(d,J=7.7Hz,1H),7.92(t,J=7.8Hz,1H),7.77(s,1H),7.60(d,J=8.6Hz,2H),7.52(t,J=7.9Hz,1H),7.43(d,J=8.2Hz,2H),7.38(d,J=8.2Hz,2H),7.09(d,J=8.6Hz,2H),6.71–6.64(m,3H),6.39(dd,J=9.0,2.4Hz,2H),6.32(d,J=2.3Hz,2H),6.25(s,1H),5.75(s,1H),5.42(s,2H),5.24(s,2H),3.29(dd,J=13.9,6.8Hz,8H),2.24(s,3H),1.06(t,J=6.9Hz,12H)。13C NMR(101MHz,DMSO)δ169.90,169.09,164.28,163.98,160.59,155.01,153.07,149.54,138.74,138.07,137.97,136.04,133.30,132.57,131.89,131.31,129.61,129.30,128.63,128.47,127.30,126.19,123.45,122.80,119.92,118.62,118.20,115.43,109.27,105.82,99.34,98.16,87.62,67.76,55.90,44.62,25.61,13.38。LC-MS(ESI):m/z:计算值:1046.4228;实验值:524.2137[M+2H]2+/2。
经上述检测,鉴定其结构为P7所示。
将产物P7溶于DMSO中配成溶液(浓度为10-5M),测试溶液的紫外可见吸收光谱(图2),如图1所示P7最大吸收波长约为400nm。
向P7的DMSO溶液(浓度为10-5M)中加入2.3μL三氟乙酸(1000eq),测定加酸前后时间分辨的紫外可见吸收光谱,结果显示P7的最大吸收波长处的吸光度没有随着酸化时间的增长而增加,表明P7分子仍然具有耐酸的特性。
将SNAP-微管蛋白融合质粒通过标准的基因工程方法转染U2OS细胞,培养24小时后取10uL P7的DMSO溶液(浓度为10-3M)加入1mL培养基中染色培养U2OS细胞1小时,随后弃去培养基溶液并加入1mLPBS缓冲溶液清洗掉未染色的多余染料,反复清洗5-8次后,加入1mL4%的多聚甲醛PBS溶液固定细胞10分钟后,用PBS溶液洗涤3-4次即可通过超分辨STORM成像技术重叠重构出微管形貌,如图8所示,超分辨成像得到的微管图像比宽场荧光图像分辨率大大提高。

Claims (2)

1.一种可见光光控的耐酸性荧光分子开关,其特征在于其结构式如下所示:
Figure DEST_PATH_IMAGE001
其中:R1、R2、R3、R4是相同或不同的原子团,具体为-CmH2m+1
R5为-H、-CmH2m+1、-CmH2m+1CO、-CmH2m+1SO2或-CmH2m+1PhSO2中的任一原子或原子团;
X为O;
Y为H;
Z是O、NCmH2m(C5H4N);
m是1~20之间的整数。
2.根据权利要求1所述的可见光光控的耐酸性荧光分子开关在制备超分辨荧光成像、分子探针及荧光传感的制剂中的应用。
CN201810217556.4A 2018-03-16 2018-03-16 一种可见光光控的耐酸性荧光分子开关及其合成方法 Active CN110272428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810217556.4A CN110272428B (zh) 2018-03-16 2018-03-16 一种可见光光控的耐酸性荧光分子开关及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810217556.4A CN110272428B (zh) 2018-03-16 2018-03-16 一种可见光光控的耐酸性荧光分子开关及其合成方法

Publications (2)

Publication Number Publication Date
CN110272428A CN110272428A (zh) 2019-09-24
CN110272428B true CN110272428B (zh) 2021-11-09

Family

ID=67958586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810217556.4A Active CN110272428B (zh) 2018-03-16 2018-03-16 一种可见光光控的耐酸性荧光分子开关及其合成方法

Country Status (1)

Country Link
CN (1) CN110272428B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393869B (zh) * 2020-04-03 2021-05-18 三峡大学 含苯乙炔基萘的荧光染料,制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141962A1 (en) * 1983-09-15 1985-05-22 The Hilton - Davis Chemical Company Hydrazine derivatives of fluorans and use thereof in electrochromic recording systems
US20130150254A1 (en) * 2010-12-09 2013-06-13 John J. Naleway Reagents and methods for direct labeling of nucleotides
CN105153214A (zh) * 2015-10-30 2015-12-16 中国人民解放军第二军医大学 一种硅基罗丹明一氧化氮荧光探针及其制备方法和应用
CN105646511A (zh) * 2016-03-19 2016-06-08 云南中烟工业有限责任公司 一种基于罗丹明6g的汞离子检测荧光探针分子、制备方法及用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141962A1 (en) * 1983-09-15 1985-05-22 The Hilton - Davis Chemical Company Hydrazine derivatives of fluorans and use thereof in electrochromic recording systems
US20130150254A1 (en) * 2010-12-09 2013-06-13 John J. Naleway Reagents and methods for direct labeling of nucleotides
CN105153214A (zh) * 2015-10-30 2015-12-16 中国人民解放军第二军医大学 一种硅基罗丹明一氧化氮荧光探针及其制备方法和应用
CN105646511A (zh) * 2016-03-19 2016-06-08 云南中烟工业有限责任公司 一种基于罗丹明6g的汞离子检测荧光探针分子、制备方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"A H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopy";Qingkai Qi et al.;《Chemical Science》;20190404;第10卷;第4914-4922页 *

Also Published As

Publication number Publication date
CN110272428A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
Baruah et al. Solvent and pH dependent fluorescent properties of a dimethylaminostyryl borondipyrromethene dye in solution
Belov et al. Rhodamine spiroamides for multicolor single‐molecule switching fluorescent nanoscopy
CN107603269B (zh) 一类基于萘酰亚胺的荧光染料、其制备方法及应用
US8664400B2 (en) Triphenylamine derivatives useful as fluorophores in biology, in particular for two-photon microscopy
Levesque et al. General C–H arylation strategy for the synthesis of tunable visible light-emitting benzo [a] imidazo [2, 1, 5-c, d] indolizine fluorophores
Lonshakov et al. New fluorescent switches based on photochromic 2, 3-diarylcyclopent-2-en-1-ones and 6-ethoxy-3-methyl-1H-phenalen-1-one
CN110272432B (zh) 一种耐酸性光控荧光分子开关及其合成方法和应用
CN110498799B (zh) 一种荧光探针及其制备方法和用途
Yang et al. BODIPY derivatives bearing borneol moieties: Enhancing cell membrane permeability for living cell imaging
EP3293230A1 (en) Cell-penetrating fluorescent dyes with secondary alcohol functionalities
Roubinet et al. Photoactivatable rhodamine spiroamides and diazoketones decorated with “Universal Hydrophilizer” or hydroxyl groups
Zheng et al. A bis (pyridine-2-ylmethyl) amine-based selective and sensitive colorimetric and fluorescent chemosensor for Cu2+
CN110927137A (zh) 一种基于单苯环骨架的细胞脂滴荧光成像探针及其应用
Chen et al. The fluorescent biomarkers for lipid droplets with quinolone-coumarin unit
Bai et al. Construction of an NIR and lysosome-targeted quinoline-BODIPY photosensitizer and its application in photodynamic therapy for human gastric carcinoma cells
CN110272428B (zh) 一种可见光光控的耐酸性荧光分子开关及其合成方法
Yuan et al. Synthesis of triphenylamine (TPA) dimers and applications in cell imaging
CN110272437B (zh) 可见光光控的snap蛋白标签类耐酸荧光分子开关及其合成
Chen et al. Rhodamine Fluorophores for STED Super‐Resolution Biological Imaging
CN110272638B (zh) 一种可见光光控耐酸荧光分子开关及其合成方法
CN110272640B (zh) 一种耐酸菌超分辨成像染料及其合成方法和应用
CN108440386B (zh) 一种双光子荧光pH探针的制备方法及其在细胞成像中的应用
CN108610270B (zh) 双氰基二苯代乙烯型双光子荧光溶剂生色水溶性探针及其合成方法和应用
CN111337460B (zh) 一种高稳定性Halo-tag探针及其合成和生物应用
CN112940520B (zh) 一类具有细胞器定位性质的荧光染料在细胞器成像中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant