CN110257770A - 一种pvd法制备v型掺杂铜铟镓硒吸收层的方法 - Google Patents

一种pvd法制备v型掺杂铜铟镓硒吸收层的方法 Download PDF

Info

Publication number
CN110257770A
CN110257770A CN201910540528.0A CN201910540528A CN110257770A CN 110257770 A CN110257770 A CN 110257770A CN 201910540528 A CN201910540528 A CN 201910540528A CN 110257770 A CN110257770 A CN 110257770A
Authority
CN
China
Prior art keywords
layer
film
indium gallium
copper
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910540528.0A
Other languages
English (en)
Other versions
CN110257770B (zh
Inventor
邹臻峰
成志华
陈少逸
劳宏彬
吴建邦
黄宏利
陈方才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongren fanhui new energy Co.,Ltd.
Original Assignee
Tongren Fanneng Mobile Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongren Fanneng Mobile Energy Co Ltd filed Critical Tongren Fanneng Mobile Energy Co Ltd
Priority to CN201910540528.0A priority Critical patent/CN110257770B/zh
Publication of CN110257770A publication Critical patent/CN110257770A/zh
Application granted granted Critical
Publication of CN110257770B publication Critical patent/CN110257770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种PVD法制备V型掺杂铜铟镓硒吸收层的方法,包括如下步骤:S1:以不锈钢柔性材料为衬底,采用PVD溅射法在衬底的表面沉积第一层铜铟镓薄膜,同时进行低温硒化处理,形成第一层铜铟镓硒薄膜层;S2:采用PVD溅射法在第一层铜铟镓硒薄膜上沉积第二层铜铟镓薄膜,同时在高温下进行硒化处理,形成第二层铜铟镓硒薄膜吸收层;S3:采用PVD溅射法在第二层铜铟镓硒薄膜上沉积第三层铜铟镓薄膜,同时进行低温热退火处理和硒化处理,形成第三层铜铟镓硒薄膜界面层。通过控制镓的掺杂含量,实现了V型双梯度能带分布。工艺流程简单,可控性和稳定性程度高,实现工艺优化后的CIGS电池转换效率提升1.0%以上。

Description

一种PVD法制备V型掺杂铜铟镓硒吸收层的方法
技术领域
本发明涉及太阳能薄膜电池技术领域,特别涉及一种PVD法制备V型掺杂铜铟镓硒吸收层的方法。
背景技术
随着技术发展,产业化铜铟镓硒薄膜太阳电池效率大幅度提升。铜铟镓硒薄膜作为薄膜电池的光吸收层,对电池效率影响至关重要。如何降低铜铟镓硒吸收层中,少数载流子复合速率,是薄膜电池技术研究方向与热点。
1994年,美国NREL使用三步共蒸法,制备的铜铟镓硒薄膜实现了双梯度带隙结构,不仅提高了电池的开路电压,并且增加了对光生载流子的收集。Gabar等对铜铟镓硒薄膜能带双梯度理论的可行性和模拟过程进行详细的论述,并制备光电转换效率达到16.4%的CIGS薄膜太阳能电池。此后,小面积CIGS薄膜太阳能电池最高转换效率世界纪录很长时间一直由NREL保持,CIGS太阳能电池的光电转换效率由1999年的18.8%提高到2008年的19.9%。2010年德国氢能和可再生能源研究中心(ZSW)所制备的CIGS太阳能电池的转换效率达到20.3%。但太阳电池的转换效率仍然具有较大的提供空间。
发明内容
有鉴于此,本发明的目的在于提供一种工艺流程简单、可控性和稳定性程度高、电池转换效率高的一种PVD法制备V型掺杂铜铟镓硒吸收层的方法。
根据本发明的一个方面,提供了一种PVD法制备V型掺杂铜铟镓硒吸收层的方法,其特征在于,包括如下步骤:
S1:采用PVD溅射法在衬底上形成第一层铜铟镓硒薄膜层:以不锈钢柔性材料为衬底,采用PVD溅射法在衬底的表面沉积第一层铜铟镓薄膜,同时进行低温硒化处理,形成第一层铜铟镓硒薄膜层;
S2:采用PVD溅射法在第一层铜铟镓硒薄膜层上形成第二层铜铟镓硒薄膜层:采用PVD溅射法在第一层铜铟镓硒薄膜上沉积第二层铜铟镓薄膜,同时在高温下进行硒化处理,形成第二层铜铟镓硒薄膜吸收层;
S3:采用PVD溅射法在第二层铜铟镓硒薄膜层上形成第三层铜铟镓硒薄膜层:采用PVD溅射法在第二层铜铟镓硒薄膜上沉积第三层铜铟镓薄膜,同时进行低温热退火处理和硒化处理,形成第三层铜铟镓硒薄膜界面层。
进一步地,所述PVD溅射法在衬底的表面沉积第一层铜铟镓薄膜采用的铜铟镓合金靶,镓的质量百分比为13.6%,铟与镓的原子百分比满足x=Ga/(Ga+In),x=0.5;
进一步地,所述形成第二层铜铟镓薄膜采用的铜铟镓合金靶,该靶材镓的质量百分比为12%,铟与镓的原子百分比满足x=Ga/(Ga+In),x=0.33;
进一步地,所述形成第三层铜铟镓薄膜采用的铜铟镓合金靶,该靶材镓的质量百分比为25%,铟与镓的原子百分比满足x=Ga/(Ga+In),x=0.6。
进一步地,所述PVD溅射法在衬底的表面沉积第一层铜铟镓薄膜,溅射方式为交流电源磁控溅射,溅射功率为8~16KW,磁控溅射气体压强为0.1~10Pa;
进一步地,所述形成第二层铜铟镓薄膜,溅射方式为交流电源磁控溅射,溅射功率为10~25KW,磁控溅射气体压强为0.1~10Pa;
进一步地,所述形成第三层铜铟镓薄膜,溅射方式为脉冲直流电源磁控溅射,溅射电流为5~15A,磁控溅射气体压强为0.1~10Pa。
进一步地,所述进行第一层铜铟镓薄膜溅射沉积的同时采用硒蒸汽进行硒化处理,硒化处理的温度为200~400℃,时间为3~5min;所述进行第二层铜铟镓薄膜溅射沉积的同时采用硒蒸汽进行硒化处理,硒化处理的温度为500~900℃,时间为3~10min;所述进行第三层铜铟镓薄膜溅射沉积的同时采用硒蒸汽进行硒化退火处理,硒化退火处理的温度为300~600℃,时间为3~5min。
进一步地,所述第一层铜铟镓硒膜层厚度为200~400nm;所述的第二层铜铟镓硒膜层厚度为600~1200nm;所述的第三层铜铟镓硒膜层厚度为100~200nm。
进一步地,在进行所述步骤S1之前还包括如下步骤:在衬底的表面沉积一层Mo底电极。
本发明的有益效果是:采用不同CIG靶材,通过工艺条件控制CuGaSe2和CuInSe2的反应与扩散速率,实现CIGS吸收层的V型掺杂,保持窄带隙对近中长波的吸收,增强背电场对载流子的收集,提高CIGS表面对N型窗口层的带隙匹配程度。该技术工艺流程简单,可控性和稳定性程度高,适合大规模工业生产,并在线有生产线技术水平基础上,实现工艺优化后的CIGS电池转换效率提升1.0%以上。
附图说明
图1为本发明一实施方式的一种PVD法制备V型掺杂铜铟镓硒吸收层的方法的流程框图;
图2为由图1所示的制备方法制备的铜铟镓硒吸收层的梯度能带示意图;
图3为EDS测得的实例1的铜铟镓硒吸收层中镓元素在铜铟镓硒吸收层中厚度分布图;
图4为实施例1,2和对比例1,2的铜铟镓硒吸收层制备成铜铟镓硒薄膜电池QE量子效应对比图。
具体实施方式
下面结合附图对发明作进一步详细的说明。
图1示意性地显示了根据本发明的一种实施方式的PVD法制备V型掺杂铜铟镓硒吸收层的方法,其特征在于,包括如下步骤:
选择不锈钢柔性材料衬底,对衬底的表面进行清洗并烘干。清洗干燥后的不锈钢衬体传送至溅射设备工艺腔体内,使用Mo靶以及MoNa靶沉积Mo底电极。
S1:采用PVD溅射法在衬底上形成第一层铜铟镓硒薄膜层:
将沉积有Mo底电极的不锈钢衬体传送至第一个铜铟镓靶材腔室,采用PVD溅射法在衬底的表面沉积第一层铜铟镓薄膜,同时向腔体内通入硒蒸汽进行低温硒化处理,形成第一层铜铟镓硒薄膜层;
采用铜铟镓合金靶进行第一层铜铟镓薄膜溅射沉积,铜铟镓合金靶中镓的质量百分比为13.6%,铟与镓的原子百分比满足x=Ga/(Ga+In),x=0.5;
沉积第一层铜铟镓薄膜的溅射方式为交流电源磁控溅射,溅射功率为8~16KW,磁控溅射气体压强为0.1~10Pa;
硒化处理的温度为200~400℃,加热时间为3~5min;最终得到厚度为200~400nm的第一层铜铟镓硒膜种子层。
S2:采用PVD溅射法在第一层铜铟镓硒薄膜层上形成第二层铜铟镓硒薄膜层:采用PVD溅射法在第一层铜铟镓硒薄膜上沉积第二层铜铟镓薄膜,同时在高温下进行硒化处理,形成第二层铜铟镓硒薄膜吸收层;
将沉积有第一层铜铟镓硒薄膜的不锈钢衬体传送至第二个铜铟镓靶材腔室,采用的铜铟镓合金靶进行第二层铜铟镓薄膜溅射沉积,该靶材中镓的质量百分比为12%,铟与镓的原子百分比满足x=Ga/(Ga+In),x=0.33;
形成第二层铜铟镓薄膜的溅射方式为交流电源磁控溅射,溅射功率为10~25KW,磁控溅射气体压强为0.1~10Pa;
进行第二层铜铟镓薄膜溅射沉积的同时向腔室内通入硒蒸汽进行硒化处理,硒化处理的温度为500~900℃,加热时间为3~10min;得到厚度为600~1200nm的第二层铜铟镓硒膜层。
S3:采用PVD溅射法在第二层铜铟镓硒薄膜层上形成第三层铜铟镓硒薄膜层:采用PVD溅射法在第二层铜铟镓硒薄膜上沉积第三层铜铟镓薄膜,同时进行低温热退火处理和硒化处理,形成第三层铜铟镓硒薄膜界面层;
将沉积有第二层CIGS薄膜的不锈钢衬体传送至第三个铜铟镓靶材腔室,采用的铜铟镓合金靶进行第三层铜铟镓薄膜溅射沉积,该靶材中镓的质量百分比为25%,铟与镓的原子百分比满足x=Ga/(Ga+In),x=0.6。
形成第三层铜铟镓薄膜的溅射方式为脉冲直流电源磁控溅射,射频电源的溅射电流为5~15A,磁控溅射气体压强为0.1~10Pa。进行第三层铜铟镓薄膜溅射沉积的同时采用硒蒸汽进行硒化退火处理,硒化退火处理的温度为300~600℃,时间为3~5min;得到厚度为100~200nm的第三层铜铟镓硒膜层。
实施例1:
一种PVD法制备V型掺杂铜铟镓硒吸收层的方法,具体步骤如下:
(1)将厚度50um的不锈钢衬底在清洗设备上进行刷洗并用去离子水进行表面清洗,再用氮气将其表面烘干;
(2)将清洗干燥后的不锈钢衬体传送至溅射设备工艺腔体内,使用Mo靶以及MoNa靶沉积Mo底电极;
(3)将沉积有Mo底电极的不锈钢衬体以20inch/min的速度传送至第一个铜铟镓靶材腔室,腔室内设置铜铟镓合金靶。其中,铜铟镓合金靶中,Ga的质量百分比为13.6%,靶材数量为2个。进行第一层铜铟镓薄膜溅射沉积,溅射方式为交流电源磁控溅射;其中,射频功率设置为12KW,沉积压强设置为1.2Pa,温度设置为400℃,加热时间3min,同时向腔体内通入硒蒸汽进行硒化处理,得到第一层厚度为280nm的铜铟镓硒薄膜层;
(4)将沉积有第一层铜铟镓硒薄膜的不锈钢衬体继续以20inch/min的速度传送至第二个铜铟镓靶材腔室,其中铜铟镓合金靶中,镓的质量百分比为12%,靶材数量为4个,进行第二层铜铟镓薄膜溅射沉积,溅射方式为交流电源磁控溅射;其中射频功率设置为22KW,沉积压强设置为2.0Pa,温度设置860℃,恒温6min,同时向腔体内通入硒蒸汽进行硒化处理,得到第二层厚度为900nm的铜铟镓硒薄膜层;
(5)将沉积有第二层铜铟镓硒薄膜的不锈钢衬体继续以20inch/min的速度传送至第三个铜铟镓靶材腔室,其中铜铟镓合金靶中,镓的质量百分比为25%,靶材数量为2个,进行第三层铜铟镓薄膜溅射沉积,溅射方式为脉冲直流电源磁控溅射,溅射电流为5A;其中射频功率设置为1800W,沉积压强设置为1.6Pa,温度设置600℃,恒温5min,同时向腔体内通入硒蒸汽进行硒化处理,得到第三层厚度为120nm的铜铟镓硒薄膜层;
(6)将沉积完三层铜铟镓硒薄膜的不锈钢衬体再依次沉积CdS层,i-ZnO层,AZO层,完成整个CIGS薄膜电池的制备。
实施例2:
一种PVD法制备V型掺杂铜铟镓硒吸收层的方法,具体步骤如下:
(1)将厚度50um的不锈钢衬底在清洗设备上进行刷洗和用去离子水进行表面清洗,用氮气将其表面烘干;
(2)将清洗干燥后的不锈钢衬体传送至溅射设备工艺腔体内,使用Mo靶以及MoNa靶沉积Mo底电极;
(3)将沉积有Mo底电极的不锈钢衬体以20inch/min的速度传送至第一个铜铟镓靶材腔室,其中铜铟镓合金靶中,镓的质量百分比为13.6%,靶材数量为2个,进行第一层铜铟镓薄膜溅射沉积,溅射方式为交流电源磁控溅射;其中射频功率设置为8KW,沉积压强设置为0.8Pa,温度设置为350℃,加热时间3min,同时向腔体内通入硒蒸汽进行硒化处理,得到第一层厚度为200nm的铜铟镓硒薄膜层;
(4)将沉积有第一层铜铟镓薄膜的不锈钢衬体继续以20inch/min的速度传送至第二个铜铟镓靶材腔室,其中铜铟镓合金靶中,镓的质量百分比为12%,靶材数量为4个,进行第二层铜铟镓薄膜溅射沉积,溅射方式为交流电源磁控溅射;其中射频功率设置为24KW,沉积压强设置为2.4Pa,温度设置900℃,恒温6min,同时向腔体内通入硒蒸汽进行硒化处理,得到第二层厚度为1000nm的铜铟镓硒薄膜层;
(5)将沉积有第二层铜铟镓薄膜的不锈钢衬体继续以20inch/min的速度传送至第三个铜铟镓靶材腔室,其中铜铟镓合金靶中,镓的质量百分比为25%,靶材数量为2个,进行第三层铜铟镓薄膜溅射沉积,溅射方式为脉冲直流电源磁控溅射,溅射电流为10A;其中射频功率设置为2200W,沉积压强设置为1.8Pa,温度设置550℃,退火处理3min,同时向腔体内通入硒蒸汽进行硒化处理,得到第三层厚度为100nm的铜铟镓硒薄膜层;
(6)将沉积完CIGS吸收层的不锈钢衬体再依次沉积CdS层,i-ZnO层,AZO层,完成整个CIGS薄膜电池的制备。
实施例3:
一种PVD法制备V型掺杂铜铟镓硒吸收层的方法,具体步骤如下:
(1)将厚度50um的不锈钢衬底在清洗设备上进行刷洗和用去离子水进行表面清洗,用氮气将其表面烘干;
(2)将清洗干燥后的不锈钢衬体传送至溅射设备工艺腔体内,使用Mo靶以及MoNa靶沉积Mo底电极;
(3)将沉积有Mo底电极的不锈钢衬体以20inch/min的速度传送至第一个铜铟镓靶材腔室,其中铜铟镓合金靶中,镓的质量百分比为13.6%,靶材数量为2个,进行第一层铜铟镓薄膜溅射沉积,溅射方式为交流电源磁控溅射;其中射频功率设置为16KW,沉积压强设置为10Pa,温度设置为200℃,加热时间5min,同时向腔体内通入硒蒸汽进行硒化处理,得到第一层厚度为400nm的铜铟镓硒薄膜层;
(4)将沉积有第一层铜铟镓薄膜的不锈钢衬体继续以20inch/min的速度传送至第二个铜铟镓靶材腔室,其中铜铟镓合金靶中,镓的质量百分比为12%,靶材数量为4个,进行第二层铜铟镓薄膜溅射沉积;其中射频功率设置为10KW,沉积压强设置为0.5Pa,温度设置500℃,恒温3min,同时向腔体内通入硒蒸汽进行硒化处理,得到第二层厚度为600nm的铜铟镓硒薄膜层;
(5)将沉积有第二层铜铟镓薄膜的不锈钢衬体继续以20inch/min的速度传送至第三个铜铟镓靶材腔室,其中铜铟镓合金靶中,镓的质量百分比为25%,靶材数量为2个,进行第三层铜铟镓薄膜溅射沉积,溅射方式为脉冲直流电源磁控溅射,溅射电流为15A;其中射频功率设置为2400W,沉积压强设置为5Pa,温度设置300℃,退火处理4min,同时向腔体内通入硒蒸汽进行硒化处理,得到第三层厚度为200nm的铜铟镓硒薄膜层;
(6)将沉积完CIGS吸收层的不锈钢衬体再依次沉积CdS层,i-ZnO层,AZO层,完成整个CIGS薄膜电池的制备。
对比例1:
一种PVD法制备铜铟镓硒吸收层的方法,具体步骤如下:
(1)将厚度50um的不锈钢衬底在清洗设备上进行刷洗和用去离子水进行表面清洗,用氮气将其表面烘干;
(2)将清洗干燥后的不锈钢衬体传送至溅射设备工艺腔体内,使用Mo靶以及MoNa靶沉积Mo底电极;
(3)将沉积有Mo底电极的不锈钢衬体以20inch/min的速度传送至铜铟镓靶材腔室,其中CuInGa合金靶中,Ga的质量百分比为12%,靶材数量为8个,进行第二层铜铟镓薄膜溅射沉积;其中射频功率设置为25KW,沉积压强设置为2.4Pa,第一温区温度设置350℃,加热处理3min,第二温区设置900℃,恒温6min,第三温区温度设置600℃,退火3min,在整个过程中,向腔体内通入硒蒸汽进行硒化处理,得到厚度为1300nm的铜铟镓硒薄膜层;
(4)将沉积完CIGS吸收层的不锈钢衬体再依次沉积CdS层,i-ZnO层,AZO层,完成整个CIGS薄膜电池的制备;
对比例2:
一种PVD法制备铜铟镓硒吸收层的方法,具体步骤如下:
(1)将厚度50um的不锈钢衬底在清洗设备上进行刷洗和用去离子水进行表面清洗,用氮气将其表面烘干;
(2)将清洗干燥后的不锈钢衬体传送至溅射设备工艺腔体内,使用Mo靶以及MoNa靶沉积Mo底电极;
(3)将沉积有Mo底电极的不锈钢衬体以20inch/min的速度传送至铜铟镓靶材腔室,其中CuInGa合金靶中,Ga的质量百分比为25%,靶材数量为8个,进行第二层铜铟镓薄膜溅射沉积;其中射频功率设置为22KW,沉积压强设置为2.0Pa,第一温区温度设置350℃,加热处理3min,第二温区设置860℃,恒温6min,第三温区温度设置550℃,退火3min,在整个过程中,向腔体内通入硒蒸汽进行硒化处理,得到厚度为1240nm的铜铟镓硒薄膜层;
(4)将沉积完CIGS吸收层的不锈钢衬体再依次沉积CdS层,i-ZnO层,AZO层,完成整个CIGS薄膜电池的制备;
采用一种PVD法制备V型掺杂铜铟镓硒吸收层中镓元素沿着铜铟镓硒吸收层厚度方向分布,如下图3所示。从图3可看出,铜铟镓硒吸收层中顶部和底部的Ga分布较中间多,上述制备方法能够实现铜铟镓硒吸收层中Ga的双梯度V型掺杂。
采用PVD法制备铜铟镓硒吸收层的CIGS薄膜电池的电性能参数如下表所示:
Type Uoc(V) Jsc(mA/cm2) FF(%) Eta(%)
实施例1 0.7248 33.32 73.25 17.69
实施例2 0.7175 33.61 73.17 17.65
实施例3 0.7235 33.48 73.21 17.66
对比例1 0.6895 32.87 72.46 16.42
对比例2 0.6879 32.49 72.38 16.18
从上表可以看出本发明的一种PVD法制备V型掺杂铜铟镓硒吸收层的方法,CIGS薄膜电池转换效率1.0%以上提升。
采用PVD法制备铜铟镓硒吸收层的CIGS薄膜电池的外量子效应对比如图4所示:
从图4可以看出,采用一种PVD法制备V型掺杂铜铟镓硒吸收层做成的CIGS薄膜电池,在300-400nm短波段和800-1200nm长波段的光谱响应,得到明显提高。
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于发明的保护范围。

Claims (6)

1.一种PVD法制备V型掺杂铜铟镓硒吸收层的方法,其特征在于,包括如下步骤:
S1:采用PVD溅射法在衬底上形成第一层铜铟镓硒薄膜层:以不锈钢柔性材料为衬底,采用PVD溅射法在衬底的表面沉积第一层铜铟镓薄膜,同时进行低温硒化处理,形成第一层铜铟镓硒薄膜层;
S2:采用PVD溅射法在第一层铜铟镓硒薄膜层上形成第二层铜铟镓硒薄膜层:采用PVD溅射法在第一层铜铟镓硒薄膜上沉积第二层铜铟镓薄膜,同时在高温下进行硒化处理,形成第二层铜铟镓硒薄膜吸收层;
S3:采用PVD溅射法在第二层铜铟镓硒薄膜层上形成第三层铜铟镓硒薄膜层:采用PVD溅射法在第二层铜铟镓硒薄膜上沉积第三层铜铟镓薄膜,同时进行低温退火处理和硒化处理,形成第三层铜铟镓硒薄膜界面层。
2.根据权利要求1所述的PVD法制备V型掺杂铜铟镓硒吸收层的方法,其特征在于,
所述PVD溅射法在衬底的表面沉积第一层铜铟镓薄膜采用的铜铟镓合金靶,镓的质量百分比为13.6%,铟与镓的原子百分比满足x=Ga/(Ga+In),x=0.5;
所述形成第二层铜铟镓薄膜采用的铜铟镓合金靶,该靶材镓的质量百分比为12%,铟与镓的原子百分比满足x=Ga/(Ga+In),x=0.33;
所述形成第三层铜铟镓薄膜采用的铜铟镓合金靶,该靶材镓的质量百分比为25%,铟与镓的原子百分比满足x=Ga/(Ga+In),x=0.6。
3.根据权利要求2所述的PVD法制备V型掺杂铜铟镓硒吸收层的方法,其特征在于,
所述PVD溅射法在衬底的表面沉积第一层铜铟镓薄膜,溅射方式为交流电源磁控溅射,溅射功率为8~16KW,磁控溅射气体压强为0.1~10Pa;
所述形成第二层铜铟镓薄膜,溅射方式为交流电源磁控溅射,溅射功率为10~25KW,磁控溅射气体压强为0.1~10Pa;
所述形成第三层铜铟镓薄膜,溅射方式为脉冲直流电源磁控溅射,溅射电流为5~15A,磁控溅射气体压强为0.1~10Pa。
4.根据权利要求3所述的PVD法制备V型掺杂铜铟镓硒吸收层的方法,其特征在于,所述进行第一层铜铟镓薄膜溅射沉积的同时采用硒蒸汽进行硒化处理,硒化处理的温度为200~400℃,时间为3~5min;所述进行第二层铜铟镓薄膜溅射沉积的同时采用硒蒸汽进行硒化处理,硒化处理的温度为500~900℃,时间为3~10min;所述进行第三层铜铟镓薄膜溅射沉积的同时采用硒蒸汽进行硒化退火处理,硒化退火处理的温度为300~600℃,时间为3~5min。
5.根据权利要求5所述的PVD法制备V型掺杂铜铟镓硒吸收层的方法,其特征在于,所述第一层铜铟镓硒膜层厚度为200~400nm;所述的第二层铜铟镓硒膜层厚度为600~1200nm;所述的第三层铜铟镓硒膜层厚度为100~200nm。
6.根据权利要求1~5任一项所述的PVD法制备V型掺杂铜铟镓硒吸收层的方法,其特征在于,在进行所述步骤S1之前还包括如下步骤:在衬底的表面沉积一层Mo底电极。
CN201910540528.0A 2019-06-21 2019-06-21 一种pvd法制备v型掺杂铜铟镓硒吸收层的方法 Active CN110257770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910540528.0A CN110257770B (zh) 2019-06-21 2019-06-21 一种pvd法制备v型掺杂铜铟镓硒吸收层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910540528.0A CN110257770B (zh) 2019-06-21 2019-06-21 一种pvd法制备v型掺杂铜铟镓硒吸收层的方法

Publications (2)

Publication Number Publication Date
CN110257770A true CN110257770A (zh) 2019-09-20
CN110257770B CN110257770B (zh) 2022-02-18

Family

ID=67920129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910540528.0A Active CN110257770B (zh) 2019-06-21 2019-06-21 一种pvd法制备v型掺杂铜铟镓硒吸收层的方法

Country Status (1)

Country Link
CN (1) CN110257770B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466969A (zh) * 2020-11-27 2021-03-09 华中科技大学 一种具有v型能带结构的锑硫硒薄膜的制备方法及其应用
CN117894881A (zh) * 2024-03-12 2024-04-16 深圳先进技术研究院 一种利用多靶溅射调节cigs薄膜或太阳能电池空穴浓度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157611A (zh) * 2010-12-16 2011-08-17 友达光电股份有限公司 铜铟镓硒薄膜的制造方法
CN105070784A (zh) * 2015-07-17 2015-11-18 邓杨 一种全新的低成本高效率cigs电池吸收层制备工艺
CN106229362A (zh) * 2016-09-22 2016-12-14 东莞市联洲知识产权运营管理有限公司 一种铜铟镓硒薄膜制备方法及铜铟镓硒薄膜
CN108493262A (zh) * 2018-03-27 2018-09-04 南开大学 一种实现柔性衬底高效铜铟镓硒薄膜太阳电池的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157611A (zh) * 2010-12-16 2011-08-17 友达光电股份有限公司 铜铟镓硒薄膜的制造方法
CN105070784A (zh) * 2015-07-17 2015-11-18 邓杨 一种全新的低成本高效率cigs电池吸收层制备工艺
CN106229362A (zh) * 2016-09-22 2016-12-14 东莞市联洲知识产权运营管理有限公司 一种铜铟镓硒薄膜制备方法及铜铟镓硒薄膜
CN108493262A (zh) * 2018-03-27 2018-09-04 南开大学 一种实现柔性衬底高效铜铟镓硒薄膜太阳电池的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112466969A (zh) * 2020-11-27 2021-03-09 华中科技大学 一种具有v型能带结构的锑硫硒薄膜的制备方法及其应用
CN112466969B (zh) * 2020-11-27 2022-05-31 华中科技大学 一种具有v型能带结构的锑硫硒薄膜的制备方法及其应用
CN117894881A (zh) * 2024-03-12 2024-04-16 深圳先进技术研究院 一种利用多靶溅射调节cigs薄膜或太阳能电池空穴浓度的方法

Also Published As

Publication number Publication date
CN110257770B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN100413097C (zh) 铜铟镓硒或铜铟镓硫或铜铟镓硒硫薄膜太阳能电池吸收层的制备方法
CN106917068B (zh) 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法
Li et al. Fabrication of Cu (In, Ga) Se2 thin films solar cell by selenization process with Se vapor
CN105655235B (zh) 一种基于连续蒸发工艺制备梯度带隙光吸收层的方法和装置
CN103165748B (zh) 一种制备铜锌锡硫太阳能电池吸收层薄膜的方法
CN106057928A (zh) 一种有效阻挡铁扩散的不锈钢柔性衬底铜铟镓硒薄膜太阳能电池及其制备方法
CN105039909B (zh) 一种光伏材料及其制备方法
CN205900560U (zh) 一种有效阻挡铁扩散的不锈钢柔性衬底铜铟镓硒薄膜太阳能电池
CN102496659A (zh) 一种铜锌锡硫薄膜材料的制备方法
CN106229383B (zh) 一种镓元素均匀分布的铜铟镓硒薄膜太阳能电池及其制备方法
CN106549082B (zh) 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法
CN101150151A (zh) 一种太阳能电池用铜铟硒薄膜的制备方法
CN110257770A (zh) 一种pvd法制备v型掺杂铜铟镓硒吸收层的方法
CN106449816B (zh) 一种铜铟镓硒薄膜的制备方法
CN103474511A (zh) 铜铟镓硒光吸收层的制备方法及铜铟镓硒薄膜太阳能电池
CN105118877B (zh) 一种铜铟镓硫硒薄膜材料的制备方法
CN102214737B (zh) 太阳能电池用化合物薄膜的制备方法
CN103572229B (zh) 一种在真空卷对卷镀膜用可挠性基材上制备薄膜的方法
CN112259620A (zh) 一种Sb2Se3薄膜太阳能电池及其制备方法
CN105633212B (zh) 一种基于一步共蒸发工艺制备梯度带隙光吸收层的方法和装置
CN104393096A (zh) 一种禁带宽度可控的铜锌锡硫硒薄膜材料的制备方法
CN105810764B (zh) 一种铜铟镓硒薄膜太阳能电池光电吸收转换层的制备方法
CN108172660B (zh) Czts太阳能电池制作方法
CN105932093B (zh) 一种高质量cigs薄膜太阳能电池吸收层的制备方法
CN106024930A (zh) 一种基于高质量均匀分布预制铜层的铜铟镓硒薄膜太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220121

Address after: 554111 building A-2, e-commerce Park, high tech Industrial Development Zone, Tongren City, Guizhou Province

Applicant after: Tongren fanhui new energy Co.,Ltd.

Address before: 554300 building A-2, e-commerce Park, high tech Industrial Development Zone, Tongren City, Guizhou Province

Applicant before: TONGREN FANNENG MOBILE ENERGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant