CN110246685A - 一种钐铁氮薄膜的制备方法 - Google Patents

一种钐铁氮薄膜的制备方法 Download PDF

Info

Publication number
CN110246685A
CN110246685A CN201910643637.5A CN201910643637A CN110246685A CN 110246685 A CN110246685 A CN 110246685A CN 201910643637 A CN201910643637 A CN 201910643637A CN 110246685 A CN110246685 A CN 110246685A
Authority
CN
China
Prior art keywords
samarium
thin film
preparation
ionic liquid
iron thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910643637.5A
Other languages
English (en)
Inventor
徐靖才
洪波
王新庆
彭晓领
金红晓
金顶峰
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910643637.5A priority Critical patent/CN110246685A/zh
Publication of CN110246685A publication Critical patent/CN110246685A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/26Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明涉及一种钐铁氮薄膜的制备方法,该发明首先在磁场下采用离子液体脉冲电沉积法制备钐铁薄膜;再将钐铁薄膜置于热处理炉中退火和氢化;最后通入高纯氮气进行氮化得到钐铁氮薄膜。本发明利用磁场、离子液体和脉冲电沉积的工艺条件,使Sm3+、Fe2+能够共沉积形成钐铁薄膜;本发明纳米尺寸的钐铁薄膜,通过退火氢化,为氮化提供有利条件,得到含氮量较高的钐铁氮薄膜,且该薄膜具有较高的磁能积和优异的磁各向异性。

Description

一种钐铁氮薄膜的制备方法
技术领域
本发明涉及一种钐铁氮薄膜的制备方法,属于材料制备领域。
背景技术
永磁材料是具有较大剩磁、矫顽力、磁能积和一经磁化即能保持恒定磁性的材料。永磁材料经历了碳钢-铝镍钴-铁氧体-SmCo5-Sm2Co17-Nd2Fe14B 几个主要的发展阶段。其中稀土永磁材料是 20 世纪 60 年代发展起来的新型永磁材料,包括第一代稀土永磁 1:5型 SmCo 合金,第二代稀土永磁 2:17 型 SmCo 合金;第一代和第二代稀土永磁材料都含有稀土元素 Co,而 Co 是战略物资、价格昂贵,这在很大程度上限制了它们的广泛使用,于是人们开发了第三代Nd-Fe-B稀土永磁材料。与第一、二代稀土永磁材料相比,Nd-Fe-B的磁性能优异,迅速稀土永磁体市场,有着“磁王”的美誉。但Nd-Fe-B本身并不完美,缺点同样明显,如稀土含量高、耐腐蚀性差和高温时居里温度低等。因此人们积极探寻新一代稀土永磁材料。Sm-Fe-N 不管从磁性能方面来说,还是从生产成本上来说,都很有可能取代 Nd-Fe-B,成为人们期待的第四代稀土永磁材料。
目前,Sm-Fe-N的制备方法主要有熔体快淬法(RQ)、机械合金化法(MA)、粉末冶金法(PM)、氢化-歧化-脱氢-再化合法(HDDR)。但随着现代人类社会高科技的发展,电子器件微型化、功能兼容一体化的要求越来越高。当前工艺制备得到的Sm-Fe-N磁体难以满足高端需要,所以急需开发具有高磁能积和优异的磁各向异性的Sm-Fe-N磁性纳米材料。
发明内容
本发明的目的在于提供一种钐铁氮薄膜的制备方法,通过磁场诱导离子液体进行脉冲电沉积,再经过氢化和氮化得到钐铁氮薄膜,该制备方法得到的钐铁氮薄膜具有高磁能积和优异的磁各向异性。
为了实现上述发明目的,本发明的具体步骤为:
1)、黄铜片基体的准备:选取2*2cm2的黄铜片,用1000~3000目的砂纸依次打磨至表面光滑,然后依次经过丙酮、乙醇、10%盐酸、蒸馏水超声清洗后烘干以备用;
2)、钐铁薄膜的制备:在磁场下采用离子液体脉冲电沉积法制备钐铁薄膜:以第一步准备好的黄铜片基体为工作电极,铂电极为对电极,铂丝为辅助电极,加入离子液体后在50~70℃搅拌下进行脉冲电沉积,沉积完成用乙醇和蒸馏水清洗;
所述的磁场的方向与黄铜片基体垂直,磁场的大小为0.5~4 T;
所述的离子液体为:氯化胆碱、尿素、氯化钐、氯化亚铁;
所述的脉冲电沉积的条件为:电流密度为100~200 mA/cm2,脉冲频率为1~10 Hz,脉冲占空比为0.1~1;
所述的离子液体的配制和电沉积过程均在手套箱中进行;
3)、退火:将钐铁薄膜置于热处理炉中,以恒定的速率通入高纯氩气,在500~700℃下退火1~5h;
4)、氢化:以恒定的速率通入含90%氢气的氩氢混合气,在300~400℃下氢化10~24h;
5)、氮化:以恒定的速率通入高纯氮气,在400~500℃下氮化2~20h,降至室温,取出样品即得到钐铁氮薄膜。
技术效果:本发明利用磁场、离子液体和脉冲电沉积的工艺条件,使Sm3+、Fe2+能够共沉积形成钐铁薄膜;本发明纳米尺寸的钐铁薄膜,通过退火氢化,为氮化提供有利条件,得到含氮量较高的钐铁氮薄膜。
具体实施方式
下面是结合实施例对本发明进行详细描述,以便更好地理解本发明的目的、特点和优点。虽然本发明是结合该具体实施例进行描述,但并不意味着本发明局限于所描述具体实施例。相反,对可以包括在本发明权利要求内所限定的保护范围内的实施方式进行替代、改进和等同的实施方式,都属于本发明的保护范围。对于未特别标注的工艺参数可按常规技术进行。
本发明的具体步骤为:
1)、黄铜片基体的准备:选取2*2cm2的黄铜片,用1000~3000目的砂纸依次打磨至表面光滑,然后依次经过丙酮、乙醇、10%盐酸、蒸馏水超声清洗后烘干以备用;
2)、钐铁薄膜的制备:在磁场下采用离子液体脉冲电沉积法制备钐铁薄膜:以第一步准备好的黄铜片基体为工作电极,铂电极为对电极,铂丝为辅助电极,加入离子液体后在50~70℃搅拌下进行脉冲电沉积,沉积完成用乙醇和蒸馏水清洗;
所述的磁场的方向与黄铜片基体垂直,磁场的大小为0.5~4 T;
所述的离子液体为:氯化胆碱、尿素、氯化钐、氯化亚铁;
所述的脉冲电沉积的条件为:电流密度为100~200 mA/cm2,脉冲频率为1~10 Hz,脉冲占空比为0.1~1;
所述的离子液体的配制和电沉积过程均在手套箱中进行;
3)、退火:将钐铁薄膜置于热处理炉中,以恒定的速率通入高纯氩气,在500~700℃下退火1~5h;
4)、氢化:以恒定的速率通入含90%氢气的氩氢混合气,在300~400℃下氢化10~24h;
5)、氮化:以恒定的速率通入高纯氮气,在400~500℃下氮化2~20h,降至室温,取出样品即得到钐铁氮薄膜。
实施例1:
步骤为:
1)、黄铜片基体的准备:选取2*2cm2的黄铜片,用1000~3000目的砂纸依次打磨至表面光滑,然后依次经过丙酮、乙醇、10%盐酸、蒸馏水超声清洗后烘干以备用;
2)、钐铁薄膜的制备:先配制离子液体沉积液:将氯化胆碱和尿素以摩尔比1:2的比例在70℃下混合,再加入0.05 mol/L 氯化亚铁、0.3 mol/L 氯化钐,然后在4T的磁场下,以第一步准备好的黄铜片基体为工作电极,铂电极为对电极,铂丝为辅助电极,加入离子液体沉积液后在70℃下用电流密度为100 mA/cm2,脉冲频率为5 Hz,脉冲占空比为0.5的脉冲条件进行电沉积;沉积完成用乙醇和蒸馏水清洗;
3)、退火:将钐铁薄膜阵列置于热处理炉中,以恒定的速率通入高纯氩气,在700℃下退火2h;
4)、氢化:以恒定的速率通入含90%氢气的氩氢混合气,在300℃下氢化20h;
5)、氮化:以恒定的速率通入高纯氮气,在500℃下氮化10h,降至室温,取出样品即得到钐铁氮薄膜。
对实施例1所制备的样品进行XRD和SEM表征,检测到了钐铁氮物相,钐铁氮的形貌为纳米颗粒组成的薄膜;对钐铁氮磁薄膜进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。
实施例2:
步骤为:
1)、黄铜片基体的准备:选取2*2cm2的黄铜片,用1000~3000目的砂纸依次打磨至表面光滑,然后依次经过丙酮、乙醇、10%盐酸、蒸馏水超声清洗后烘干以备用;
2)、钐铁薄膜的制备:先配制离子液体沉积液:将氯化胆碱和尿素以摩尔比1:2的比例在50℃下混合,再加入0.1 mol/L 氯化亚铁、0.6 mol/L 氯化钐,然后在0.5T的磁场下,以第一步准备好的黄铜片基体为工作电极,铂电极为对电极,铂丝为辅助电极,加入离子液体沉积液后在50℃下用电流密度为200 mA/cm2,脉冲频率为10 Hz,脉冲占空比为0.1的脉冲条件进行电沉积;沉积完成用乙醇和蒸馏水清洗;
3)、退火:将钐铁薄膜阵列置于热处理炉中,以恒定的速率通入高纯氩气,在500℃下退火5h;
4)、氢化:以恒定的速率通入含90%氢气的氩氢混合气,在400℃下氢化10h;
5)、氮化:以恒定的速率通入高纯氮气,在400℃下氮化20h,降至室温,取出样品即得到钐铁氮薄膜。
对实施例2所制备的样品进行XRD和SEM表征,检测到了钐铁氮物相,钐铁氮的形貌为纳米颗粒组成的薄膜;对钐铁氮磁薄膜进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。
实施例3:
步骤为:
1)、黄铜片基体的准备:选取2*2cm2的黄铜片,用1000~3000目的砂纸依次打磨至表面光滑,然后依次经过丙酮、乙醇、10%盐酸、蒸馏水超声清洗后烘干以备用;
2)、钐铁薄膜的制备:先配制离子液体沉积液:将氯化胆碱和尿素以摩尔比1:2的比例在60℃下混合,再加入0.05 mol/L 氯化亚铁、0.3 mol/L 氯化钐,然后在2T的磁场下,以第一步准备好的黄铜片基体为工作电极,铂电极为对电极,铂丝为辅助电极,加入离子液体沉积液后在60℃下用电流密度为150 mA/cm2,脉冲频率为1 Hz,脉冲占空比为1的脉冲条件进行电沉积;沉积完成用乙醇和蒸馏水清洗;
3)、退火:将钐铁薄膜阵列置于热处理炉中,以恒定的速率通入高纯氩气,在600℃下退火3h;
4)、氢化:以恒定的速率通入含90%氢气的氩氢混合气,在350℃下氢化24h;
5)、氮化:以恒定的速率通入高纯氮气,在450℃下氮化15h,降至室温,取出样品即得到钐铁氮薄膜。
对实施例3所制备的样品进行XRD和SEM表征,检测到了钐铁氮物相,钐铁氮的形貌为纳米颗粒组成的薄膜;对钐铁氮磁薄膜进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。
实施例4:
步骤为:
1)、黄铜片基体的准备:选取2*2cm2的黄铜片,用1000~3000目的砂纸依次打磨至表面光滑,然后依次经过丙酮、乙醇、10%盐酸、蒸馏水超声清洗后烘干以备用;
2)、钐铁薄膜的制备:先配制离子液体沉积液:将氯化胆碱和尿素以摩尔比1:2的比例在70℃下混合,再加入0.1 mol/L 氯化亚铁、0.6 mol/L 氯化钐,然后在3T的磁场下,以第一步准备好的黄铜片基体为工作电极,铂电极为对电极,铂丝为辅助电极,加入离子液体沉积液后在70℃下用电流密度为180 mA/cm2,脉冲频率为8 Hz,脉冲占空比为0.3的脉冲条件进行电沉积;沉积完成用乙醇和蒸馏水清洗;
3)、退火:将钐铁薄膜阵列置于热处理炉中,以恒定的速率通入高纯氩气,在500℃下退火4h;
4)、氢化:以恒定的速率通入含90%氢气的氩氢混合气,在300℃下氢化20h;
5)、氮化:以恒定的速率通入高纯氮气,在500℃下氮化2h,降至室温,取出样品即得到钐铁氮薄膜。
对实施例4所制备的样品进行XRD和SEM表征,检测到了钐铁氮物相,钐铁氮的形貌为纳米颗粒组成的薄膜;对钐铁氮磁薄膜进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。

Claims (1)

1.一种钐铁氮薄膜的制备方法,其特征在于,由以下步骤组成:
1)、黄铜片基体的准备:选取2*2cm2的黄铜片,用1000~3000目的砂纸依次打磨至表面光滑,然后依次经过丙酮、乙醇、10%盐酸、蒸馏水超声清洗后烘干以备用;
2)、钐铁薄膜的制备:在磁场下采用离子液体脉冲电沉积法制备钐铁薄膜:以第一步准备好的黄铜片基体为工作电极,铂电极为对电极,铂丝为辅助电极,加入离子液体后在50~70℃搅拌下进行脉冲电沉积,沉积完成用乙醇和蒸馏水清洗;
所述的磁场的方向与黄铜片基体垂直,磁场的大小为0.5~4 T;
所述的离子液体为:氯化胆碱、尿素、氯化钐、氯化亚铁;
所述的脉冲电沉积的条件为:电流密度为100~200 mA/cm2,脉冲频率为1~10 Hz,脉冲占空比为0.1~1;
所述的离子液体的配制和电沉积过程均在手套箱中进行;
3)、退火:将钐铁薄膜置于热处理炉中,以恒定的速率通入高纯氩气,在500~700℃下退火1~5h;
4)、氢化:以恒定的速率通入含90%氢气的氩氢混合气,在300~400℃下氢化10~24h;
5)、氮化:以恒定的速率通入高纯氮气,在400~500℃下氮化2~20h,降至室温,取出样品即得到钐铁氮薄膜。
CN201910643637.5A 2019-07-17 2019-07-17 一种钐铁氮薄膜的制备方法 Pending CN110246685A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910643637.5A CN110246685A (zh) 2019-07-17 2019-07-17 一种钐铁氮薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910643637.5A CN110246685A (zh) 2019-07-17 2019-07-17 一种钐铁氮薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN110246685A true CN110246685A (zh) 2019-09-17

Family

ID=67892567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910643637.5A Pending CN110246685A (zh) 2019-07-17 2019-07-17 一种钐铁氮薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN110246685A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729091A (zh) * 2019-09-24 2020-01-24 宁波金科磁业有限公司 一种钕铁硼磁体及其制备方法
CN114735754A (zh) * 2022-05-24 2022-07-12 沈阳理工大学 一种钡铁氧体及其制备方法
CN114835169A (zh) * 2022-05-24 2022-08-02 沈阳理工大学 一种尖晶石型铁氧体及其制备方法、吸波材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026664A (ja) * 2000-07-10 2002-01-25 Toshiba Microelectronics Corp 増幅回路
KR20020026664A (ko) * 2000-10-02 2002-04-12 신현준 질화처리에 의한 사마륨-철-질소계 영구자석박막의 제조방법
CN102002748A (zh) * 2010-12-09 2011-04-06 大连大学 脉冲—超声电沉积制备铁磁性纳米复合材料的方法
CN102400191A (zh) * 2011-11-22 2012-04-04 沈阳理工大学 强磁场下制备Sm-Fe合金磁性薄膜的方法
CN103205787A (zh) * 2013-04-22 2013-07-17 南通万宝实业有限公司 一种多层薄膜结构的金属永磁薄膜的制备方法
CN104313655A (zh) * 2014-10-16 2015-01-28 昆明理工大学 一种离子液体电镀Ni-Fe合金的方法
JP2015122391A (ja) * 2013-12-23 2015-07-02 大同特殊鋼株式会社 SmFeN系磁石の製造方法およびSmFeN系磁石
CN104911643A (zh) * 2015-04-21 2015-09-16 上海大学 氯化胆碱类离子液体中由氧化铁电沉积纳米铁的方法
CN108597710A (zh) * 2018-04-13 2018-09-28 徐靖才 一种钐铁氮磁纳米阵列的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026664A (ja) * 2000-07-10 2002-01-25 Toshiba Microelectronics Corp 増幅回路
KR20020026664A (ko) * 2000-10-02 2002-04-12 신현준 질화처리에 의한 사마륨-철-질소계 영구자석박막의 제조방법
CN102002748A (zh) * 2010-12-09 2011-04-06 大连大学 脉冲—超声电沉积制备铁磁性纳米复合材料的方法
CN102400191A (zh) * 2011-11-22 2012-04-04 沈阳理工大学 强磁场下制备Sm-Fe合金磁性薄膜的方法
CN103205787A (zh) * 2013-04-22 2013-07-17 南通万宝实业有限公司 一种多层薄膜结构的金属永磁薄膜的制备方法
JP2015122391A (ja) * 2013-12-23 2015-07-02 大同特殊鋼株式会社 SmFeN系磁石の製造方法およびSmFeN系磁石
CN104313655A (zh) * 2014-10-16 2015-01-28 昆明理工大学 一种离子液体电镀Ni-Fe合金的方法
CN104911643A (zh) * 2015-04-21 2015-09-16 上海大学 氯化胆碱类离子液体中由氧化铁电沉积纳米铁的方法
CN108597710A (zh) * 2018-04-13 2018-09-28 徐靖才 一种钐铁氮磁纳米阵列的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729091A (zh) * 2019-09-24 2020-01-24 宁波金科磁业有限公司 一种钕铁硼磁体及其制备方法
CN110729091B (zh) * 2019-09-24 2021-11-16 宁波金科磁业有限公司 一种钕铁硼磁体及其制备方法
CN114735754A (zh) * 2022-05-24 2022-07-12 沈阳理工大学 一种钡铁氧体及其制备方法
CN114835169A (zh) * 2022-05-24 2022-08-02 沈阳理工大学 一种尖晶石型铁氧体及其制备方法、吸波材料
CN114835169B (zh) * 2022-05-24 2023-05-23 沈阳理工大学 一种尖晶石型铁氧体及其制备方法、吸波材料
CN114735754B (zh) * 2022-05-24 2023-06-16 沈阳理工大学 一种钡铁氧体及其制备方法

Similar Documents

Publication Publication Date Title
CN110246685A (zh) 一种钐铁氮薄膜的制备方法
Coey et al. Magnetic nitrides
KR101554217B1 (ko) 비결정질 Fe100-a-bPaMb 합금 박막 및 그 제조 방법
CN107492430A (zh) 一种钕铁硼磁体及其制备方法
CN106128679A (zh) 一种改性钕铁硼磁体和其制造方法
CN104823249A (zh) 稀土永磁粉、包括其的粘结磁体及应用该粘结磁体的器件
Lu et al. Compositional and structural analysis of FeCo films electrodeposited at different temperatures
CN105513734A (zh) 钕铁硼磁体用轻重稀土混合物、钕铁硼磁体及其制备方法
Guan et al. Investigation on the grain boundary diffusion of Dy2O3 film prepared by electrophoretic deposition for sintered Nd-Fe-B magnets
CN105761861A (zh) 一种钕铁硼磁体及其制备方法
CN100554530C (zh) 稀土类磁铁的制造方法及电镀液
CN112017832B (zh) 一种低重稀土高性能烧结钕铁硼磁体及其制备方法
US20210296028A1 (en) High temperature resistant neodymium-iron-boron magnets and method for producing the same
CN106128680A (zh) 一种改性钕铁硼磁体及其制备方法
CN108597710B (zh) 一种钐铁氮磁纳米阵列的制备方法
CN102400191A (zh) 强磁场下制备Sm-Fe合金磁性薄膜的方法
CN112017835B (zh) 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法
CN114420439B (zh) 高温氧化处理提高高丰度稀土永磁抗蚀性的方法
CN115732155A (zh) 一种高矫顽力钕铁硼磁性材料及其制备方法
CN110277211A (zh) 一种钐铁氮磁纳米管的制备方法
WO2022199232A1 (zh) 一种r-t-b系永磁材料及其制备方法和应用
Haiyang et al. Effect of Cathodic Hydrogen Evolution on the Coercivity and Thermal Stability of Sintered NdFeB Magnets
CN108660487B (zh) Nd-Fe-B磁性纳米线阵列的制备方法
CN112962122B (zh) 一种高矫顽力B掺杂FePt薄膜的制备方法
CN110379578A (zh) 一种低成本无稀土磁性材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190917

RJ01 Rejection of invention patent application after publication