CN110263472B - 基于回归法综合寿命试验数据的机电产品可靠度评估方法 - Google Patents

基于回归法综合寿命试验数据的机电产品可靠度评估方法 Download PDF

Info

Publication number
CN110263472B
CN110263472B CN201910566357.9A CN201910566357A CN110263472B CN 110263472 B CN110263472 B CN 110263472B CN 201910566357 A CN201910566357 A CN 201910566357A CN 110263472 B CN110263472 B CN 110263472B
Authority
CN
China
Prior art keywords
test
distribution
data
reliability
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910566357.9A
Other languages
English (en)
Other versions
CN110263472A (zh
Inventor
贾祥
程志君
孙健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201910566357.9A priority Critical patent/CN110263472B/zh
Publication of CN110263472A publication Critical patent/CN110263472A/zh
Application granted granted Critical
Publication of CN110263472B publication Critical patent/CN110263472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明属于可靠性评估技术领域,本发明公开了一种基于回归法综合寿命试验数据的机电产品可靠度评估方法,首先设定样本数据失效概率的验前分布并确定失效概率的验前矩和验后矩,再求解失效概率验前分布中的参数,最后基于回归法综合全部样本数据拟合分布函数并给出可靠度的评估值。本发明通过上述步骤很好地解决了现有技术中只利用样本数据中的失效数据来评估机电产品可靠度从而造成数据信息量缺失的问题,且步骤简单清晰,评估结果优于现有技术。

Description

基于回归法综合寿命试验数据的机电产品可靠度评估方法
技术领域
本发明涉及可靠性评估领域,特指基于回归法综合失效数据和截尾数据两类寿命试验数据的机电产品可靠度评估方法。
背景技术
可靠性是指产品在规定的条件下和规定的时间内完成规定功能的能力[参考文献:郭波,武小悦.系统可靠性分析.国防科技大学出版社出版,2002]。可靠性是产品的固有属性,是衡量产品质量好坏的重要指标,因此研究产品的可靠性非常重要。可靠性的评估问题是可靠性研究的重要内容,评估指标包括可靠度、寿命和剩余寿命等,其中可靠度是产品可靠性的概率度量。
在现有可靠性评估理论中,通常将产品的寿命视为随机变量,并假定或验证产品寿命服从某个特定分布,再借助于数理统计方法对可靠度进行评估,其中的关键是利用产品寿命试验的样本数据估计产品寿命所服从分布中的参数。
对于机电产品,当前普遍认为其寿命T服从威布尔分布[参考文献:凌丹.威布尔分布模型及其在机械可靠性中的应用研究.电子科技大学博士论文,2010],其中威布尔分布的概率密度函数是
Figure BDA0002109685740000011
其中m>0和η>0分别为威布尔分布的形状参数及尺度参数。相应的分布函数是
Figure BDA0002109685740000012
可靠度函数为
Figure BDA0002109685740000013
假定在寿命试验中共投入n个机电产品的样品。由于随着技术的发展,当前产品的可靠性普遍得到了很大提升,因而在有限的试验时间和成本内,通常要在n个样品失效前就终止寿命试验。于是针对那些在试验中失效的样品,就可以收集到失效数据,而在试验中没有失效的样品,就只能收集到截尾数据。由此可知,产品的寿命试验数据包括失效数据和截尾数据两种。记试验结束后收集到的样本数据为(tii),其中ti为样品i的试验时间,也即样本数据,δi=1代表ti为失效数据,δi=0代表ti为截尾数据,i=1,…,n。
评估机电产品可靠度的关键是利用样本数据(tii)估计威布尔分布中的两个分布参数m和η。在现有研究中,回归法被广泛用于估计分布参数m和η,主要步骤包括(a)给出样本数据ti的失效概率pi的估计值
Figure BDA0002109685740000021
其中pi=F(ti),F(t)为式(2)中的威布尔分布函数,i=1,…,n;(b)将式(2)中的威布尔分布函数F(t)进行取两次对数运算从而线性化,可得
y=mx-mlnη (4)
其中y=ln[-ln(1-F(t))],x=lnt;(c)令
Figure BDA0002109685740000022
xi=lnti,i=1,…,n,通过回归法拟合诸点
Figure BDA0002109685740000023
从而得到一条分布曲线并给出分布参数的点估计。
由此可知,基于回归法估计分布参数的首要步骤是给出样本数据ti的失效概率pi的估计值
Figure BDA0002109685740000024
在现有技术中,往往是借助于Herd-Johnson方法利用样本数据ti的秩进行估计[参考文献:Zhang L F,Xie M,Tang L C.A study of two estimation approaches forparameters of Weibull distribution based on WPP.Reliability Engineering&System Safety,2007,92(3):360-368;X.Jia,S.Nadarajah,B.Guo.Exact inference onWeibull parameters with multiply Type-I censored data.IEEE Transactions onReliability,2018,67(2):432-445]。但若利用这一方法估计
Figure BDA0002109685740000025
则往往只能得到δi=1时失效数据ti的失效概率估计值,无法得到δi=0时截尾数据ti的失效概率估计值。这将进一步造成后续通过拟合诸点
Figure BDA0002109685740000026
估计分布参数时,只利用了那些对应δi=1时失效数据ti的诸点,i=1,…,n。故根据式(4),此时的误差和函数为
Figure BDA0002109685740000027
当该误差和函数最小时,可得威布尔分布参数的估计值为
Figure BDA0002109685740000028
也就是说,在现有技术中,当利用回归法统计分析寿命试验的样本数据进而估计分布参数和评估产品可靠度时,只利用到了样本数据中的失效数据部分,并没有利用其中的截尾数据。这造成了在评估产品可靠度时样本数据信息量的缺失。特别是当样本数据中截尾数据较多时,这种信息量的缺失会降低可靠度评估结果的精度。因而相应的现有技术存在一定的缺陷。
发明内容
针对机电产品,认为其寿命服从威布尔分布,并利用回归法分析寿命试验数据评估其可靠度时,由于现有技术只分析了寿命试验数据中的失效数据,造成了样本数据信息量的缺失。为了克服现有技术存在的缺陷,本发明提出一种基于回归法综合寿命试验数据的机电产品可靠度评估方法。
为了解决上述技术问题,本发明采用的技术方案是:
基于回归法综合寿命试验数据的机电产品可靠度评估方法,包括以下步骤:
第一步、设定样本数据失效概率的验前分布并确定失效概率的验前矩和验后矩;
确定待进行可靠度评估的机电产品,在寿命试验中共投入n个该机电产品的样品,记n个机电产品的样品寿命试验结束后收集到的样本数据为(tii),其中ti为样品i的试验时间,δi=1代表ti为失效数据,δi=0代表ti为截尾数据,i=1,…,n,n≥2;
针对样本数据(tii),假定t1≤…≤tn,并设定ti的失效概率pi的验前分布π(pi)为贝塔分布Beta(pi;ai,bi),且其概率密度函数为
Figure BDA0002109685740000031
其中ai>0,bi>0,
Figure BDA0002109685740000032
B(ai,bi)为一个只与参数ai和bi有关且与pi无关的常数。则基于验前分布π(pi)可得pi的验前矩为
Figure BDA0002109685740000033
针对样本数据ti,引入符号si=n+1-i,si代表寿命试验进行到ti时刻处仍在参与寿命试验的样品个数,则可由此确定似然函数为
Figure BDA0002109685740000034
进一步根据Bayes理论[参考文献:贾祥,王小林,郭波.极少失效数据和无失效数据的可靠性评估.机械工程学报,2016,52(2):182-188],可得失效概率的验后分布为
Figure BDA0002109685740000041
于是可得失效概率的验后矩为
Figure BDA0002109685740000042
根据Bayes理论可知[参考文献:贾祥,王小林,郭波.极少失效数据和无失效数据的可靠性评估.机械工程学报,2016,52(2):182-188],此时可将式(10)中的验后矩视为失效概率的点估计。
接下来只要确定了参数ai和bi,即可确定式(10)中的失效概率点估计。
第二步、确定失效概率验前分布中的参数
为了确定参数ai和bi,引入验前分布π(pi)的熵Hi。根据熵的定义[参考文献:X.Jia,B.Guo.Inference on the reliability of Weibull distribution by fusingexpert judgements and multiply Type-I censored data.2018 IEEE InternationalSymposium on Systems Engineering,2018:1-5]可得
Figure BDA0002109685740000043
其中
Figure BDA0002109685740000044
进一步考虑到当ti-1≤ti时,对于失效概率的验前矩和点估计,应满足E(pi-1)≤E(pi),
Figure BDA0002109685740000045
则通过要求式(11)中的熵Hi最大,并结合式(7)中的验前矩E(pi)和式(10)中的失效概率点估计
Figure BDA0002109685740000046
可构建一个优化模型来确定参数ai和bi
Figure BDA0002109685740000051
设a1=1,b1=1,并采用内点法[参考文献:甘应爱,田丰等.运筹学(第3版).北京:清华大学出版社,2005]求解式(12)中的模型,可得验前分布中的参数(a2,b2)。再利用确定的参数(a2,b2)求解式(12)中的模型可确定参数(a3,b3)。如此反复迭代,可依次求得验前分布中的参数(ai,bi),其中i=1,…,n。
第三步、基于回归法综合全部样本数据拟合分布函数并给出可靠度的评估值
通过步骤2可确定验前分布中的参数ai和bi,再利用式(10)可给出样本数据ti处失效概率的点估计
Figure BDA0002109685740000052
其中i=1,…,n。令
Figure BDA0002109685740000053
xi=lnti,通过回归法拟合n个点
Figure BDA0002109685740000054
可给出分布参数的点估计
Figure BDA0002109685740000055
Figure BDA0002109685740000056
即根据式(4),要求误差和
Figure BDA0002109685740000057
最小,可得
Figure BDA0002109685740000058
与式(5)中的现有技术即利用回归法只统计分析失效数据进而估计分布参数和评估产品可靠度相比,显然本发明利用到了全部的寿命试验数据。
最后根据式(3)中的可靠度函数,可得到机电产品的可靠度的评估值为
Figure BDA0002109685740000059
如上所述,本发明首先针对机电产品的每一个样本数据设定其失效概率的验前分布,并求得相应的失效概率的验前矩和验后矩,再通过构建优化模型确定验前分布中的参数,最后通过回归拟合全部样本数据得到威布尔分布的分布参数以及机电产品可靠度的评估值。本发明通过上述步骤很好地解决了现有技术中只利用样本数据中的失效数据造成信息量缺失的问题,且步骤简单清晰。
附图说明
图1是实施例中利用本发明提出方法得到的可靠度评估值与利用现有技术即利用回归法只统计分析失效数据进而估计分布参数和评估产品可靠度所得结果的对比图。
具体实施方式
以下将结合具体实施例对本发明做进一步详细说明。
本实例以数控机床加工中心这一机械产品为例,利用现有文献[参考文献:Wang,Fu-Kwun.Using BBPSO Algorithm to Estimate the Weibull Parameters withCensored Data.Communications in Statistics-Simulation and Computation,2014,43(10):2614-2627]中的算例数据,采用本发明提供的基于回归法综合寿命试验数据的机电产品可靠度评估方法对该机械产品进行可靠度评估,方法如下:
第一步,在寿命试验中共投入n个该机械产品(即数控机床加工中心)的样品,本实施例中n=30。记n个机械产品的样品寿命试验结束后收集到的样本数据为(tii),其中ti为样品i的试验时间,δi=1代表ti为失效数据,δi=0代表ti为截尾数据,i=1,…,n。本实施例中经寿命试验得到的寿命试验样本数据具体见表1。
表1.实例数据(时间单位:小时)
Figure BDA0002109685740000061
针对这30个样本数据ti,依次设定相应的失效概率pi的验前分布π(pi)为Beta(pi;ai,bi),并令si=31-i,再分别利用式(7)和式(10),明确pi的验前矩和验后矩,其中i=1,L,30。
第二步,设a1=1,b1=1,采用内点法依次求解参数(a2,b2)、...、(a30,b30),具体结果见表2。
表2.确定的验前分布中的参数
Figure BDA0002109685740000071
第三步,利用已确定的参数ai和bi,可利用式(10)给出各个样本数据ti处失效概率的点估计
Figure BDA0002109685740000072
其中i=1,L,n,结果见表3。进一步根据式(13)可求得威布尔分布参数的点估计为
Figure BDA0002109685740000073
最终可利用式(14)给出数控机床加工中心任意时刻t处的可靠度评估值。
作为对比,再利用现有技术即利用回归法只统计分析失效数据进而估计分布参数和评估产品可靠度的方法对数控机床加工中心的可靠度进行评估。首先利用Herd-Johnson方法估计样本数据中失效数据t2,t3,t4,t5,t6,t8,t9,t10,t12,t13,t14,t15,t16,t18,t21,t22,t25,t26,t27,t28的失效概率,再根据式(5)求得威布尔分布参数的点估计
Figure BDA0002109685740000074
最后可给出利用现有技术所得的数控机床加工中心任意时刻t处的可靠度评估值。
针对数控机床加工中心任务时刻100-700小时的可靠度评估值,利用本发明提出的方法与现有技术即利用回归法只统计分析失效数据进而估计分布参数和评估产品可靠度的方法所得结果的对比见图1。从图1可知,利用本发明所提出的方法给出的可靠度评估值明显高于现有技术。注意到根据表1中的实例数据,在数控机床加工中心工作到562小时和700小时的时候,数控机床加工中心仍然没有故障,因此数控机床加工中心的可靠性应较高,故利用本发明所提出的方法给出的可靠度评估值是比较合理的。这是由于如表3所示,利用本发明提出的方法可给出全部样本数据的失效概率,但利用现有技术则只能估计出失效数据的失效概率。正是由于现有技术不能利用全部样本数据,故造成了数据信息量的缺失,从而影响了可靠度评估结果的精度。
表3.各个样本数据处失效概率的估计值
Figure BDA0002109685740000081
通过以上本发明所提出的基于回归法综合寿命试验数据的机电产品可靠度评估方法,能够估计给出全部寿命试验样本数据的失效概率,再通过回归法拟合全部数据,给出机电产品的可靠度评估结果。通过实例检验,本发明所提出的基于回归法综合寿命试验数据的机电产品可靠度评估方法,步骤简单清晰,且优于现有技术。
以上所述仅为本发明的优选的实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.基于回归法综合寿命试验数据的机电产品可靠度评估方法,其特征在于,包括如下步骤:
第一步、设定样本数据失效概率的验前分布并确定失效概率的验前矩和验后矩;
确定待进行可靠度评估的机电产品,在寿命试验中共投入n个该机电产品的样品,记n个机电产品的样品寿命试验结束后收集到的样本数据为(tii),其中ti为样品i的试验时间,δi=1代表ti为失效数据,δi=0代表ti为截尾数据,i=1,…,n;
针对样本数据(tii),假定t1≤…≤tn,并设定ti的失效概率pi的验前分布π(pi)为贝塔分布Beta(pi;ai,bi),且其概率密度函数为
Figure FDA0002505815580000011
其中ai>0,bi>0,
Figure FDA0002505815580000012
则基于验前分布π(pi)得到pi的验前矩为
Figure FDA0002505815580000013
针对样本数据ti,引入符号si=n+1-i,si代表寿命试验进行到ti时刻处仍在参与寿命试验的样品个数,则由此确定似然函数为
Figure FDA0002505815580000014
根据Bayes理论,得到失效概率的验后分布为
Figure FDA0002505815580000015
于是得到失效概率的验后矩为
Figure FDA0002505815580000016
将式(10)中的验后矩视为失效概率的点估计;
第二步、确定样本数据失效概率的验前分布中的参数ai和bi,实现方法为:
引入验前分布π(pi)的熵Hi,可得
Figure FDA0002505815580000021
其中
Figure FDA0002505815580000022
当ti-1≤ti时,对于失效概率的验前矩和点估计,应满足E(pi-1)≤E(pi),
Figure FDA0002505815580000023
则通过要求式(11)中的熵Hi最大,并结合式(7)中的验前矩E(pi)和式(10)中的失效概率点估计
Figure FDA0002505815580000024
构建一个优化模型来确定参数ai和bi,即
Figure FDA0002505815580000025
设a1=1,b1=1,并采用内点法求解式(12)中的模型,得到验前分布中的参数(a2,b2);再利用(a2,b2)求解式(12)中的模型可确定参数(a3,b3);如此反复迭代,依次求得验前分布中的参数(ai,bi);
第三步、基于回归法综合全部样本数据拟合分布函数并给出机电产品可靠度的评估值;
通过第二步确定的参数ai和bi,再利用式(10)给出样本数据ti处失效概率的点估计
Figure FDA0002505815580000026
Figure FDA0002505815580000027
xi=ln ti,通过回归法拟合n个点
Figure FDA0002505815580000028
给出分布参数的点估计
Figure FDA0002505815580000029
Figure FDA00025058155800000210
要求误差和
Figure FDA00025058155800000211
最小,可得
Figure FDA0002505815580000031
最后得到机电产品的可靠度的评估值为:
Figure FDA0002505815580000032
2.根据权利要求1所述的基于回归法综合寿命试验数据的机电产品可靠度评估方法,其特征在于,第一步中,n≥2。
CN201910566357.9A 2019-06-27 2019-06-27 基于回归法综合寿命试验数据的机电产品可靠度评估方法 Active CN110263472B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910566357.9A CN110263472B (zh) 2019-06-27 2019-06-27 基于回归法综合寿命试验数据的机电产品可靠度评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910566357.9A CN110263472B (zh) 2019-06-27 2019-06-27 基于回归法综合寿命试验数据的机电产品可靠度评估方法

Publications (2)

Publication Number Publication Date
CN110263472A CN110263472A (zh) 2019-09-20
CN110263472B true CN110263472B (zh) 2021-01-29

Family

ID=67922256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910566357.9A Active CN110263472B (zh) 2019-06-27 2019-06-27 基于回归法综合寿命试验数据的机电产品可靠度评估方法

Country Status (1)

Country Link
CN (1) CN110263472B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112989637B (zh) * 2021-05-06 2021-07-23 中国人民解放军国防科技大学 基于分布折算、近似和综合的星敏系统可靠性评估方法
CN114692087A (zh) * 2022-04-19 2022-07-01 中国航空发动机研究院 一种产品的可靠性评价方法、可读存储介质和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761421A (zh) * 2013-12-31 2014-04-30 电子科技大学 一种大型矿用挖掘机提升机构可靠性评估方法
CN105354402A (zh) * 2014-08-18 2016-02-24 鲍珂 一种车辆变速箱耗损型失效的可靠性评估方法
CN108804806A (zh) * 2018-06-05 2018-11-13 西南交通大学 Weibull分布综合应力恒加试验中参数的简化MLE方法
CN109460903A (zh) * 2018-10-19 2019-03-12 芜湖赛宝信息产业技术研究院有限公司 一种基于先验数据的电子装备可靠性评估方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160196236A1 (en) * 2015-01-07 2016-07-07 Umm Al-Qura University Method for estimating and predicting parameters of exponentiated weibull model
CN107092582B (zh) * 2017-03-31 2021-04-27 江苏方天电力技术有限公司 一种基于残差后验的异常值在线检测及置信度评估方法
US20190066010A1 (en) * 2017-08-24 2019-02-28 United States Of America As Represented By The Secretary Of The Army Predictive model for optimizing facility usage
CN109614586A (zh) * 2018-12-03 2019-04-12 中国人民解放军国防科技大学 基于贝叶斯理论和线性拟合的可靠度置信下限构建方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761421A (zh) * 2013-12-31 2014-04-30 电子科技大学 一种大型矿用挖掘机提升机构可靠性评估方法
CN105354402A (zh) * 2014-08-18 2016-02-24 鲍珂 一种车辆变速箱耗损型失效的可靠性评估方法
CN108804806A (zh) * 2018-06-05 2018-11-13 西南交通大学 Weibull分布综合应力恒加试验中参数的简化MLE方法
CN109460903A (zh) * 2018-10-19 2019-03-12 芜湖赛宝信息产业技术研究院有限公司 一种基于先验数据的电子装备可靠性评估方法

Also Published As

Publication number Publication date
CN110263472A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN110263472B (zh) 基于回归法综合寿命试验数据的机电产品可靠度评估方法
Rao et al. Reliability test plans for Marshall-Olkin extended exponential distribution
He et al. Compilation of NC lathe dynamic cutting force spectrum based on two-dimensional mixture models
US20210374634A1 (en) Work efficiency evaluation method, work efficiency evaluation apparatus, and program
TW201717057A (zh) 製程異因分析方法與製程異因分析系統
CN115373370A (zh) 一种可编程控制器运行状态监测方法及系统
KR102247945B1 (ko) 공정인자를 고려한 공정불량 예측방법
Han et al. Section-based multifunctional calibration method for pavement deterioration forecasting model
CN112070030B (zh) 一种巴克豪森信号随机性度量及转换方法
KR101945131B1 (ko) 비정규분포 공정에서의 극소불량률 관리 방법 및 장치
CN113589159A (zh) 一种用于铁路信号继电器多维度特征参数相关性分析方法
CN116957534A (zh) 一种预测智能电表更换数量的方法
Lai Fitting power law distributions to data
Sankararaman et al. Uncertainty in prognostics: Computational methods and practical challenges
CN114492074A (zh) 一种概率损伤容限评估分析方法
CN111966966B (zh) 一种传感器测量误差模型参数可行域分析方法及系统
Jin et al. Comprehensive performance evaluation method of CNC servo turrets based on accuracy retentivity theory
CN107862126B (zh) 一种部件级信息多样性条件下的系统可靠性评估方法
Seifi et al. Designing different sampling plans based on process capability index
Zhu et al. Reliability assessment method based on the meta-action unit for complex mechanical system
CN111274709A (zh) 基于贝叶斯策略的产品可靠性分析方法及存储介质
Hauteville et al. A new generic method to analyse fatigue results
Song et al. An empirical study of comparison of code metric aggregation methods–on embedded software
CN116992308B (zh) 数据与知识融合的工艺波动分析与优化方法及装置
CN114254516B (zh) 一种删失数据下的参数概率不确定性建模方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant