CN110226325A - 摄像系统和摄像装置 - Google Patents

摄像系统和摄像装置 Download PDF

Info

Publication number
CN110226325A
CN110226325A CN201780084589.XA CN201780084589A CN110226325A CN 110226325 A CN110226325 A CN 110226325A CN 201780084589 A CN201780084589 A CN 201780084589A CN 110226325 A CN110226325 A CN 110226325A
Authority
CN
China
Prior art keywords
pixel
period
test
signal
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780084589.XA
Other languages
English (en)
Other versions
CN110226325B (zh
Inventor
河津直树
铃木敦史
蓟纯一郎
本桥裕一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017206335A external-priority patent/JP6953274B2/ja
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of CN110226325A publication Critical patent/CN110226325A/zh
Application granted granted Critical
Publication of CN110226325B publication Critical patent/CN110226325B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/74Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明能够更有效地执行用于检测异常的各种测试。摄像系统包括:安装在车辆上并通过对车辆周围的区域进行摄像来产生图像的摄像装置;及安装在车辆上并执行与对车辆实施控制的功能有关的处理的处理装置。摄像装置包括:多个像素、控制多个像素中的每一者的曝光的控制单元、以及执行预定测试的处理单元。控制单元这样控制曝光:在由多个像素中的至少一部分像素执行一次以上曝光的第一时段中完成了像素信号的读取之后,在执行一次以上曝光的第二时段中开始像素信号的读取。处理单元在位于第一时段中的像素信号的读取与第二时段中的像素信号的读取之间的第三时段中执行预定测试,处理装置基于预定测试的结果来限制对车辆实施控制的功能。

Description

摄像系统和摄像装置
技术领域
本公开涉及摄像系统和摄像装置。
背景技术
作为固态摄像装置,已知的有以诸如CMOS(互补金属氧化物半导体:Complementary Metal Oxide Semiconductor)等MOS型图像传感器为代表的放大型固态摄像装置。此外,已知的还有以CCD(电荷耦合器件:Charge Coupled Device)型图像传感器为代表的电荷传输型固态摄像装置。这些固态摄像装置广泛用于数码相机、数码摄影机等中。近年来,作为搭载在移动设备(例如带有相机的便携电话和PDA(Personal DigitalAssistant:个人数字助理)等)上的固态摄像装置,考虑到低的电源电压和电力消耗,通常使用MOS型图像传感器。
MOS型固态摄像装置包括像素阵列(像素区域)和外围电路区域。在像素阵列中,多个单位像素以二维阵列的方式布置着,每个单位像素都包括光电转换元件(例如,光电二极管)和多个像素晶体管。多个像素晶体管均由MOS晶体管形成,并且均包括三个晶体管,即传输晶体管、复位晶体管和放大晶体管,或者均包括四个晶体管,即上述三个晶体管再加上选择晶体管。
此外,近年来,固态摄像装置的用途也是多样化的,例如,随着图像分析技术或各种识别技术的发展,不仅能拍摄图像而且还能基于所拍摄的图像来识别诸如人和物体等预定对象的各种识别系统的应用也正在被研究。
引用文献列表
专利文献
专利文献1:美国专利申请公开No.2008/0158363
发明内容
要解决的技术问题
顺便提及,在将固态摄像装置应用于各种识别系统的情况下,当固态摄像装置中出现异常时,用来检测出该异常的机构是很重要的。例如,在专利文献1中,公开了通过使用故障检测电路来检测固态摄像装置的故障的机构的示例。
同时,在专利文献1中,因为当图像检测芯片的电源接通时或当接收到来自外部检查装置的信号时才使用故障检测电路执行各种测试,因此,例如在运行时间(run-time)下检测出在摄像期间发生的故障是很困难的。
针对这方面,在本公开中,提出了能够更有效地执行用于检测异常的各种测试的摄像系统和摄像装置。
解决问题的技术方案
根据本公开,提供了一种摄像系统,其包括:摄像装置,其安装在车辆上,并通过对所述车辆周围的区域进行摄像来产生图像;以及处理装置,其安装在所述车辆上,并执行与对所述车辆实施控制的功能有关的处理。这里,所述摄像装置包括:多个像素;控制所述多个像素中的每一者的曝光的控制单元;以及执行预定测试的处理单元。所述控制单元以如下方式来控制曝光:在对所述多个像素的至少一部分像素执行一次以上曝光的第一时段中完成了像素信号的读取之后,在执行一次以上曝光的第二时段中开始像素信号的读取。而且,所述处理单元在第三时段中执行所述预定测试,所述第三时段位于所述第一时段中的像素信号的读取与所述第二时段中的像素信号的读取之间。此外,所述处理装置基于所述预定测试的结果来限制对所述车辆实施控制的功能。
此外,根据本公开,提供了一种摄像装置,其包括:多个像素;控制单元,其控制所述多个像素中的每一者的曝光;以及处理单元,其执行预定测试。这里,所述控制单元以如下方式来控制曝光:在对所述多个像素的至少一部分像素执行一次以上曝光的第一时段中完成了像素信号的读取之后,在执行一次以上曝光的第二时段中开始像素信号的读取。此外,所述处理单元在第三时段中执行所述预定测试,所述第三时段位于所述第一时段中的像素信号的读取与所述第二时段中的像素信号的读取之间。
此外,根据本公开,提供了一种摄像装置,其包括:多个像素;控制单元,其控制所述多个像素中的每一者的曝光;以及处理单元,其在第三时段中执行预定测试,所述第三时段位于第一时段中的完成了基于最后曝光结果的像素信号的读取之后且位于第二时段中的最初曝光开始之前,所述第一时段是对所述多个像素中的至少一部分像素执行一次以上曝光的时段,所述第二时段是在所述第一时段之后执行一次以上曝光的时段。
本发明的有益效果
如上所述,根据本公开,提供了能够更有效地执行用于检测异常的各种测试的摄像系统和摄像装置。
应该注意,上述效果不一定是限制性的,并且除了上述效果之外或代替上述效果的是,可以实现在本说明书中描述的任何效果或能从本说明书中得出的其他效果。
附图说明
图1是示出了作为根据本公开的实施例的固态摄像装置的构造的一个示例的CMOS固态摄像装置的示意性构造的图。
图2是示出根据本公开的技术能够适用的层叠型固态摄像装置的构造示例的概要的图。
图3是示出根据本公开的实施例的固态摄像装置的一部分的功能构造的示例的框图。
图4是示出根据本公开的实施例的固态摄像装置的功能构造的另一示例的框图。
图5是示出根据本公开的实施例的固态摄像装置的构造的另一示例的图。
图6是示出根据本公开的实施例的单位像素的电路构造的示例的图。
图7是示出根据本公开的实施例的固态摄像装置的驱动控制的示例的示意性时序图。
图8是示出根据本公开的实施例的固态摄像装置的驱动控制的示例的示意性时序图。
图9是示出根据本公开的第一实施例的固态摄像装置的示意性构造的示例的框图。
图10是示出根据该实施例的固态摄像装置的示意性构造的示例的框图。
图11是示出根据该实施例的固态摄像装置的驱动控制的示例的示意性时序图。
图12是说明根据该实施例的固态摄像装置的驱动控制的示例的说明图。
图13是说明根据该实施例的固态摄像装置的驱动控制的示例的说明图。
图14是说明根据该实施例的固态摄像装置的驱动控制的示例的说明图。
图15是说明根据该实施例的固态摄像装置中的关于像素信号的校正的操作的示例的说明图。
图16是示出根据该实施例的变形例的固态摄像装置中的单位像素的电路构造的示例的图。
图17是示出根据实施例的变形例的固态摄像装置的驱动控制的示例的示意性时序图。
图18是说明根据该实施例的变形例的固态摄像装置的驱动控制的示例的说明图。
图19是说明根据该实施例的应用例的固态摄像装置的驱动控制的示例的说明图。
图20是示出根据该实施例的固态摄像装置的驱动控制的示例的示意性时序图。
图21是示出根据本公开的第二实施例的固态摄像装置的示意性构造的示例的框图。
图22是说明根据该实施例的固态摄像装置中的与像素信号的校正有关的操作的示例的说明图。
图23是说明根据该实施例的固态摄像装置中的关于像素信号的校正的操作的示例的说明图。
图24是示出根据该实施例的固态摄像装置的驱动控制的示例的示意性时序图。
图25是说明根据该实施例的固态摄像装置中的读取各像素的像素信号的示意性控制的示例的说明图。
图26是说明根据该实施例的固态摄像装置中的读取各像素的像素信号的示意性控制的示例的说明图。
图27是说明根据该实施例的固态摄像装置中的曝光时间的限制与垂直消隐时段之间的关系的时序图。
图28是说明前置相机ECU(Electronic Control Unit:电子控制单元)和摄像器件的硬件构造的说明图。
图29是说明前置相机ECU和摄像器件的硬件构造的说明图。
图30是示出车辆控制系统的示意性构造的示例的框图。
图31是辅助说明车外信息检测部和摄像部的安装位置的示例的图。
图32是示出应用于移动体的摄像装置的示意性构造的示例的框图。
具体实施方式
在下文中,将参考附图详细说明本公开的较佳实施例。注意,在本说明书和附图中,具有实质相同的功能构造的组件由相同的附图标记表示,并且将省略对它们的重复说明。
注意,将按以下顺序进行说明。
1.固态摄像装置的构造示例
1.1.示意性构造
1.2.功能构造
1.3.单位像素的电路构造
1.4.驱动控制
2.第一实施例
2.1.构造
2.2.驱动控制
2.3.变形例
2.4.评估
3.第二实施例
3.1.构造
3.2.驱动控制
3.3.曝光时间的限制与垂直消隐时段之间的关系
3.4.评估
4.应用例
4.1.移动体的应用例1
4.2.移动体的应用例2
5.结论
[1.固态摄像装置的构造示例]
下面将说明根据本实施例的固态摄像装置的构造示例。
<1.1.示意性构造>
图1示出了作为根据本公开的实施例的固态摄像装置的构造的一个示例的CMOS固态摄像装置的示意性构造。该CMOS固态摄像装置可以应用于根据各实施例的固态摄像装置。
如图1所示,本例中的固态摄像装置1包括像素阵列部3、地址解码器4、像素时序驱动电路5、列信号处理电路6、传感器控制器7和模拟电位生成电路8。
在像素阵列部3中,多个像素2以阵列的方式布置着,各像素2通过水平信号线连接到像素时序驱动电路5并且通过垂直信号线VSL连接到列信号处理电路6。多个像素2各自输出与经由光学系统(未图示)照射进来的光的光量对应的像素信号,并且从这些像素信号创建将要在像素阵列部3上成像的被摄物体的图像。
例如,像素2各自包括:作为光电转换单元的光电二极管;和多个像素晶体管(所谓的MOS晶体管)。例如,多个像素晶体管可以包括三个晶体管,即传输晶体管、复位晶体管和放大晶体管。可替代地,多个像素晶体管可以包括四个晶体管,即上述三个晶体管再加上选择晶体管。注意,稍后将另外说明单位像素的等效电路的示例。像素2可以被构造为一个单位像素。此外,像素2可以具有共用像素结构。该共用像素结构包括多个光电二极管、多个传输晶体管、待共用的一个浮动扩散部、以及待共用的每一个其他像素晶体管。也就是说,在共用像素中,用于构成单位像素的多个光电二极管和多个传输晶体管共用其他的要被共用的每一个像素晶体管。
此外,在像素阵列部3的一部分(例如,非显示区)中可以布置有不起显示作用的虚设像素2a。虚设像素2a用来获取与固态摄像装置1有关的各种信息。例如,在起到显示作用的像素2被驱动的时段内,把与亮度相应的电压施加到虚设像素2a。此时,例如,通过将流向虚设像素2a的电流转换成电压并且测量出通过该转换获得的电压,就能够预测起到显示作用的像素2的劣化。也就是说,虚设像素2a可以相当于能够检测固态摄像装置1的电气特性的传感器。
地址解码器4控制像素阵列部3的在垂直方向上的访问,并且像素时序驱动电路5根据来自地址解码器4的控制信号跟像素驱动脉冲的逻辑和(logical sum)来驱动像素2。
列信号处理电路6对从多个像素2中的各者经由垂直信号线VSL输出的像素信号执行CDS(Correlated Double Sampling:相关双采样)处理,从而执行像素信号的AD转换并且去除复位噪声。例如,列信号处理电路6包括多个AD转换器,这些AD转换器的数量对应于像素2的列数,并且列信号处理电路6能够对像素2的各列并行地执行CDS处理。此外,列信号处理电路6包括:恒电流电路,其用于形成源极跟随器电路的负载MOS单元;以及单斜率DA转换器,其用于对垂直信号线VSL的电位进行模拟-数字转换。
传感器控制器7控制固态摄像装置1的整体的驱动。例如,传感器控制器7根据用于构成固态摄像装置1的各模块的驱动周期产生时钟信号,并将所产生的时钟信号提供给各个模块。
模拟电位生成电路8产生对虚设像素2a以期望的模式进行驱动的模拟电位,以便获取与固态摄像装置1有关的各种信息。例如,像素时序驱动电路5基于由模拟电位生成电路8产生的模拟电位来驱动虚设像素2a,因此,基于来自虚设像素2a各者的输出信号来获取与固态摄像装置1有关的各种信息。
现在,将参考图2说明根据本技术的固态摄像装置1的基本示意性构造。
作为第一示例,图2的上部所示的固态摄像装置330通过在一个半导体芯片331中安装像素区域332、控制电路333和含有上述信号处理电路的逻辑电路334而构成。
作为第二示例,图2的中间所示的固态摄像装置340包括第一半导体芯片单元341和第二半导体芯片单元342。像素区域343和控制电路344安装在第一半导体芯片单元341上,并且含有上述信号处理电路的逻辑电路345安装在第二半导体芯片单元342上。然后,将第一半导体芯片单元341和第二半导体芯片单元342彼此电气连接,从而将固态摄像装置340构造成一个半导体芯片。
作为第三示例,图2的下部所示的固态摄像装置350包括第一半导体芯片单元351和第二半导体芯片单元352。像素区域353安装在第一半导体芯片单元351上,并且控制电路354和含有上述信号处理电路的逻辑电路355安装在第二半导体芯片单元352上。然后,将第一半导体芯片单元351和第二半导体芯片单元352彼此电气连接,从而将固态摄像装置350构造成一个半导体芯片。
<1.2.功能构造>
随后,将参考图3说明根据本公开的实施例的固态摄像装置的功能构造的示例。图3是示出根据本公开的实施例的固态摄像装置的一部分的功能构造的示例的框图。例如,图3所示的固态摄像装置1是诸如CMOS(Complementary Metal Oxide Semiconductor:互补金属氧化物半导体)图像传感器和CCD(Charge Coupled Device:电荷耦合器件)图像传感器等用于对被摄物体进行拍摄且获取所拍摄图像的数字数据的摄像器件。
如图3所示,固态摄像装置1包括控制单元101、像素阵列部111、选择单元112、A/D转换单元(ADC(Analog Digital Converter:模拟数字转换器))113和恒电流电路单元114。
控制单元101控制固态摄像装置1的各个单元,并且致使各个单元执行与图像数据(像素信号)的读取等有关的处理。
像素阵列部111是这样的像素区域:其中,各自包括诸如光电二极管等光电转换元件的像素结构以矩阵(阵列)的方式布置着。像素阵列部111由控制单元101控制,以便在各像素中接收被摄物体的光、对入射光执行光电转换并累积电荷、并且按照预定时序将各像素中累积的电荷作为像素信号输出。
像素121和像素122表示布置在像素阵列部111中的像素组中的两个上下相邻的像素。像素121和像素122是位于同一列中的处于连续的行中的像素。在图3的示例的情况中,如像素121和像素122所示,在各像素的电路中,使用了光电转换元件和四个晶体管。注意,各像素的电路的构造是任意的,并且可以不是图3所示的示例。
在一般的像素阵列中,针对每列都设置有像素信号的输出线。在像素阵列部111的情况中,针对每列设置有两条(两个体系)输出线。位于一列中的像素的电路每隔一行交替地连接到两条输出线。例如,从上方开始的奇数行中的像素的电路连接到其中一条输出线,并且偶数行中的像素的电路连接到另一条输出线。在图3的示例的情况下,像素121的电路连接到第一输出线(VSL1),并且像素122的电路连接到第二输出线(VSL2)。
注意,在图3中尽管为了便于说明而仅示出了对应于一列的输出线,但实际上,针对各列都类似地设置有两条输出线。列中的像素的电路每隔一行连接到各条输出线。
选择单元112包括如下这样的开关:该开关用于将像素阵列部111的每条输出线连接到ADC 113的输入端。而且,选择单元112由控制单元101控制,以控制像素阵列部111和ADC 113之间的连接。也就是说,从像素阵列部111读取的像素信号通过该选择单元112提供给ADC 113。
选择单元112包括开关131、开关132和开关133。开关131(选择SW)控制与同一列对应的两条输出线之间的连接。例如,在开关131接通(ON)的状态下,第一输出线(VSL1)和第二输出线(VSL2)连接起来,并且在开关131关断(OFF)的状态下,第一输出线(VSL1)和第二输出线(VSL2)断开。
在固态摄像装置1中,针对各条输出线都设置有一个ADC(列ADC)。因此,假设开关132和开关133处于导通状态,当开关131接通时,同一列中的两条输出线连接起来,这意味着一个像素的电路连接到两个ADC。反过来,当开关131关断时,同一列中的两条输出线断开,这意味着一个像素的电路连接到一个ADC。也就是说,开关131选择作为一个像素的信号的输出目的地的ADC(列ADC)的数量。
如上所述,开关131控制作为像素信号的输出目的地的ADC的数量,因此,固态摄像装置1能够与ADC的数量对应地输出各种各样的像素信号。也就是说,固态摄像装置1能够实现多样化的数据输出。
开关132控制着对应于像素121的第一输出线(VSL1)和对应于该输出线的ADC之间的连接。当开关132接通(ON)时,第一输出线连接到相应ADC的比较器的一个输入端。此外,当开关132关断(OFF)时,第一输出线和相应ADC的比较器的一个输入端断开。
开关133控制着对应于像素122的第二输出线(VSL2)和对应于该输出线的ADC之间的连接。当开关133接通(ON)时,第二输出线连接到相应ADC的比较器的一个输入端。此外,当开关133关断(OFF)时,第二输出线和相应ADC的比较器的一个输入端断开。
选择单元112能够根据控制单元101的控制,通过切换开关131~开关133的状态来控制作为一个像素的信号的输出目的地的ADC(列ADC)的数量。
注意,可以省略开关132和开关133中的任一者或两者,并且各条输出线和对应于该输出线的ADC可以始终地连接。然而,通过利用这些开关使得能够控制它们之间的连接和断开,就扩展了作为一个像素的信号的输出目的地的ADC(列ADC)的数量的选择范围。也就是说,通过设置这些开关,固态摄像装置1能够输出更加多样化的像素信号。
注意,尽管在图3中仅示出了对应于一列的输出线的构造,但实际上,选择单元112针对每列都具有类似于图3所示的构造(开关131至开关133)。也就是说,选择单元112针对每列都根据控制单元101的控制执行类似于上述的连接控制。
ADC 113对从像素阵列部111经由各个输出线提供的像素信号执行A/D转换,并将其作为数字数据输出。ADC 113包括与来自像素阵列部111的各个输出线对应的ADC(列ADC)。也就是说,ADC 113包括多个列ADC。对应于一个输出线的列ADC是包括比较器、DA转换器(DAC:D/A converter)和计数器的单斜率ADC。
比较器将经由垂直信号线VSL提供的像素信号的信号值(电位)和从DAC提供的斜坡波的电位进行比较,并把在这两个电位相交时的时刻下被反转的反相脉冲输出。计数器对与当像素信号的电位和斜坡波的电位相交时的时刻对应的AD时段进行计数,以便将模拟值转换为数字值。在直到像素信号的信号值和从DAC提供的斜坡波的电位彼达到此相等之前,计数器递增计数值(数字值)。当DAC输出达到信号值时,比较器使计数器停止计数。然后,由计数器1和计数器2数字化的信号从信号线“数据1”和“数据2”输出到固态摄像装置1的外部。
在输出该数据之后,计数器将计数值返回到初始值(例如,0)以进行下一个A/D转换。
ADC 113包括针对各列设置的两个体系的列ADC。例如,针对第一输出线(VSL1)设置有比较器141(COMP1)、DAC 142(DAC1)和计数器143(计数器1),并且针对第二输出线(VSL2)设置有比较器151(COMP2)、DAC 152(DAC2)和计数器153(计数器2)。尽管省略了图示,但是针对其他列的每个输出线,ADC 113具有类似的构造。
然而,在这些构造之中,DAC是可以被共用的。DAC的共用是针对每个体系而被执行的。也就是说,各列中的属于相同体系的DAC被共用为一个DAC。在图3的示例的情况下,与各列中的第一输出线(VSL1)对应的DAC作为DAC 142被共用,并且与各列中的第二输出线(VSL2)对应的DAC作为DAC 152被共用。注意,比较器和计数器是与各个输出线的每个体系对应地设置着的。
恒电流电路单元114是连接到各个输出线的恒电流电路,并由控制单元101控制和驱动。例如,恒电流电路单元114的电路包括MOS(Metal Oxide Semiconductor:金属氧化物半导体)晶体管等。该电路构造可以是任意的。然而,在图3中,为了便于说明,对应于第一输出线(VSL1)设置有MOS晶体管161(负载1),并且对应于第二输出线(VSL2)设置有MOS晶体管162(负载2)。
例如,控制单元101接收来自外部(例如,用户)的请求,选择读取模式,并控制选择单元112以控制与输出线的连接。此外,控制单元101根据所选择的读取模式来控制列ADC的驱动。此外,控制单元101除了控制列ADC之外,还视需要控制恒电流电路单元114的驱动,并且控制像素阵列部111的驱动,例如读取速率和读取时序等。
也就是说,控制单元101不仅能够控制选择单元112,而且还能致使除了选择单元112以外的各个单元以更多样化的模式操作。因此,固态摄像装置1能够输出更多样化的像素信号。
这里,图3所示的像素121和像素122相当于图1中的像素2。此外,选择单元112、ADC113和恒电流电路单元114相当于参考图1所说明的列信号处理电路6。此外,图3所示的控制单元101相当于参考图1所述的传感器控制器7。
注意,图3所示的各个单元的数量是任意的,只要它们不是不足即可。例如,可以针对各列设置三条或更多条的输出线。此外,如图3所示,通过增加从开关132输出的像素信号的并行数量或者增加开关132本身的数量,就能够增加向外部并行输出的像素信号的数量。
例如,图4是示出根据本公开的实施例的固态摄像装置的功能构造的另一示例的框图。在图4中,附图标记6a和6b各自表示与参考图1所说明的列信号处理电路6相当的构造。也就是说,在图4所示的示例中,设置了多个体系的与列信号处理电路6相当的构造(例如,比较器141和151、计数器143和153、以及恒电流电路单元114)。此外,如图4所示,可以在列信号处理电路6a和6b之间共用DAC 142和152。
此外,图5是示出根据本公开的实施例的固态摄像装置的构造的另一示例的图。在图5所示的示例中,示出了如下情况的示例:在层叠型固态摄像装置中,布置有多个像素2的像素阵列部111设置在上半导体芯片上,并且ADC 113设置在下芯片上。此外,在图5所示的示例中,像素阵列部111被分成多个区块1111,所述多个区块1111各自包括多个像素2,并且对应于每个区块1111都设置有ADC 1131。作为更具体的示例,在图5所示的示例中,像素阵列部111被分成如下的多个区块1111:各区块以10个像素×16个像素作为区块1111的单位。
此外,上述半导体芯片被层叠起来,以将区块1111中所含的各个像素2和对应于该区块1111设置的ADC 1131电气连接。作为具体示例,与区块1111中所含的各像素2连接的配线和与对应于该区块设置的ADC 1131连接的配线可以基于所谓的Cu-Cu接合而直接接合,或通过所谓的TSV(Through-Silicon Via:硅贯通通路)而连接。
如上所述,通过针对各个区块1111都设置ADC 1131,与针对各列设置ADC 113的情况相比,能够增加对来自各像素2的像素信号并行地执行A/D转换并将其作为数字数据输出的处理的并行数量。因此,例如,可以进一步缩短从各像素2读取像素信号所需的时间。此外,还可以对每个区块1111的ADC 1131各自独立地执行驱动。因此,例如,还可以更灵活地控制各像素2的像素信号的读取,例如:能够在期望的时序下,单独地从一部分区块1111中所含的各像素2读取像素信号。
此外,参考图3所说明的构造的一部分可以设置在固态摄像装置1的外部。作为具体示例,担当图3中所示的控制单元101的至少一部分功能的构造可以将来自固态摄像装置1外部的控制信号发送到固态摄像装置1内的各个构造,从而控制该构造的操作。在这种情况下,与控制单元101相当的构造相当于“控制装置”的示例。
上面已经参考图3~图5说明了根据本公开的实施例的固态摄像装置的功能构造的示例。
<1.3.单位像素的电路构造>
随后,将参考图6说明单位像素的电路构造的示例。图6是示出根据本公开的实施例的单位像素的电路构造的示例的图。如图6所示,根据本公开的实施例的单位像素2包括光电转换元件(例如,光电二极管)PD和四个像素晶体管。例如,四个像素晶体管包括传输晶体管Tr11、复位晶体管Tr12、放大晶体管Tr13和选择晶体管Tr14。例如,这些像素晶体管可以由n沟道MOS晶体管构成。
传输晶体管Tr11连接在光电转换元件PD的阴极和浮动扩散单元FD之间。通过向栅极施加传输脉冲TRG,已经由光电转换元件PD进行光电转换而得到并累积在其中的信号电荷(这里为电子)被传输到浮动扩散单元FD。
复位晶体管Tr12的漏极连接到电源VDD,并且复位晶体管Tr12的源极连接到浮动扩散单元FD。于是,在将信号电荷从光电转换元件PD传输到浮动扩散单元FD之前,向复位晶体管Tr12的栅极施加复位脉冲RST,以使浮动扩散单元FD的电位复位。
放大晶体管Tr13的栅极连接到浮动扩散单元FD,放大晶体管Tr13的漏极连接到电源VDD,并且放大晶体管Tr13的源极连接到选择晶体管Tr14的漏极。放大晶体管Tr13把被复位晶体管Tr12复位之后的浮动扩散单元FD的电位作为复位电平输出到选择晶体管Tr14。此外,在信号电荷由传输晶体管Tr11传输之后,放大晶体管Tr13将浮动扩散单元FD的电位作为信号电平输出到选择晶体管Tr14。
例如,选择晶体管Tr14的漏极连接到放大晶体管Tr13的源极,并且选择晶体管Tr14的源极连接到垂直信号线VSL。然后,当向选择晶体管Tr14的栅极施加选择脉冲SEL时该选择晶体管接通,并且从放大晶体管Tr13输出的信号被输出到垂直信号线VSL。注意,选择晶体管Tr14可以采用其被连接在电源VDD和放大晶体管Tr13的漏极之间的构造。
在根据该实施例的固态摄像装置1被构造为层叠型固态摄像装置的情况下,例如,在图2的中间或下部的第一半导体芯片单元341中形成诸如光电二极管和多个MOS晶体管等元件。此外,从图2的中间或下部的第二半导体芯片单元342供应传输脉冲、复位脉冲、选择脉冲和电源电压。此外,在与选择晶体管的漏极连接的垂直信号线VSL的后续阶段处的元件被构造为逻辑电路345,并且形成在第二半导体芯片单元342中。
上面已经参考图6说明了单位像素的电路构造的示例。
<1.4.驱动控制>
随后,作为根据本公开的实施例的固态摄像装置1的驱动控制的示例,将会说明像素的驱动和将从像素提供的像素信号转换为数字信号的ADC的驱动。
(像素的驱动)
首先,将参考图7说明像素2的驱动。图7是示出根据本公开的实施例的固态摄像装置1的驱动控制的示例的示意性时序图,并且图7示出了像素2的驱动控制的示例。
在图7中,示出了:表示一个水平同步周期的水平同步信号(XHS);用于驱动传输晶体管Tr11的TRG驱动脉冲(读取时的传输脉冲和执行电子快门时的传输脉冲);用于驱动复位晶体管Tr12的RST驱动脉冲(执行电子快门时的复位脉冲和读取时的复位脉冲);以及用于驱动选择晶体管Tr14的SEL驱动脉冲(读取时的选择脉冲)。
在电子快门期间,执行电子快门时的传输脉冲和执行电子快门时的复位脉冲被接通,以将光电转换元件PD的电位复位。之后,在累积时间的期间,电荷累积在光电转换元件PD中,并且从传感器控制器7发出读取脉冲。
在读取时,读取时的复位脉冲被接通,以将浮动扩散单元FD的电位复位,然后,对预数据相(P相)的电位执行AD转换。之后,利用读取时的传输脉冲将光电转换元件PD的电荷传输到浮动扩散单元FD,并对数据相(D相)执行AD转换。注意,在读取时,读取时的选择脉冲处于导通状态。
注意,以上仅仅是示例,并且可以根据电子快门或读取的操作来改变驱动时序的至少一部分。作为具体示例,如图7中的虚线所示,可以利用读取时的传输脉冲将光电转换元件PD的电荷传输到浮动扩散单元FD,然后,执行电子快门时的传输脉冲和执行电子快门的复位脉冲可以被接通以将光电转换元件PD的电位复位。
上面已经参考图7说明了像素2的驱动。
随后,将参考图8说明图3所示的ADC 113的一般驱动。图8是示出根据本公开的实施例的固态摄像装置1的驱动控制的示例的示意性时序图,并且图8示出了ADC 113的驱动控制的示例。注意,在本说明书中,将着重于图3所示的ADC 113中的DAC 142、比较器141和计数器143的操作来说明该ADC 113的驱动。
在图8中,示出了:表示一个水平同步周期的水平同步信号(XHS);从DAC 142输出的斜坡信号的电位(实线);从垂直信号线VSL输出的像素信号的电位(虚线);从比较器141输出的反转脉冲;以及计数器143的动作图像。
一般地,DAC 142产生具有第一斜率和第二斜率的斜坡波,在该第一斜率中,电位在用于读取像素信号的复位电平的P相中以恒定的坡度依次下降,在该第二斜率中,电位在用于读取像素信号的数据电平的D相中以恒定的坡度依次下降。此外,比较器141将像素信号的电位和斜坡波的电位进行比较,并且把在像素信号的电位和斜坡波的电位相交的时刻被反转的反转脉冲输出。然后,计数器143从P相中斜坡波开始下降的时刻到斜坡波的电位下降到像素信号的电位以下的时刻进行计数(P相计数值),之后,计数器143从D相中斜坡波开始下降的时刻到斜坡波的电位下降到像素信号的电位以下的时刻进行计数(D相计数值)。因此,获取P相计数值和D相计数值之间的差分以作为已被去除了复位噪声的像素信号。以这种方式,利用斜坡波来执行像素信号的AD转换。
上面已经参考图8说明了图3所示的ADC 113的一般驱动。
[2.第一实施例]
随后,将说明本公开的第一实施例。在本实施例中,将说明以下机制的示例:所述机制可以通过识别固态摄像装置1的各像素2中所含的光电转换元件PD的状态(例如,饱和特性)来检测光电转换元件PD的故障。注意,在以下说明中,为了将根据本实施例的固态摄像装置1与根据其他实施例的固态摄像装置1区分开,在某些情况下将根据本实施例的固态摄像装置1称为“固态摄像装置1a”。
<2.1.构造>
首先,将参考图9和图10说明根据该实施例的固态摄像装置1a的示意性构造的示例。图9和图10各自是示出根据该实施例的固态摄像装置1a的示意性构造的示例的框图。注意,在本说明书中,将着重于与参考图1~图8所述的固态摄像装置1的组件不同的组件来说明固态摄像装置1a的构造,并且将省略与固态摄像装置1的组件基本类似的组件的详细。
图9示出了根据该实施例的固态摄像装置1的电源构造的示例。注意,在图9所示的示例中,主要示出了像素时序驱动电路5向像素2提供驱动信号的部分的构造,并且省略其他构造的图示。
如图9所示,在根据该实施例的固态摄像装置1a中,分别设置有:向像素2提供电源电压的电源;和向像素时序驱动电路5提供电源电压以使像素时序驱动电路5向像素2提供驱动信号的电源。在这方面,在下文中,向像素2提供电源电压的电源也将被称为“电源VDDHPX”,并且向像素时序驱动电路5提供电源电压(即,用于向像素2提供驱动信号的电源电压)的电源也将被称为“电源VDDHVS”。
注意,在固态摄像装置1a被构造为层叠型固态摄像装置的情况下,电源VDDHPX和电源VDDHVS可以设置在不同的半导体芯片中。作为具体示例,电源VDDHPX可以设置在布置有像素2的半导体芯片(例如,图2所示的第一半导体芯片单元341)中。此外,电源VDDHVS可以设置在设置有像素时序驱动电路5的半导体芯片(例如,图2所示的第二半导体芯片单元342)中。在该构造中,布置有像素2的半导体芯片和设置有像素时序驱动电路5的半导体芯片通过连接部(例如,TSV(硅贯通通路:Through-Silicon Via))连接起来。
此外,图10示出了根据该实施例的固态摄像装置1a的构造中的与像素2的像素信号的读取有关的部分的构造的示例。也就是说,在图10所示的示例中,主要示出了与恒电流电路单元114和ADC 113相当的部分,并省略了其他构造的图示。注意,在图10中,由于MOS晶体管161、比较器141、DAC 142和计数器143基本类似于图3所示的MOS晶体管161、比较器141、DAC 142和计数器143,因此将省略它们的详细说明。此外,在图10中,比较器141、DAC142和计数器143与图3所示的ADC 113的部分相当。此外,在图10中,MOS晶体管161与图3所示的恒电流电路单元114的部分相当。
如图10所示,根据该实施例的固态摄像装置1a包括传感器数据单元211。传感器数据单元211基于从计数器143输出的信号(即,通过转换从像素2提供的像素信号而获得的数字信号)识别像素2的状态,并利用识别结果来执行各种类型的处理。
作为具体示例,传感器数据单元211可以通过利用像素2的状态的识别结果,根据所谓的故障检测来执行各种类型的处理。特别地,在根据该实施例的固态摄像装置1a中,传感器数据单元211能够在像素2所含的光电转换元件PD中发生故障的情况下,针对各像素2单独地识别出光电转换元件PD中的故障。注意,下面将分别说明针对各像素2检测该像素2所含的光电转换元件PD中的故障的机制的细节和用于识别像素2的状态的驱动控制的示例。此外,传感器数据单元211中与像素2的识别有关的部分与“识别单元”的示例相当。
此外,传感器数据单元211可以在作为上述故障检测的结果而检测到像素2的一部分中发生异常的情况下,向固态摄像装置1a的外部通知该异常的检测结果。作为具体示例,传感器数据单元211可以经由预定输出端子(即,出错引脚(Error Pin))将表示已经检测出异常的预定信号输出到固态摄像装置1a的外部。此外,作为另一示例,可以向设置在固态摄像装置1a外部的预定DSP(Digital Signal Processor:数字信号处理器)401通知已经检测出异常。利用这种构造,例如,DSP 401能够通过预定的输出单元向用户告知在固态摄像装置1a中发生了异常。此外,在固态摄像装置1a中检测到异常的情况下,DSP 401可以执行控制以限制与车辆的安全性相关的功能(ADAS功能)之中的全部或部分功能。此外,作为另一示例,对于已检测到异常的像素2的输出,DSP 401能够通过利用与该像素2不同的另一像素2(例如,相邻像素)的输出来进行校正。注意,传感器数据单元211中的用于执行控制以使像素2的异常检测结果向预定的输出目的地(例如,DSP 401)输出的部分与“输出控制单元”的示例相当。
此外,传感器数据单元211本身可以通过利用故障检测的结果来校正已检测到异常的像素2的输出。注意,该校正方法类似于由DSP 401执行校正的情况。此外,传感器数据单元211中的用于校正已检测到异常的像素2的输出的部分与“校正处理单元”的示例相当。
上面已经参考图9和图10说明了根据该实施例的固态摄像装置1a的示意性构造的示例。
<2.2.驱动控制>
随后,作为根据该实施例的固态摄像装置1a的驱动控制的示例,特别地,将说明用于识别各像素2所含的光电转换元件PD的状态并因此检测光电转换元件PD的异常的控制的示例。注意,在本说明书中,如图6所示,通过将像素2具有所谓四个晶体管构造的情况作为示例,来说明固态摄像装置1a的驱动控制的示例。例如,图11是示出根据该实施例的固态摄像装置1a的驱动控制的示例的示意性时序图,并且图11示出了用于识别像素2中所含的光电转换元件PD的状态的控制的示例。
在图11中,VDDHPX表示从电源VDDHPX施加到像素2的电源电压。此外,INCK表示同步信号,并且该同步信号的一个脉冲是在固态摄像装置1a中执行的各种处理的周期的最小单位。此外,XVS和XHS分别表示垂直同步信号和水平同步信号。也就是说,一个XVS相当于一个帧周期。此外,TRG、RST和SEL分别表示提供到传输晶体管Tr11、复位晶体管Tr12和选择晶体管Tr14的驱动信号(即,TRG驱动脉冲、RST驱动脉冲和SEL驱动脉冲)。
在根据该实施例的固态摄像装置1a中,根据光电转换元件PD的状态来进行识别的控制主要包括:第一控制,其用于在目标像素2的光电转换元件PD中累积电荷;以及第二控制,其用于读取光电转换元件PD中累积的电荷。例如,在图11所示的示例中,一个帧周期被分配给第一控制和第二控制中的每一者。在这方面,在本说明书中,如图11所示,分配给第一控制的帧周期也被称为“累积帧”,并且分配给第二控制的帧周期也被称为“读取帧”。
首先,将说明累积帧。如图11所示,在累积帧中,首先将从电源VDDHPX施加到像素2的电源电压控制为0V,然后,将电源电压控制到预定电压VDD,从而将电压VDD施加给像素2。
现在,将参考图12说明在图11中的由附图标记T11表示的时段中像素2的操作。图12是说明根据该实施例的固态摄像装置1a的驱动控制的示例的说明图,并且图12示意性地示出了在图11的时段T11中的像素2的状态。
如图11所示,在时段T11中,TRG驱动脉冲和RST驱动脉冲各自被控制为处于导通状态,SEL驱动脉冲被控制为处于关断状态,并且从电源VDDHPX施加到像素2的电压被控制为0V。结果,如图12所示,浮动扩散单元FD的电位被控制为0V,在光电转换元件PD的阳极和阴极之间产生了电位差,因此,电荷被注入到光电转换元件PD中。注意,作为图12所示的控制的结果而在光电转换元件PD中保持的电荷量是由光电转换元件PD的饱和特性来决定的,而与光电转换元件PD的光接收状态无关。也就是说,在光电转换元件PD中发生某些异常的情况下,光电转换元件PD中保持的电荷量与正常状态下相比会有所改变(例如,减少了)。注意,如图12所示,用于将电荷注入到光电转换元件PD中的控制可以以预定时序对全部像素2予以执行(所谓的全局复位),或者对各像素2以时分方式(time division)分别予以执行。
随后,将参考图13说明在图11中的由附图标记T13表示的时段中的像素2的操作。图13是说明根据该实施例的固态摄像装置1a的驱动控制的示例的说明图,并且图13示意性地示出了在图11的时段T13中的像素2的状态。
如图11所示,在时段T13中,RST驱动脉冲的导通状态被保持,并且TRG驱动脉冲被控制为关断状态。注意,SEL驱动脉冲的关断状态被保持。此外,将从电源VDDHPX施加到像素2的电压控制为VDD。利用这种控制,如图13所示,浮动扩散单元FD和光电转换元件PD之间变成非导通状态,并且浮动扩散单元FD的电位被控制为VDD。
随后,将说明读取帧。在读取帧中,在预定时序下驱动目标像素2,并且读取该像素2中的与光电转换元件PD中所累积的电荷对应的像素信号。作为具体示例,在图11所示的示例中,在由附图标记T15表示的时段中,驱动像素2,并且读取像素2的与光电转换元件PD中所累积的电荷对应的像素信号。现在,将参考图14说明在图11中的由附图标记T15表示的时段中的像素2的操作。图14是说明根据该实施例的固态摄像装置1a的驱动控制的示例的说明图,并且图14示意性地示出了在图11的时段T15中的像素2的状态。
如图11所示,在读取帧的开始处,TRG驱动脉冲、RST驱动脉冲和SEL驱动脉冲各自被控制为关断状态。此外,在读取帧中,向像素2施加电压VDD的状态被保持。随后,在时段T15中,TRG驱动脉冲、RST驱动脉冲和SEL驱动脉冲各自被控制为导通状态。利用这种控制,在时段T15中,如图14所示,传输晶体管Tr11和复位晶体管Tr12变成导通状态,并且光电转换元件PD中所累积的电荷被传输到浮动扩散单元FD并累积在浮动扩散单元FD中。此外,选择晶体管Tr14被控制为导通状态。于是,与浮动扩散单元FD中所累积的电荷(换句话说,从光电转换元件PD漏出的电荷)对应的电压被施加到放大晶体管Tr13的栅极,并且放大晶体管Tr13被控制为导通状态。结果,与施加到放大晶体管Tr13的栅极的电压对应的像素信号从像素2通过垂直信号线VSL输出。也就是说,从光电转换元件PD读取与光电转换元件PD的饱和特性对应的电荷,并且从像素2经由垂直信号线VSL输出与该电荷的读取结果对应的像素信号。
注意,例如,从像素2经由垂直信号线VSL输出的像素信号通过ADC 113被转换成数字信号,并且被输出到参考图10所说明的传感器数据单元211。此时,输出到传感器数据单元211的数字信号表示与像素2中所含的光电转换元件PD的饱和特性对应的电位。也就是说,传感器数据单元211能够基于该数字信号来针对各像素2单独地识别各像素2的状态(以及因此该像素2中所含的光电转换元件PD的状态)。因此,例如,在像素2中发生异常的情况下,传感器数据单元211能够针对各像素2单独地检测出该异常。基于这种构造,例如,传感器数据单元211能够把与已发生异常的像素2有关的信息向预定的输出目的地输出。
此外,作为另一示例,传感器数据单元211可以基于从另一像素2输出的像素信号来校正要从已发生异常的像素2输出的像素信号。例如,图15是说明根据该实施例的固态摄像装置1a中的与像素信号的校正有关的操作的示例的说明图。在图15所示的示例中,示出了如下情况的示例:对于从已发生异常的像素2输出的像素信号,基于从与该像素2相邻的另一像素2输出的像素信号来进行校正。在这种情况下,例如,传感器数据单元211仅需要基于来自已发生异常的像素2的像素信号的读取时刻来识别该像素2的位置和与该像素2相邻的另一像素2的位置。
注意,例如,有利的是,上面说明的与对各像素2中所含的光电转换元件PD的状态的识别有关的控制(例如,用于检测光电转换元件PD的异常的控制)是在目标像素2没有执行正常驱动的时机下被实施的。作为具体示例,可以在启动固态摄像装置1的时机下实施上述控制。此外,作为另一示例,在仅使用一部分像素2来拍摄图像的情况下,可以对未用来拍摄图像的其他像素2执行上述控制。
作为根据本实施例的固态摄像装置1a的驱动控制的示例,特别地,上面已经参考图11~图15说明了用于识别各像素2中所含的光电转换元件PD的状态并因此检测光电转换元件PD的异常的控制的示例。
<2.3.变形例>
随后,将说明根据本实施例的固态摄像装置1的变形例。在该变形例中,将说明像素2形成所谓的共用像素结构的情况的示例。
(电路构造)
将参考图16说明在形成共用像素结构的情况下的单位像素的电路构造的示例。如上所述,共用像素结构包括多个光电二极管、多个传输晶体管、待共用的一个浮动扩散部、以及待共用的每一个其他像素晶体管。例如,图16是示出根据该实施例的变形例的固态摄像装置中的单位像素的电路构造的示例的图,并且图16示出了七个晶体管构造的示例,在该示例中,针对一个像素布置有高灵敏度的光电二极管(PD1)、低灵敏度的光电二极管(PD2)、以及像素内电容(FC)。注意,在本说明书中,为了将根据本实施例的变形例的固态摄像装置与根据上述实施例的固态摄像装置1a区分开,在某些情况下将根据本实施例的变形例的固态摄像装置称为“固态摄像装置1c”。此外,当需要区分根据本实施例的变形例的固态摄像装置1c的像素(即,形成共用像素结构的像素)与根据上述实施例的固态摄像装置1a的像素2时,在某些情况下将形成共用像素结构的像素称为“像素2c”或“单位像素2c”。
如图16所示,单位像素2c包括光电转换元件PD1、第一传输门极单元Tr21、光电转换元件PD2、第二传输门极单元Tr22、第三传输门极单元Tr23、第四传输门极单元Tr25、电荷累积单元FC、复位门极单元Tr24、浮动扩散单元FD、放大晶体管Tr26和选择晶体管Tr27。
此外,对于单位像素2c,用于提供各种驱动信号的多条驱动线是对应于例如各像素行进行布线的。然后,从图1所示的像素时序驱动电路5经由多条驱动线提供各种驱动信号TG1、TG2、FCG、RST和SEL。这些驱动信号是如下的脉冲信号:其中,例如,在单位像素2c的每个晶体管是NMOS晶体管的情况下,高电平(例如,电源电压VDD)状态是激活状态,并且低电平状态(例如,负电位)是非激活状态。
例如,光电转换元件PD1包括PN结的光电二极管。光电转换元件PD1产生与接收的光量对应的电荷,并累积该电荷。
第一传输门极单元Tr21连接在光电转换元件PD1和浮动扩散单元FD之间。向第一传输门极单元Tr21的栅电极施加驱动信号TG1。当驱动信号TG1进入激活状态时,第一传输门极单元Tr21进入导通状态,并且光电转换元件PD1中累积的电荷经由第一传输门极单元Tr21传输到浮动扩散单元FD。
例如,光电转换元件PD2包括与光电转换元件PD1类似的PN结的光电二极管。光电转换元件PD2产生与接收的光量对应的电荷,并累积该电荷。
光电转换元件PD1和光电转换元件PD2相比较而言,例如,光电转换元件PD1具有较大的光接收面面积和较高的灵敏度,并且光电转换元件PD2具有较小的光接收面面积和较低的灵敏度。
第二传输门极单元Tr22连接在电荷累积单元FC和浮动扩散单元FD之间。向第二传输门极单元Tr22的栅电极施加驱动信号FCG。当驱动信号FCG进入激活状态时,第二传输门极单元Tr22进入导通状态,并且电荷累积单元FC的电位跟浮动扩散单元FD的电位相耦合。
第三传输门极单元Tr23连接在光电转换元件PD2和电荷累积单元FC之间。向第三传输门极单元Tr23的栅电极施加驱动信号TG2。当驱动信号TG2进入激活状态时,第三传输门极单元Tr23进入导通状态,并且光电转换元件PD2中累积的电荷经由第三传输门极单元Tr23传输到电荷累积单元FC或传输到电荷累积单元FC的电位跟浮动扩散单元FD的电位相耦合的区域。
此外,第三传输门极单元Tr23的栅电极的下部具有稍微更深的电位,并且形成了如下的溢流路径:由于电荷量超过光电转换元件PD2的饱和电荷量而从光电转换元件PD2溢出的电荷通过该溢流路径传输到电荷累积单元FC。注意,在下文中,在第三传输门极单元Tr23的栅电极的下部中形成的溢流路径将被简称为第三传输门极单元Tr23的溢流路径。
第四传输门极单元Tr25连接在第二传输门极单元Tr22及复位门极单元Tr24与浮动扩散单元FD之间。向第四传输门极单元Tr25的栅电极施加驱动信号FDG。当驱动信号FDG进入激活状态时,第四传输门极单元Tr25进入导通状态,并且在第二传输门极单元Tr22与第四传输门极单元Tr25之间以及复位门极单元Tr24与第四传输门极单元Tr25之间的节点152的电位跟浮动扩散单元FD的电位相耦合。
例如,电荷累积单元FC包括电容器,并且电荷累积单元FC连接在第二传输门极单元Tr22和第三传输门极单元Tr23之间。电荷累积单元FC的对置电极(counter electrode)被连接在用于提供电源电压VDD的电源VDD之间。电荷累积单元FC累积从光电转换元件PD2传输来的电荷。
复位门极单元Tr24连接在电源VDD和浮动扩散单元FD之间。向复位门极单元Tr24的栅电极施加驱动信号RST。当驱动信号RST进入激活状态时,复位门极单元Tr24进入导通状态,并且浮动扩散单元FD的电位复位到电源电压VDD的电平。
浮动扩散单元FD将电荷转换成电压信号(电荷-电压转换),并输出电压信号。
放大晶体管Tr26的栅电极连接到浮动扩散单元FD,放大晶体管Tr26的漏极连接到电源VDD,并且放大晶体管Tr26用作用于读取浮动扩散单元FD中所保持的电荷的读取电路,亦即是,所谓的源极跟随器电路的输入单元。也就是说,放大晶体管Tr26的源极经由选择晶体管Tr27连接到垂直信号线VSL,因此,放大晶体管Tr26和连接到垂直信号线VSL一端的恒电流源构成源极跟随器电路。
选择晶体管Tr27连接到放大晶体管Tr26的源极和垂直信号线VSL之间。向选择晶体管Tr27的栅电极施加驱动信号SEL。当驱动信号SEL进入激活状态时,选择晶体管Tr27变成导通状态,并且单位像素2c进入被选定状态。结果,从放大晶体管Tr26输出的像素信号经由选择晶体管Tr27输出到垂直信号线VSL。
注意,在本说明书中,各个驱动信号进入激活状态的情况也被称为各个驱动信号被接通或各个驱动信号被控制为处于接通状态,并且各个驱动信号进入非激活状态的情况也被称为各个驱动信号被关断或各个驱动信号被控制为处于关断状态。此外,在下文中,各个门极单元或各个晶体管进入导通状态的情况将也被称为各个门极单元或各个晶体管被接通,并且各个门极单元或各个晶体管进入非导通状态的情况将也被称为各个门极单元或各个晶体管被关断。
(驱动控制)
随后,作为根据该变形例的固态摄像装置的驱动控制的示例,特别地,将说明用于识别各像素2中所含的光电转换元件PD1和PD2各自的状态、并因此检测出光电转换元件PD1和PD2各自的异常的控制的示例。
例如,图17是示出根据该实施例的变形例的固态摄像装置1c的驱动控制的示例的示意性时序图,并且图17示出了用于识别像素2c中所含的光电转换元件PD1和PD2各自的状态的控制的示例。
在图17中,VDDHPX表示从电源VDDHPX向像素2c施加的电源电压。此外,INCK表示同步信号,并且该同步信号的一个脉冲是固态摄像装置1c中执行的各种处理的周期的最小单位。此外,XVS和XHS分别表示垂直同步信号和水平同步信号。也就是说,一个XVS相当于一个帧周期。此外,TG1、FCG、TG2和FDG分别表示提供给第一传输门极单元Tr21、第二传输门极单元Tr22、第三传输门极单元Tr23和第四传输门极单元Tr25的驱动信号(以下,也称为“TG1驱动脉冲”、“FCG驱动脉冲”、“TG2驱动脉冲”和“FDG驱动脉冲”)。此外,RST和SEL分别表示提供给复位门极单元Tr24和选择晶体管Tr27的驱动信号(即,RST驱动脉冲和SEL驱动脉冲)。
在根据该实施例的固态摄像装置1c中,与光电转换元件PD1和PD2各自的状态的识别有关的控制包括:第一控制,其用于在目标像素2c的光电转换元件PD1和PD2中累积电荷;以及第二控制,其用于读取该光电转换元件PD中累积的电荷。例如,在图17所示的示例中,一个帧周期被分配给第一控制和第二控制中的每一者。也就是说,分配给第一控制的帧周期相当于“累积帧”,并且分配给第二控制的帧周期相当于“读取帧”。
首先,将说明累积帧。如图17所示,在累积帧中,首先将从电源VDDHPX施加到像素2c的电源电压控制为0V,然后,将电源电压控制到预定电压VDD,从而将电压VDD施加给像素2c。
现在,将参考图18说明在图17中的由附图标记T21表示的时段中的像素2c的操作。图18是说明根据该实施例的变形例的固态摄像装置1c的驱动控制的示例的说明图,并且图18示意性地示出了在图17的时段T21中的像素2c的状态。
如图18所示,在时段T21中,TG1驱动脉冲、FCG驱动脉冲、TG2驱动脉冲、FDG驱动脉冲和RST驱动脉冲各自被控制为处于导通状态,并且SEL驱动脉冲被控制为处于关断状态。此外,如上所述,将从电源VDDHPX施加到像素2c的电压控制为0V。结果,浮动扩散单元FD的电位和电荷累积单元FC的电位各自被控制为0V,在光电转换元件PD1和PD2各自的阳极和阴极之间产生了电位差,并且电荷被注入到该光电转换元件PD。注意,作为图18所示的控制的结果的在光电转换元件PD1和PD2中保持的电荷量是由光电转换元件PD1和PD2的饱和特性来决定的,而与光电转换元件PD1和PD2各自的光接收状态无关。也就是说,在光电转换元件PD1中发生某些异常的情况下,光电转换元件PD1中保持的电荷量与正常状态下相比会有所改变(例如,减少了)。这也适用于光电转换元件PD2。注意,如图18所示,用于将电荷注入到光电转换元件PD1和PD2中的控制可以在预定时序下对全部像素2c予以执行(即,全局复位),或者对各像素2c以时分方式(time division)分别执行上述控制。
随后,将参考图19说明在图17中的由附图标记T23表示的时段中的像素2c的操作。图19是说明根据该实施例的应用例的固态摄像装置1c的驱动控制的示例的说明图,并且图19示意性地示出了在图17的时段T23中的像素2c的状态。
如图17所示,在时段T23中,FDG驱动脉冲和RST驱动脉冲的导通状态被保持,并且TG1驱动脉冲、FCG驱动脉冲和TG2驱动脉冲各自被控制为关断状态。注意,SEL驱动脉冲的关断状态被保持。此外,将从电源VDDHPX施加到像素2c的电压控制为VDD。利用这种控制,浮动扩散单元FD和光电转换元件PD1之间、电荷累积单元FC和光电转换元件PD2之间、以及浮动扩散单元FD和电荷累积单元FC之间各自进入非导通状态。此外,浮动扩散单元FD的电位被控制为VDD。
随后,将说明读取帧。在读取帧中,在预定时序下驱动目标像素2c,并且读取像素2c的与光电转换元件PD1和PD2中累积的电荷对应的像素信号。例如,图20是示出根据该实施例的固态摄像装置1c的驱动控制的示例的示意性时序图,并且图20示出了与像素2c的光电转换元件PD1和PD2中累积的电荷的读取有关的控制的示例。
在图20中,XHS、SEL、RST、TG1、FCG、TG2和FDG各自表示在图17中被赋予了类似附图标记的信号。此外,VSL表示经由垂直信号线输出的信号(即,从像素2c输出的像素信号)的电位。注意,在图20所示的示例中,分别示出了在暗状态和亮状态下的由VSL标记的信号。此外,RAMP表示从ADC中的DAC输出到比较器的斜坡波的电位。注意,在图20所示的示例中,在表示斜坡波的电位的变化的脉冲上,叠加地示出了表示经由垂直信号线输出的信号的在比较器内的电位变化的脉冲。此外,VCO表示从ADC中的计数器输出的电压信号。
此外,在图20中,P相表示用于读取从像素2c输出的像素信号的复位电平的预数据相。此外,D相表示用于读取像素信号的数据电平的数据相。
如图20所示,在根据该实施例的变形例的固态摄像装置1c中,首先读取与光电转换元件PD1中累积的电荷对应的第一像素信号,然后,读取与光电转换元件PD2中累积的电荷对应的第二像素信号。此外,此时,在读取第一像素信号时,首先读取P相,然后读取D相。同时,在读取第二像素信号时,因为电荷累积单元FC中累积的电荷随着P相的读取而被复位,所以首先读取D相,然后,读取P相。注意,在下文中,关于固态摄像装置1c的与第一像素信号和第二像素信号各自的读取有关的操作,将分别说明与P相的读取有关的操作和与D相的读取有关的操作。
首先,如图17所示,在读取帧的开始处,FDG驱动脉冲和RST驱动脉冲各自被控制为处于关断状态。也就是说,在读取帧的开始处,TG1驱动脉冲、FCG驱动脉冲、TG2驱动脉冲、FDG驱动脉冲、RST驱动脉冲和SEL驱动脉冲各自处于关断状态。之后,在读取帧中的预定时序下(在预定的水平同步周期中),开始从目标像素2c读取像素信号。
如图20所示,首先,执行关于与光电转换元件PD1中累积的电荷对应的第一像素信号的P相读取。具体地,在FDG驱动脉冲和SEL驱动脉冲被控制为处于导通状态时,RST驱动脉冲暂时被控制为处于导通状态,因此,浮动扩散单元FD的电位被复位到电源电压VDD的电平。此时,TG1驱动脉冲、FCG驱动脉冲和TG2驱动脉冲各自的关断状态被保持。也就是说,光电转换元件PD1和浮动扩散单元FD之间、以及电荷累积单元FC(即光电转换元件PD2)和浮动扩散单元FD之间各自进入非导通状态。因此,此时从像素2c经由垂直信号线VSL读取的像素信号表示从像素2c输出的像素信号的复位电平。
随后,执行关于与光电转换元件PD1中累积的电荷对应的第一像素信号的D相读取。具体地,TG1驱动脉冲被暂时控制为处于导通状态,并且在TG1驱动脉冲呈现为导通状态的时段中,光电转换元件PD1和浮动扩散单元FD之间进入导通状态。结果,光电转换元件PD1中累积的电荷被传输到浮动扩散单元FD,并累积在浮动扩散单元FD中。因此,与浮动扩散单元FD中累积的电荷(换句话说,从光电转换元件PD1漏出的电荷)对应的电压被施加到放大晶体管Tr26的栅极,并且放大晶体管Tr26进入导通状态。结果,从像素2c经由垂直信号线VSL输出与施加到放大晶体管Tr26的栅极的电压对应的像素信号(即,第一像素信号)。也就是说,从光电转换元件PD1读取与光电转换元件PD1的饱和特性对应的电荷,并且从像素2c经由垂直信号线VSL输出与该电荷的读取结果对应的第一像素信号。
注意,当完成了关于第一像素信号的D相读取时,在SEL驱动信号被控制为处于关断状态之后,首先,FDG驱动信号被暂时控制为处于关断状态,然后,RST驱动信号被暂时控制为处于导通状态。结果,浮动扩散单元FD的电位被复位到电源电压VDD的电平。此外,FCG驱动信号被控制为处于导通状态,并且浮动扩散单元FD和电荷累积单元FC之间进入导通状态。之后,SEL驱动信号被控制为处于导通状态,并且开始读取与光电转换元件PD2中累积的电荷对应的第二像素信号。
关于与光电转换元件PD2中累积的电荷对应的第二像素信号的读取,如上所述,首先执行D相的读取。具体地,TG1驱动脉冲被暂时控制为处于导通状态,并且在TG2驱动脉冲呈现为导通状态的时段中,光电转换元件PD2和电荷累积单元FC之间进入导通状态。也就是说,在该时段中,光电转换元件PD2、电荷累积单元FC和浮动扩散单元FD之间都进入导通状态。结果,电荷累积单元FC的电位跟浮动扩散单元FD的电位相耦合,并且光电转换元件PD2中累积的电荷被传输到该耦合区域,并累积在该耦合区域中。因此,与上述区域中累积的电荷(换句话说,从光电转换元件PD2漏出的电荷)对应的电压被施加到放大晶体管Tr26的栅极,并且放大晶体管Tr26被控制为处于导通状态。结果,从像素2c经由垂直信号线VSL输出与施加到放大晶体管Tr26的栅极的电压对应的像素信号(即,第二像素信号)。也就是说,从光电转换元件PD2读取与光电转换元件PD2的饱和特性对应的电荷,并且从像素2c经由垂直信号线VSL输出与该电荷的读取结果对应的第二像素信号。
随后,关于与光电转换元件PD2中累积的电荷对应的第二像素信号,执行P相的读取。具体地,首先,SEL驱动信号被控制为处于关断状态,然后,RST驱动信号被暂时控制为处于导通状态。结果,电荷累积单元FC的电位跟浮动扩散单元FD的电位相耦合的区域的电位被复位到电源电压VDD的电平。之后,SEL驱动信号被控制为处于导通状态,并且与上述区域的电位对应的电压被施加到放大晶体管Tr26的栅极,并且与该电压对应的像素信号(即,第二像素信号)经由垂直信号线VSL输出。此时,TG1驱动脉冲、FCG驱动脉冲和TG2驱动脉冲各自的关断状态被保持。也就是说,光电转换元件PD1和浮动扩散单元FD之间、以及电荷累积单元FC和浮动扩散单元FD之间(以及因此,光电转换元件PD2和浮动扩散单元FD之间)各自进入非导通状态。因此,此时从像素2c经由垂直信号线VSL读取的像素信号表示从像素2c输出的像素信号的复位电平。
注意,例如,从像素2c经由垂直信号线VSL依次输出的第一像素信号和第二像素信号各自通过ADC 113转换成数字信号,并输出到参考图10所说明的传感器数据单元211。此时,依次输出到传感器数据单元211的数字信号表示与像素2c中所含的光电转换元件PD1和PD2的饱和特性对应的电位。也就是说,传感器数据单元211能够基于数字信号针对各像素2c来分别识别该像素2c的状态(并因此,识别该像素2c中所含的光电转换元件PD1和PD2各自的状态)。
作为根据该实施例的固态摄像装置的变形例,上面已经参考图16~图20说明了像素形成共用像素结构的情况的示例。
<2.4.评估>
如上所述,在根据该实施例的固态摄像装置中,控制向多个像素的至少一部分像素施加的电源电压以使电荷注入到所述至少一部分像素的光电转换元件中,然后,控制向所述至少一部分像素提供的驱动信号以读取与注入到光电转换元件中的电荷对应的像素信号。基于这种构造,根据该实施例的固态摄像装置依据与所述至少一部分像素的光电转换元件的电荷对应的像素信号的读取结果,可以识别出所述至少一部分像素的状态。
利用如上所述的构造,根据该实施例的固态摄像装置,可以基于从各像素输出的像素信号来分别识别该像素的状态(并因此,识别该像素中所含的光电转换元件的状态)。因此,在该固态摄像装置中,例如,在一部分像素中发生故障的情况下,可以针对各像素检测出异常。此外,通过使用这种机制,例如,在一部分像素中发生异常的情况下,可以将与该像素有关的信息输出到预定的输出目的地。此外,作为另一示例,由于可以指定发生故障的像素的位置,因此,对于在拍摄图像时从该像素输出的像素信号,还可以基于从另一像素(例如,相邻像素)输出的像素信号来进行校正。
此外,在根据该实施例的固态摄像装置中,如上所述,控制向各像素施加的电源电压,以便将电荷注入到该像素的光电转换元件中。也就是说,作为该控制的结果的保持于光电转换元件中的电荷量是由光电转换元件PD1和PD2各自的饱和特性来决定的,而与光电转换元件的光接收状态无关。利用这种特性,根据该实施例的固态摄像装置,可以与外部环境中的光量无关地执行与各像素的状态的识别有关的控制(例如,用于检测出有故障的像素的测试)。也就是说,根据该实施例的固态摄像装置,例如,即使在外部环境中的光量很小的环境中,也可以执行用于检测各像素2的故障的测试。
[3.第二实施例]
随后,将说明根据本公开的第二实施例的固态摄像装置。在该实施例中,将会说明如下一种机制的示例:其中,固态摄像装置1在图像(特别地,动态图像)拍摄期间中更有效地执行诸如故障检测等各种测试。注意,在以下说明中,为了将根据该实施例的固态摄像装置1与根据其他实施例的固态摄像装置1区分开,在某些情况下将根据该实施例的固态摄像装置1称为“固态摄像装置1d”。
<3.1.构造>
首先,将参考图21说明根据该实施例的固态摄像装置1d的示意性构造的示例。图21是示出根据该实施例的固态摄像装置1d的示意性构造的示例的框图。注意,在本说明中,将着重于与参考图1~图8所说明的固态摄像装置1不同的组件来说明固态摄像装置1d的构造,并且将省略与固态摄像装置1基本类似的组件的详细说明。
图21示出了在根据该实施例的固态摄像装置1d的构造中的与从像素2读取像素信号有关的部分的构造的示例。也就是说,在图21所示的示例中,主要示出了与恒电流电路单元114和ADC 113相当的部分,并且省略其他构造的图示。注意,在图21中,由于MOS晶体管161、比较器141、DAC 142和计数器143基本上类似于图3所示的MOS晶体管161、比较器141、DAC 142和计数器143,因此将省略它们的详细说明。此外,在图21中,比较器141、DAC 142和计数器143与图3所示的ADC 113的部分相当,即。此外,在图21中,MOS晶体管161与图3所示的恒电流电路单元114的部分相当。
如图21所示,根据该实施例的固态摄像装置1d包括传感器数据单元221。传感器数据单元221对应于参考图10所说明的根据第一实施例的固态摄像装置1a中的传感器数据单元211。
在根据该实施例的固态摄像装置1d中,例如,图3所示的控制单元101控制各像素2的曝光时序以及基于像素2的曝光结果的像素信号的读取时序。此外,控制单元101控制固态摄像装置1d中的预定构造(例如,传感器数据单元221)的操作,以使得:在至少一部分像素2中,利用在与预定的帧速率对应的单位帧周期之中的没有执行像素2的曝光以及基于曝光结果的像素信号的读取的时段,来执行诸如故障检测等预定测试。注意,下面将分别详细说明控制单元101使诸如传感器数据单元221等预定构造执行上述预定测试的时序以及固态摄像装置1d的驱动控制的示例。
传感器数据单元221基于来自控制单元101的控制来执行诸如故障检测等预定测试。具体地,传感器数据单元221基于通过从计数器143输出的信号(即,从像素2提供的像素信号)的转换而获得的数字信号来识别固态摄像装置1d中的预定构造的状态,因而可以检测上述构造中发生的异常。
例如,传感器数据单元221能够基于从计数器143输出的数字信号来检测在至少一部分像素2、用于向各像素2提供驱动信号的构造(例如,像素时序驱动电路5或地址解码器4)、以及ADC 113中的至少任一者中发生的异常。作为具体示例,在仅在一部分像素2的数字信号中发生异常的情况下,能够识别出在该一部分像素2中发生的异常。注意,在这种情况下,传感器数据单元221仅需要例如根据作为数字信号的输出源的ADC 113或者根据数字信号的输出时刻来指定发生了异常的像素2。此外,在多个像素2的数字信号中发生异常的情况下,能够识别出在与所述多个像素2的每一者的像素信号的输出有关的构造(例如,地址解码器4、像素时序驱动电路5或ADC 113)中发生的异常。
此外,传感器数据单元221能够根据计数器143的数字信号的输出状况来检测在与至少一部分像素2连接的配线、用于向各像素2提供驱动信号的构造、以及ADC 113中的至少任一者中发生的异常。作为具体示例,在一部分列的数字信号的输出状况中发生异常(例如,在没有输出数字信号的情况下)的情况下,能够识别出在与该一部分列对应的垂直信号线中或与该一部分列对应的ADC 113中发生的异常。此外,作为另一示例,在一部分行的数字信号的输出状况中发生异常的情况下,能够识别出在与该一部分行对应的水平信号线中发生的异常。
注意,上述示例仅仅是示例,并且只要能够在固态摄像装置1a中的至少一部分构造上执行测试从而检测出在该构造中发生的异常即可,检测的对象不限于传感器数据单元221,并且检测方法也不受限。例如,根据作为测试对象的构造,用于检测该构造中发生的异常的单元可以与传感器数据单元221分开地附加设置着。此外,作为另一示例,将预定滤波器(例如,LPF(低通滤波器))应用到基于各像素2的像素信号的数字信号的输出,能够检测到至少一部分像素2中或在与该像素2相关联地被驱动的其他构造中发生的异常。
此外,在检测到固态摄像装置1d的至少一部分构造中发生了异常的情况下,传感器数据单元221可以根据检测结果执行预定处理。
作为具体示例,传感器数据单元221可以向固态摄像装置1d的外部通知在至少一部分构造中发生的异常的检测结果。作为具体示例,传感器数据单元211可以经由预定的输出端子(即,出错引脚)向固态摄像装置1d的外部输出表示检测到异常的预定信号。此外,作为另一示例,传感器数据单元211可以向设置在固态摄像装置1d外部的预定DSP(数字信号处理器)401通知已经检测到异常。注意,传感器数据单元221中的执行控制以使得在至少一部分构造中发生的异常的检测结果被输出到预定的输出目的地(例如,DSP 401)的部分与“输出控制单元”的示例相当。
此外,作为另一示例,在至少一部分构造中发生异常并且作为其结果而识别出在至少一部分像素2的输出中发生的异常的情况下,针对该一部分像素2的输出,传感器数据单元221可以基于另一像素2的输出来进行校正。
例如,图22和图23各自是说明在根据该实施例的固态摄像装置1d中与像素信号的校正有关的操作的示例的说明图。例如,图22示出了在与一部分列对应的像素信号的输出中发生异常的情况的示例。在图22所示的示例中,示出了针对与发生异常的列对应的像素信号,基于与跟该列相邻的另一列对应的像素信号来执行校正的情况的示例。在这种情况下,传感器数据单元221仅需要例如通过指定在数字信号的输出中检测到异常的ADC 113,来指定发生异常的列和跟该列相邻的另一列。
此外,作为另一示例,图23示出了在与一部分行对应的像素信号的输出中发生异常的情况的示例。在图23所示的示例中,示出了针对与发生异常的行对应的像素信号,基于与跟该行相邻的另一行对应的像素信号来执行校正的情况的示例。在这种情况下,传感器数据单元221仅需要基于例如发生了异常的像素信号的读取时刻,来指定发生异常的行和跟该行相邻的另一行。
此外,类似于上面参考图15所说明的示例,针对从发生了异常的像素2输出的像素信号,还可以基于从与像素2相邻的另一像素2输出的像素信号来进行校正。
注意,传感器数据单元221中的用于校正至少一部分像素2的输出(即,发生了异常的输出)的部分与“校正处理单元”的示例相当。
上面已经参考图21说明了根据该实施例的固态摄像装置1d的示意性构造的示例。
<3.2.驱动控制>
随后,作为根据该实施例的固态摄像装置1d的驱动控制的示例,特别地,将着重于对固态摄像装置1d的预定测试的执行时序的控制来进行说明。例如,图24是示出根据该实施例的固态摄像装置1d的驱动控制的示例的示意性时序图,并且图24示出了对固态摄像装置1d的预定测试的执行时序的控制的示例。在图24中,横轴表示时间方向,纵轴表示二维布置着的像素2在行方向上的位置。注意,在本说明书中,为了使根据该实施例的固态摄像装置1d的特征更容易理解,将着重于各像素2在单位帧周期(即,一个垂直同步周期)中多次执行了曝光和对该曝光结果的读取的情况,来说明固态摄像装置1d的驱动控制。
例如,在图24所示的示例中,固态摄像装置1d以时分(time division)的方式在单位帧周期中依次执行具有不同曝光时间的第一曝光(长曝光)、第二曝光(中等曝光)和第三曝光(短曝光)。具体地,在图24中,附图标记T111和T112分别表示第一曝光的曝光时段(长快门),并且附图标记T121和T122分别表示基于第一曝光的结果的像素信号的读取时段(长读取)。此外,附图标记T131和T132分别表示第二曝光的曝光时段(中等快门),并且附图标记T141和T142分别表示基于第二曝光的结果的像素信号的读取时段(中等读取)。此外,附图标记T151和T152分别表示第三曝光的曝光时段(短快门),并且附图标记T161和T162分别表示基于第三曝光的结果的像素信号的读取时段(短读取)。
此外,附图标记VBLK表示垂直消隐(V消隐)时段。注意,在垂直消隐时段VBLK中,例如,执行诸如列信号线的故障检测和TSV的故障检测等预定测试,并且在该时段中不从任何像素2执行像素信号的读取。也就是说,垂直消隐时段VBLK相当于从某一帧周期中的对一系列像素2的像素信号的读取被完成到下一帧周期中的对该一系列像素2的像素信号的读取被开始执行的时段。
此外,附图标记T171和T172分别相当于在各行的像素2中没有执行像素2的曝光(例如,第一曝光到第三曝光)及基于该曝光结果的像素信号的读取的时段。根据该实施例的固态摄像装置1d利用时段T171和T172来执行预定测试(例如,BIST:Built-In Self-Test(内建自测试))。预定测试的具体实例包括针对各像素的故障检测。注意,在下文中,由附图标记T171和T172中的每一者表示的时段也将被称为“BIST时段”。此外,在没有将BIST时段T171和T172特别区分的情况下,它们也会被称为“BIST时段T170”。
具体地,如图24所示,BIST时段T170是在对某一行的像素执行了一次以上曝光(例如,第一曝光至第三曝光)的单位帧周期中基于最后曝光(例如,第三曝光)的结果的像素信号的读取结束之后才开始的。此外,BIST时段T170是在该单位帧周期的下一帧周期中的最初曝光(例如,第一曝光)开始之前就结束了。作为更具体的示例,图24所示的BIST时段T171对应于从基于第三曝光结果的像素信号的读取时段T161结束之后到下一单位帧周期中的第一曝光的曝光时段T112开始的时段。注意,BIST时段T170可以设置在第一曝光和第二曝光之间,或者设置在第二曝光和第三曝光之间。如稍后将详细描述的,通过设定垂直消隐时段VBLK来生成BIST时段T170。
随后,将参考图25和图26来说明:在单位帧周期(即,一个垂直同步周期)中多次执行了曝光和基于曝光结果的读取的情况下,与各像素2的像素信号的读取有关的驱动控制的示例。图25和图26分别是说明在根据该实施例的固态摄像装置1d中关于从各像素2读取像素信号的示意性控制的示例的说明图。
在图25中,纵轴示意性地表示垂直同步周期XVS,并且横轴示意性地表示水平同步周期XHS。此外,在图25中,由附图标记L、M和S表示的方形区域示意性地表示二维布置的多个像素2中的每一者的曝光结果的读取时刻,并分别对应于第一曝光、第二曝光和第三曝光。此外,在方形区域L、M和S中,横向方向对应于二维布置的多个像素2的列方向,并且纵向方向对应于多个像素2的行方向。
也就是说,在图25所示的示例中,对于每一个水平同步周期,以行为单位对该行中所含的像素2执行像素信号的读取。此外,在图25所示的示例中,对于每一个水平同步周期,按第一曝光、第二曝光和第三曝光的顺序依次执行基于各曝光结果的像素信号的读取。
注意,在依次读取基于第一曝光、第二曝光和第三曝光中各者的结果的像素信号的情况下,不一定需要对同一行中所含的像素2执行像素信号的读取。例如,图25中的附图标记R111示意性地表示垂直同步周期的一部分时段。也就是说,在图25所示的示例中,在时段R111中,基于第一曝光、第二曝光和第三曝光的结果的像素信号是从第α行的像素2、第β行的像素2和第γ行的像素2分别读取的。
此外,图26示出了与图25所示的示例中从各像素2读取像素信号有关的示意性时序图。具体地,在图26所示的示例中,依次执行以下操作:从第α行的像素2读取基于第一曝光结果的像素信号,从第β行的像素2读取基于第二曝光结果的像素信号,以及从第γ行的像素2读取基于第三曝光结果的像素信号。此外,接下来,依次执行以下操作:从第α+1行的像素2读取基于第一曝光结果的像素信号,从第β+1行的像素2读取基于第二曝光结果的像素信号,以及从第γ+1行的像素2读取基于第三曝光结果的像素信号。
注意,上述驱动控制仅仅是示例,并且根据该实施例的固态摄像装置1d的驱动控制不必限于参考图24~图26所说明的示例,只要至少设置有BIST时段T170并且可以在BIST时段T170中执行预定测试即可。作为具体示例,根据该实施例的固态摄像装置1d可以被构造成各像素2在单位帧周期中仅执行一次曝光和曝光结果的读取。在这种情况下,BIST时段T170是在某一单位帧周期中的基于曝光结果的像素信号的读取结束之后开始的,并且BIST时段T170是在下一单位帧周期中的曝光开始时结束的。
以上,参考图24~图26,作为根据该实施例的固态摄像装置1d的驱动控制的示例,特别地着重于对固态摄像装置1d的预定测试的执行时序的控制来进行了说明。
<3.3.曝光时间的限制和垂直消隐时段之间的关系>
随后,将参考图27通过具体示例来说明根据该实施例的固态摄像装置1d中的曝光时间的限制和垂直消隐时段VBLK之间的关系。图27是说明根据该实施例的固态摄像装置1d中的曝光时间的限制和垂直消隐时段之间的关系的时序图。注意,在图27所示的示例中,类似于图24所示的示例,示出了在单位帧周期中依次执行具有不同曝光时间的第一曝光(长曝光)、第二曝光(中等曝光)和第三曝光(短曝光)的情况的示例。此外,图27中的横轴和纵轴类似于图24中的横轴和纵轴。
如图27所示,在将帧速率设为40fps(帧/秒)的情况下,单位帧周期(即,一个垂直同步周期)为25ms(毫秒)。此外,在将第一曝光至第三曝光之间的曝光时段(即,像素2中的电荷累积时段)的比率(下文中,也称为“曝光比”)分别设为16倍的情况下,假设第一曝光时段(长快门)是A,第二曝光时段(中等快门)是A/16,并且第三曝光时段(短快门)是1/256。
这里,在垂直消隐时段VBLK=0的情况下,第一曝光时段A例如基于下面所示的公式1而被计算出来,通过求解公式1来获得公式2。
[数学式1]
A(1+1/16+1/256)=25ms…公式1
A=23.44ms…公式2
也就是说,在图27所示的示例的情况下,垂直消隐时段VBLK是在将曝光比设定得大于上述条件下的曝光比或将第一曝光时段A设定得短于公式2所示的条件下的曝光时段的情况下产生的,并且这能够确保BIST时段T170。
<3.4.评估>
如上所述,根据该实施例的固态摄像装置在如下的BIST时段中执行预定测试:该BIST时段是与预定帧速率对应的单位帧周期中的没有执行至少一部分像素的曝光及基于曝光结果的像素信号的读取的时段。该BIST时段是在对至少一部分像素(例如,某一行中的像素)执行了一次以上曝光的单位帧周期中的基于最后曝光结果的像素信号的读取结束之后开始的。此外,该BIST时段是在该单位帧周期的下一帧周期中的第一曝光开始之前结束的。
利用这种构造,根据该实施例的固态摄像装置,例如,用于检测出各行中所含的像素2中的故障的测试可以在与该行对应地被规定的BIST时段中予以执行。特别地,在现有的固态摄像装置中,在对所有行执行故障检测的情况下,由于执行测试至少需要一帧以上的时段,因此,必须设置为了该测试而不执行图像拍摄的专用帧。但是,根据本实施例的固态摄像装置,可以与图像的拍摄并行地执行用于检测各行故障的测试,并且与现有的固态摄像装置相比,不需要设置为了测试而不执行图像拍摄的专用帧。
此外,根据该实施例的固态摄像装置,在垂直消隐时段中被执行的测试的至少一部分也可以在BIST时段中予以执行。利用这种构造,还可以缩短垂直消隐时段,从而进一步提高帧速率。同时,针对TSV的故障检测、针对列信号线的故障检测等等可以在垂直消隐时段中予以执行。利用这种构造,能够在维持了帧速率和确保了足够的曝光时间的同时执行各种类型的故障检测。
如上所述,根据该实施例的固态摄像装置,通过使用BIST时段执行预定测试,可以在图像拍摄期间中更有效地执行例如故障检测等各种测试。
<硬件的配置示例>
接下来,将说明前置相机ECU(电子控制单元)和摄像器件的硬件配置。前置相机ECU和摄像器件的硬件具有把下芯片1091和上芯片1092层叠起来的构造。注意,图28的下部示出了作为下芯片1091的硬件配置的平面图,并且图28的上部示出了作为上芯片1092的硬件配置的平面图。
下芯片1091和上芯片1092在图的左端部分和右端部分处各自设置有TCV(ThroughChip Via:芯片贯通通路)1093-1和1093-2,并且TCV 1093-1和1093-2贯穿下芯片1091和上芯片1092从而将这两个芯片电气连接。在下芯片1091中,行驱动单元1102(图29)设置在TCV1093-1的图中的右侧,并电气连接到TCV 1093-1。前置相机ECU 73的控制线栅极1143(图29)设置在TCV 1093-2的图中的左侧,并电气连接到TCV 1093-2。注意,稍后将会参考图29详细说明行驱动单元1102和控制线栅极1143。此外,在本说明书中,TCV和TSV被视为同义词。
此外,下芯片1091和上芯片1092在图的上端部分和下端部分处各自设置有TCV1093-11和1093-12,并且TCV 1093-11和1093-12贯穿下芯片1091和上芯片1092从而将这两个芯片电气连接。在下芯片1091中,列ADC(Analog to Digital Converter:模数转换器)1111-1设置在TCV 1093-11的图的下部,并电气连接到列ADC 1111-1。列ADC(Analog toDigital Converter:模数转换器)1111-2设置在TCV 1093-12的图的上部,并电气连接到列ADC 1111-2。
DAC(Digital to Analog Converter:数模转换器)1112设置在控制线栅极1143的左侧,位于列ADC 1111-1和1111-2的图的右端部分之间,并且如图中箭头C1和C2所示,DAC1112向列ADC 1111-1和1111-2输出斜坡电压。注意,列ADC 1111-1和1111-2以及DAC 1112的构造对应于图29中的图像信号输出单元1103。此外,由于期望DAC 1112向列ADC 1111-1和1111-2输出具有同一特性的斜坡电压,因此较佳的是,DAC 1112与列ADC 1111-1和1111-2的距离是相同的。此外,尽管在图28的示例中示出了一个DAC 1112,但是也可以针对列ADC1111-1和1111-2中的每一者都设置一个DAC 1112,即,可以设置有具有同一特性的总共两个DAC 1112。注意,稍后将参考图29详细说明图像信号输出单元1103。
此外,信号处理电路1113设置在上方的列ADC 1111-1和下方的列1111-2之间以及行驱动单元1102和DAC 1112之间,并且实现与图29中的控制单元1121、图像处理单元1122、输出单元1123和故障检测单元1124对应的功能。
在上芯片1092中,由设置在左端部分、右端部分、上端部分和下端部分处的TCV1093-1、1093-2、1093-11和1093-12包围着的矩形范围的大致整个区域被像素阵列1101占据。
基于从行驱动单元1102通过像素控制线L(图29)经由TCV 1093-1提供的控制信号,像素阵列1101将像素信号之中的属于图的上半部分中的像素的像素信号经由TCV1093-11输出到下芯片1091,并且将属于图的下半部分中的像素的像素信号经由TCV 1093-12输出到下芯片1091。
如图中的箭头B1所示,控制信号从用于实现行驱动单元1102的信号处理电路1113经由TCV1093-1和上芯片1092的像素阵列的像素控制线L输出到控制线栅极1143(图29)。通过将响应于从对应于行地址的行驱动单元1102(图29)经由像素控制线L输出的控制信号(其作为来自控制单元1121(图29)的命令信息)而从控制线栅极1143输出的信号与从控制单元1121提供的对应于行地址的控制信号的检测脉冲进行比较,控制线栅极1143(图29)可以检测出是否存在由于像素控制线L与TCV 1093-1和1093-2的断开而导致的故障。然后,如图中的箭头B2所示,控制线栅极1143将关于是否存在故障的信息输出到由信号处理电路1113实现的故障检测单元1124。
如图中的箭头A1所示,列ADC 1111-1将像素阵列1101的图的上半部分的像素的像素信号(其是经由TCV 1093-11提供过来的)以列为单位转换为数字信号,并将它们输出到信号处理电路1113。此外,如图中的箭头A2所示,列ADC 1111-2将像素阵列1101的图的下半部分的像素的像素信号(其是经由TCV 1093-12提供过来的)以列为单位转换为数字信号,并将它们输出到信号处理电路1113。
通过以这种方式形成两层,由于上芯片1092仅包括像素阵列1101,因此,可以引入一种专用于像素的半导体工艺。例如,由于在上芯片1092中没有电路晶体管,因此,不需要注意由于1000℃的退火工序等引起的特性变化。因此,可以引入一种抗白点的高温工艺。结果,可以改善特性。
此外,通过将故障检测单元1124设置在下芯片1091上,由于可以检测已经通过下芯片1091至上芯片1092或已经通过上芯片1092和下芯片1091中的TCV 1093-1和1093-2后的信号,因此,能够适宜地检测出故障。注意,上芯片1092与“第一基板”的实例相当,并且下芯片1091与“第二基板”的实例相当。
[4.应用例]
随后,将说明根据本公开的固态摄像装置的应用例。
<4.1.移动体的应用例1>
根据本公开的技术(本技术)适用于各种产品。例如,根据本公开的技术可以被实现为安装在任何类型的移动体上的装置,该移动体例如是:汽车、电动汽车、混合动力汽车、摩托车、自行车、个人移动设备、飞机、无人机、船舶和机器人等。
图30是示出作为能够应用根据本公开的实施例的技术的移动体控制系统的示例的车辆控制系统的示意性构造的示例的框图。
车辆控制系统12000包括通过通信网络12001彼此连接的多个电子控制单元。在图30所示的示例中,车辆控制系统12000包括:驱动系统控制单元12010、车身系统控制单元12020、车外信息检测单元12030、车内信息检测单元12040以及集成控制单元12050。此外,作为集成控制单元12050的功能构造,示出了微型计算机12051、声音/图像输出部12052以及车载网络接口(I/F)12053。
驱动系统控制单元12010根据各种程序来控制与车辆的驱动系统有关的设备的操作。例如,驱动系统控制单元12010起到下述各设备的控制装置的作用,这些设备是:诸如内燃机、驱动电机等用于产生车辆的驱动力的驱动力产生设备;用于将驱动力传递到车轮的驱动力传递机构;用于调节车辆的转向角的转向机构;用于产生车辆的制动力的制动设备等。
车身系统控制单元12020根据各种程序来控制设置在车体上的各种设备的操作。例如,车身系统控制单元12020起到下述各设备的控制装置的作用,这些设备是:无钥匙进入系统;智能钥匙系统;电动车窗装置;或诸如前灯、尾灯、刹车灯、转向灯、雾灯等各种灯。在这种情况下,能够将代替钥匙的从移动设备发送的无线电波或各种开关的信号输入到车身系统控制单元12020。车身系统控制单元12020接收这些输入的无线电波或信号,并且控制车辆的门锁装置、电动车窗装置、灯等。
车外信息检测单元12030检测搭载有车辆控制系统12000的车辆的外部信息。例如,车外信息检测单元12030与摄像部12031连接。车外信息检测单元12030使摄像部12031拍摄车辆外部的图像,并且接收所拍摄的图像。基于所接收到的图像,车外信息检测单元12030可以执行诸如行人、车辆、障碍物、标志、路面上的文字等的物体检测处理或距离检测处理。
摄像部12031是用于接收光并且输出与所接收的光量对应的电气信号的光学传感器。摄像部12031能够将该电气信号作为图像输出,或者能够将该电气信号作为与测量的距离有关的信息输出。此外,由摄像部12031接收的光可以是可见光,或者可以是诸如红外线等非可见光。
车内信息检测单元12040检测车辆内部的信息。例如,车内信息检测单元12040与用于检测驾驶员状态的驾驶员状态检测部12041连接。例如,驾驶员状态检测部12041包括用于拍摄驾驶员的相机。基于从驾驶员状态检测部12041输入的检测信息,车内信息检测单元12040可以计算驾驶员的疲劳程度或专注程度,或者可以判断驾驶员是否打瞌睡。
基于由车外信息检测单元12030或车内信息检测单元12040获得的车辆外部或内部信息,微型计算机12051能够计算驱动力产生设备、转向机构、或制动设备的控制目标值,并且能够向驱动系统控制单元12010输出控制命令。例如,微型计算机12051能够执行用于实现高级驾驶员辅助系统(ADAS:advanced driver assistance system)功能的协同控制,所述高级驾驶员辅助系统的功能包括:车辆的碰撞避免或撞击缓冲、基于跟车距离的跟随行驶、车速保持行驶、车辆碰撞警告、车辆偏离车道警告等。
另外,基于由车外信息检测单元12030或车内信息检测单元12040获得的关于车外或车内的信息,微型计算机12051能够通过控制驱动力产生设备、转向机构、制动设备等来执行用于实现自动驾驶的协同控制,所述自动驾驶能够使车辆自主行驶而不依赖驾驶员的操作等。
另外,基于由车外信息检测单元12030获得的关于车辆外部的信息,微型计算机12051能够向车身系统控制单元12020输出控制命令。例如,微型计算机12051能够例如根据由车外信息检测单元12030检测到的前车或对面来车的位置来控制前灯并从远光灯切换到近光灯,从而执行旨在防眩光的协同控制。
声音/图像输出部12052将声音和图像中的至少一者的输出信号发送到输出设备,该输出设备能够在视觉上或在听觉上向车上的乘客或车辆外部通知信息。在图30的示例中,作为输出设备,示出了音频扬声器12061、显示部12062和仪表面板12063。例如,显示部12062可以包括板载显示器(on-board display)和平视显示器(head-up display)中的至少一者。
图31是示出摄像部12031的安装位置的示例的图。
在图31中,作为摄像部12031,车辆12100设置有摄像部12101、12102、12103、12104和12105。
例如,摄像部12101、12102、12103、12104和12105被设置于车辆12100的前鼻、侧视镜、后保险杠和后备箱门的位置处以及车内的挡风玻璃的上部等位置。设置于前鼻处的摄像部12101和设置于车内的挡风玻璃的上部处的摄像部12105主要获取车辆12100前方的图像。设置于侧视镜处的摄像部12102和12103主要获取车辆12100侧面的图像。设置于后保险杠或后备箱门处的摄像部12104主要获取车辆12100后方的图像。由摄像部12101和12105获取的前方图像主要用于检测前车、行人、障碍物、交通信号灯、交通标志、车道等。
顺便提及,图31示出了摄像部12101~12104的拍摄范围的示例。摄像范围12111表示设置于前鼻处的摄像部12101的摄像范围,摄像范围12112和12113分别表示设置于侧视镜处的摄像部12102和12103的摄像范围。摄像范围12114表示设置于后保险杠或后备箱门处的摄像部12104的摄像范围。例如,通过将摄像部12101~12104拍摄到的图像数据叠加,从而获得从上方所视的车辆12100的鸟瞰图像。
摄像部12101~12104中的至少一者可以具有获取距离信息的功能。例如,摄像部12101~12104中的至少一者可以是由多个摄像元件构成的立体相机,或者可以是具有用于相位差检测的像素的摄像元件。
例如,基于从摄像部12101~12104获得的距离信息,微型计算机12051能够确定与摄像范围12111~12114内的各个立体物相距的距离以及该距离随时间的变化(相对于车辆12100的相对速度),因而,将特别是在车辆12100的行驶路径上最靠近的立体物、在与车辆12100大致相同的方向上以预定速度(例如,大于或等于0km/h)行驶的立体物提取为前车。此外,微型计算机12051能够设定在前车前方预先确保的跟随距离,并能够执行自动制动控制(包括跟随停止控制)、自动加速控制(包括跟随起动控制)等。因此,可以执行用于实现不依赖于驾驶员的操作等而使车辆自动行驶的自动驾驶的协同控制。
例如,基于从摄像部12101~12104获得的距离信息,微型计算机12051能够将与立体物有关的立体物数据分类为两轮车辆、普通车辆、大型车辆、行人、电线杆和其他立体物的立体物数据,提取所分类的立体物数据,并且使用所提取的立体物数据来自动避开障碍物。例如,微型计算机12051将车辆12100周围的障碍物识别为车辆12100的驾驶员能在视觉上识别的障碍物和难以在视觉上识别的障碍物。然后,微型计算机12051判定用于表示与各个障碍物发生碰撞的危险度的碰撞风险。在碰撞风险大于或等于设定值并因此存在碰撞可能性的情况下,微型计算机12051通过音频扬声器12061或显示部12062向驾驶员输出警告,并通过驱动系统控制单元12010执行强制减速或避让转向。由此,微型计算机12051能够辅助驾驶从而避免碰撞。
摄像部12101~12104中的至少一者可以是检测红外线的红外相机。例如,微型计算机12051能够通过判定摄像部12101~12104的所拍摄图像中是否存在行人来识别行人。例如,通过如下过程来执行对行人的这种识别:从作为红外相机的摄像部12101~12104的所拍摄图像中提取特征点的过程;以及通过对表示物体轮廓的一系列特征点进行图案匹配处理来判定是否有行人的过程。当微型计算机12051判定摄像部12101~12104的所拍摄图像中存在行人并因此识别出该行人时,声音/图像输出部12052控制显示单元12062使其叠加地显示出用于强调所识别出的行人的矩形轮廓线。此外,声音/图像输出部12052也可以控制显示部12062使其在所期望的位置处显示出用于表示行人的图标等。
已经说明了能够应用根据本公开的技术的车辆控制系统的示例。在上述构造中,根据本公开的技术能够应用于摄像部12031。具体地,图1所示的固态摄像装置1能够应用于摄像部12031。通过将根据本公开的技术应用于摄像部12031,例如,在用于构成摄像部12031的固态摄像装置中的至少一部分像素中发生异常的情况下,可以检测异常。此外,通过使用这种机制,例如,在一部分像素中发生异常的情况下,可以通过预定的输出部向用户告知表示发生了异常的信息。此外,在车辆控制系统12000中,可以基于识别结果来限制对车辆实施控制的功能。对车辆实施控制的功能的具体实例包括车辆碰撞规避和冲击缓和功能、基于车辆间距离的追随行驶功能、车速保持行驶功能、车辆碰撞警告功能和车道偏离警告功能。在作为识别处理的结果而判定了在摄像部12031中已经发生问题的情况下,可以限制或禁止对车辆实施控制的功能。结果,可能由于基于摄像部12031中的问题引起的错误检测而发生事故。此外,作为另一示例,还可以基于正常操作的另一像素的像素信号来校正从发生了异常的像素输出的像素信号。
<4.2.移动体的应用例2>
随后,将说明使用应用于移动体的摄像装置实现的控制的更具体示例。
例如,图32是示出应用于移动体的摄像装置的示意性构造的示例的框图。注意,图32所示的摄像装置800例如相当于图30所示的摄像部12031。如图32所示,摄像装置800包括光学系统801、固态摄像器件803、控制单元805和通信单元807。
例如,固态摄像器件803可以相当于图30所示的摄像部12031。也就是说,经由光学系统801(例如透镜)进入摄像装置800的光由固态摄像器件803光电转换为电气信号,并且对应于该电气信号的图像或对应于该电气信号的距离测量信息被输出到控制单元805。
例如,控制单元805被构造为ECU(电子控制单元),并且控制单元805基于从固态摄像器件803输出的图像或距离测量信息来执行各种类型的处理。作为具体示例,控制单元805对从固态摄像器件803输出的图像执行各种类型的分析处理,从而基于分析结果执行对诸如外部的人、车辆、障碍物、标志和路面上的文字等物体的识别或者与该物体相距的距离的测量。
此外,控制单元805经由通信单元807连接到车载网络(CAN:控制器区域网络(Controller area Network))。通信单元807相当于具有所谓的CAN通信的接口。基于这种构造,例如,控制单元805与连接到车载网络的另一控制单元(例如,图30所示的集成控制单元12050)之间进行各种类型的信息的收/发。
基于如上所述的构造,如上所述,控制单元805能够例如通过使用物体的识别结果或与物体相距的距离的测量结果来提供各种功能。
上述功能的具体实例包括以下功能。
-FCW(Pedestrian Detection for Forward Collision Warning:用于前方碰撞警告的行人检测)
-AEB(Automatic Emergency Braking:自动紧急制动)
-用于FCW/AEB的车辆检测
-LDW(Lane Departure Warning:车道偏离警告)
-TJP(Traffic Jam Pilot:交通堵塞向导)
-LKA(Lane Keeping Aid:车道保持辅助)
-VO ACC(Vision Only Adaptive Cruise Control:仅基于视觉的自适应巡航控制)
-VO TSR(Vision Only Traffic Sign Recognition):仅基于视觉的交通标志识别)
-IHC(Intelligent Head Ramp Control:智能摄像头坡道控制)
作为更具体的示例,在车辆很可能与外部物体(例如行人和另一车辆)碰撞的情况下,控制单元805能够计算车辆与该物体碰撞之前的时间。因此,例如,在将这种时间的计算结果通知给集成控制单元12050的情况下,集成控制单元12050能够使用所通知的消息来实现上述FCW。
此外,作为另一示例,控制单元805能够基于车辆的前方图像的分析结果来检测前方车辆的刹车灯。也就是说,在将检测结果通知给集成控制单元12050的情况下,集成控制单元12050能够使用所通知的信息来实现上述AEB。
此外,作为另一示例,控制单元805能够基于车辆的前方图像的分析结果来识别车辆行驶的车道、车道的终点、路缘等。因此,在将识别结果通知给集成控制单元12050的情况下,集成控制单元12050能够使用所通知的信息来实现上述LDW。
此外,控制单元805可以基于车辆的前方图像的分析结果来识别出是否存在前方车辆,并向集成控制单元12050通知识别结果。于是,集成控制单元12050例如能够在执行上述TJP时根据是否存在前方车辆来控制车速。此外,控制单元805可以基于车辆的前方图像的分析结果来识别标志,并且向集成控制单元12050通知识别结果。结果,集成控制单元12050例如在执行上述TJP时能够根据标志的识别结果来识别速度限制,并且能够根据该速度限制来控制车速。类似地,控制单元805还能识别高速公路的出入口、行驶车辆是否已经到达弯道等,并且该识别结果可以被集成控制单元12050用来进行车辆控制。
此外,控制单元805还能够基于车辆前方图像的分析结果来识别位于车辆前方的光源。也就是说,在向集成控制单元12050通知该光源的识别结果的情况下,集成控制单元12050能够使用所通知的信息来实现上述IHC。作为具体示例,集成控制单元12050能够根据所识别的光源的光量来控制前灯的光量。此外,作为另一示例,集成控制单元12050还能够根据所识别的光源的位置来控制右前灯和左前灯中的任一者的光量。
此外,如上所述,通过应用根据该实施例的固态摄像器件,例如,在固态摄像器件803中发生异常的情况下,控制单元805能够基于从固态摄像器件803输出的信息来检测出该异常。因此,例如,控制单元805通过车载网络向集成控制单元12050通知固态摄像器件803的异常的检测结果,因此,集成控制单元12050能够执行各种类型的控制以确保安全性。
作为具体示例,集成控制单元12050可以通过各种输出设备向用户通知固态摄像器件803中发生异常。注意,输出设备的实例包括图30所示的音频扬声器12061、显示部12062和仪表面板12063。
此外,作为另一示例,集成控制单元12050可以在其识别出了在固态摄像器件803中发生异常的情况下,基于该识别结果来控制车辆的操作。作为更具体的示例,集成控制单元12050可以限制例如上述TJP和LKA之类的所谓自动控制的功能。此外,集成控制单元12050可以执行例如车速的限制等用于确保安全性的控制。
如上所述,通过将根据本公开的技术应用于移动体(例如汽车)的车载系统,即使在固态摄像器件803中发生异常并且难以正常地执行各种类型的处理的情况下,也可以检测到异常。因此,例如,根据异常的检测结果,可以实现用于确保安全性的诸如下列之类的各种处置措施:例如向用户通知与异常有关的通知信息,并控制与各种类型的识别处理有关的构造的操作。
[5.结论]
尽管已经参考附图详细地说明了本公开的有利实施例,但是本公开的技术范围不限于这些示例。显而易见的是,本公开领域的技术人员可以在权利要求所述的技术构思的范围内想到各种修改或变更,当然可以理解的是,这些修改或变更也在本公开的技术范围内。
此外,本说明书中描述的效果仅仅是说明性的或示例性的,而不是限制性的。也就是说,根据本公开的技术,除了上述效果之外或可以代替上述效果的是,还可以具有本领域技术人员从本说明书的描述中明显得知的其他效果。
注意,以下构造也在本公开的技术范围内。
(1)一种摄像装置,包括:
多个像素;
控制单元,其控制所述多个像素中的每一者的曝光;以及
处理单元,其在第三时段中执行预定测试,所述第三时段位于第一时段中的完成了基于最后曝光结果的像素信号的读取之后且位于第二时段中的最初曝光开始之前,所述第一时段是所述多个像素中的至少一部分像素执行一次以上曝光的时段,所述第二时段是在所述第一时段之后执行一次以上曝光的时段。
(2)根据上面(1)所述的摄像装置,其中
所述第一时段和所述第二时段均是对应于预定帧速率的单位帧周期。
(3)根据上面(2)所述的摄像装置,其中
所述第三时段是根据所述单位帧周期中的垂直消隐时段来设定的。
(4)根据上面(3)所述的摄像装置,其中
在所述单位帧周期中对所述多个像素执行多次曝光,并且
所述多次曝光的总曝光时间比所述单位帧周期短。
(5)根据上面(4)所述的摄像装置,其中
所述垂直消隐时段是根据所述多次曝光之间的曝光比来决定的。
(6)根据上面(1)~(5)中任一项所述的摄像装置,其中
所述控制单元逐行地控制以矩阵形式呈二维布置的所述多个像素中的每一者的曝光的开始时序,并且
所述处理单元逐行地对该行中所包括的像素在第三时段中执行所述测试,所述第三时段位于所述第一时段中的完成了基于最后曝光结果的像素信号的读取之后且位于所述第二时段中的最初曝光开始之前。
(7)根据上面(1)~(6)中任一项所述的摄像装置,其中
作为所述测试,所述处理单元对所述多个像素中的所述一部分像素执行测试。
(8)根据上面(1)~(7)中任一项所述的摄像装置,还包括:
驱动电路,其向所述多个像素中的每一者提供驱动信号,
其中,作为所述测试,所述处理单元对所述驱动电路执行测试。
(9)根据上面(1)~(8)中任一项所述的摄像装置,还包括:
AD转换单元,其将从所述像素读取的模拟像素信号转换为数字信号,
其中,作为所述测试,所述处理单元对所述AD转换单元执行测试。
(10)根据上面(1)~(9)中任一项所述的摄像装置,其中
作为所述测试,所述处理单元对连接到所述多个像素中的所述一部分像素的配线执行测试。
(11)根据上面(1)~(10)中任一项所述的摄像装置,还包括:
输出控制单元,其执行把与所述测试的结果对应的信息向预定输出目的地输出的控制。
(12)根据上面(1)~(11)中任一项所述的摄像装置,还包括:
校正处理单元,其根据所述测试的结果来校正从所述多个像素中的至少一部分像素输出的像素信号。
(13)一种控制装置,包括:
控制单元,其控制多个像素中的每一者的曝光;以及
处理单元,其在第三时段中对所述多个像素的至少一部分像素执行测试,所述第三时段位于第一时段中的完成了基于最后曝光结果的像素信号的读取之后且位于第二时段中的最初曝光开始之前,所述第一时段是所述多个像素中的所述至少一部分像素执行一次以上曝光的时段,所述第二时段是在所述第一时段之后执行一次以上曝光的时段。
(14)根据上面(13)所述的控制装置,还包括:
输出控制单元,其执行把与所述测试的结果对应的信息呈现给预定输出单元的控制。
(15)根据上面(13)或(14)所述的控制装置,还包括:
校正处理单元,其根据所述测试的结果,基于从所述多个像素读取像素信号的结果来校正图像。
(16)一种控制方法,包括通过计算机来进行以下操作:
控制多个像素中的每一者的曝光;以及
在第三时段中对所述多个像素的至少一部分像素执行测试,所述第三时段位于第一时段中的完成了基于最后曝光结果的像素信号的读取之后且位于第二时段中的最初曝光开始之前,所述第一时段是所述多个像素中的所述至少一部分像素执行一次以上曝光的时段,所述第二时段是在所述第一时段之后执行一次以上曝光的时段。
附图标记的说明
1,1a,1c,1d 固态摄像装置
2,2c 像素
2a 虚设像素
3 像素阵列部
4 地址解码器
5 像素时序驱动电路
6 列信号处理电路
7 传感器控制器
8 模拟电位生成电路
101 控制单元
111 像素阵列部
112 选择单元
114 恒电流电路单元
121,122 像素
131,132,133 开关
141 比较器
143 计数器
152 节点
153 计数器
161,162 MOS晶体管
211 传感器数据单元
221 传感器数据单元
401 DSP(数字信号处理器)

Claims (35)

1.一种摄像系统,包括:
摄像装置,其安装在车辆上,并通过对所述车辆周围的区域进行摄像来产生图像;以及
处理装置,其安装在所述车辆上,并执行与对所述车辆实施控制的功能有关的处理,
其中,所述摄像装置包括:
多个像素;
控制单元,其控制所述多个像素中的每一者的曝光;和
处理单元,其执行预定测试,
所述控制单元以如下方式来控制曝光:在对所述多个像素中的至少一部分像素执行一次以上曝光的第一时段中完成了像素信号的读取之后,在执行一次以上曝光的第二时段中开始像素信号的读取,
所述处理单元在第三时段中执行所述预定测试,所述第三时段位于所述第一时段中的像素信号的读取与所述第二时段中的像素信号的读取之间,并且
所述处理装置基于所述预定测试的结果来限制对所述车辆实施控制的功能。
2.根据权利要求1所述的摄像系统,其中
所述处理单元基于所述预定测试的结果来检测所述摄像装置的故障状况,并且
在检测到所述摄像装置的故障状况的情况下,所述处理装置限制对所述车辆实施控制的功能。
3.根据权利要求1所述的摄像系统,其中
在限制对所述车辆实施控制的功能的情况下,向乘员通知对所述车辆实施控制的功能被限制。
4.根据权利要求1所述的摄像系统,其中
所述第一时段和所述第二时段均是对应于预定帧速率的单位帧周期。
5.根据权利要求4所述的摄像系统,其中
所述第三时段是根据所述单位帧周期中的垂直消隐时段来设定的。
6.根据权利要求4所述的摄像系统,其中
在所述单位帧周期中对所述多个像素执行多次曝光,并且
所述多次曝光的总曝光时间比所述单位帧周期短。
7.根据权利要求5所述的摄像系统,其中
所述垂直消隐时段是根据所述多次曝光之间的曝光比来决定的。
8.根据权利要求1所述的摄像系统,其中
在所述第三时段中,所述处理单元在所述第一时段中的像素信号的读取与所述第二时段中的像素信号的快门之间执行所述预定测试。
9.根据权利要求8所述的摄像系统,其中
所述控制单元逐行地控制以矩阵形式呈二维布置的所述多个像素中的每一者的曝光的开始时序,并且
所述处理单元逐行地在第三时段中执行所述测试。
10.根据权利要求1所述的摄像系统,其中
所述第三时段是垂直消隐时段。
11.根据权利要求1所述的摄像系统,其中
作为所述测试,所述处理单元对所述多个像素中的所述一部分像素执行测试。
12.根据权利要求1所述的摄像系统,还包括:
驱动电路,其向所述多个像素中的每一者提供驱动信号,
其中,作为所述测试,所述处理单元对所述驱动电路执行测试。
13.根据权利要求1所述的摄像系统,还包括:
AD转换单元,其将从所述像素读取的模拟像素信号转换为数字信号,
其中,作为所述测试,所述处理单元对所述AD转换单元执行测试。
14.根据权利要求1所述的摄像系统,其中
作为所述测试,所述处理单元对连接到所述多个像素中的所述一部分像素的配线执行测试。
15.根据权利要求1所述的摄像系统,还包括:
输出控制单元,其执行把与所述测试的结果对应的信息向预定输出目的地输出的控制。
16.根据权利要求1所述的摄像系统,还包括:
校正处理单元,其根据所述测试的结果来校正从所述多个像素中的所述至少一部分像素输出的像素信号。
17.根据权利要求1所述的摄像系统,其中
所述多个像素布置在第一基板上,并且
所述控制单元和所述处理单元设置在与所述第一基板层叠的第二基板上。
18.根据权利要求17所述的摄像系统,还包括:
像素控制线,其设置在所述第一基板上,并连接到所述多个像素;以及
驱动电路,其设置在所述第二基板上,并将驱动信号提供给所述多个像素中的每一者,
其中,所述像素控制线的一端通过第一连接电极连接到所述驱动电路,
所述像素控制线的另一端通过第二连接电极连接到所述处理单元,
所述驱动电路通过所述第一连接电极将所述驱动信号提供给所述像素控制线,并且
所述处理单元基于通过所述第一连接电极、所述像素控制线和所述第二连接电极提供过来的所述驱动信号执行所述测试。
19.根据权利要求1所述的摄像系统,还包括:
输出单元,其输出与所述预定测试的结果对应的信息。
20.根据权利要求1所述的摄像系统,还包括:
校正处理单元,其根据所述预定测试的结果,基于所述多个像素中的每一者的像素信号的读取结果来校正图像。
21.一种摄像装置,包括:
多个像素;
控制单元,其控制所述多个像素中的每一者的曝光;以及
处理单元,其执行预定测试,
其中,所述控制单元以如下方式来控制曝光:在对所述多个像素中的至少一部分像素执行一次以上曝光的第一时段中完成了像素信号的读取之后,在执行一次以上曝光的第二时段中开始像素信号的读取,并且
所述处理单元在第三时段中执行所述预定测试,所述第三时段位于所述第一时段中的像素信号的读取与所述第二时段中的像素信号的读取之间。
22.根据权利要求21所述的摄像装置,其中
所述第一时段和所述第二时段均是对应于预定帧速率的单位帧周期。
23.根据权利要求22所述的摄像装置,其中
所述第三时段是根据所述单位帧周期中的垂直消隐时段来设定的。
24.根据权利要求23所述的摄像装置,其中
在所述单位帧周期中对所述多个像素执行多次曝光,并且
所述多次曝光的总曝光时间比所述单位帧周期短。
25.根据权利要求24所述的摄像装置,其中
所述垂直消隐时段是根据所述多次曝光之间的曝光比来决定的。
26.根据权利要求21所述的摄像装置,其中
在所述第三时段中,所述处理单元在所述第一时段中的像素信号的读取与所述第二时段中的像素信号的快门之间执行所述预定测试。
27.根据权利要求21所述的摄像装置,其中
所述控制单元逐行地控制以矩阵形式呈二维布置的所述多个像素中的每一者的曝光的开始时序,并且
所述处理单元逐行地在第三时段中执行所述测试。
28.根据权利要求21所述的摄像装置,其中
所述第三时段是垂直消隐时段。
29.根据权利要求21所述的摄像装置,其中
作为所述测试,所述处理单元对所述多个像素中的所述一部分像素执行测试。
30.根据权利要求21所述的摄像装置,还包括:
驱动电路,其向所述多个像素中的每一者提供驱动信号,
其中,作为所述测试,所述处理单元对所述驱动电路执行测试。
31.根据权利要求21所述的摄像装置,还包括:
AD转换单元,其将从所述像素读取的模拟像素信号转换为数字信号,
其中,作为所述测试,所述处理单元对所述AD转换单元执行测试。
32.根据权利要求21所述的摄像装置,其中
作为所述测试,所述处理单元对连接到所述多个像素中的所述一部分像素的配线执行测试。
33.根据权利要求21所述的摄像装置,还包括:
输出控制单元,其执行把与所述测试的结果对应的信息向预定输出目的地输出的控制。
34.根据权利要求21所述的摄像装置,还包括:
校正处理单元,其根据所述测试的结果来校正从所述多个像素中的所述至少一部分像素输出的像素信号。
35.一种摄像装置,包括:
多个像素;
控制单元,其控制所述多个像素中的每一者的曝光;以及
处理单元,其在第三时段中执行预定测试,所述第三时段位于第一时段中的完成了基于最后曝光结果的像素信号的读取之后且位于第二时段中的最初曝光开始之前,所述第一时段是对所述多个像素中的至少一部分像素执行一次以上曝光的时段,所述第二时段是在所述第一时段之后执行一次以上曝光的时段。
CN201780084589.XA 2017-02-01 2017-11-07 摄像系统和摄像装置 Active CN110226325B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017016476 2017-02-01
JP2017-016476 2017-02-01
JP2017206335A JP6953274B2 (ja) 2017-02-01 2017-10-25 撮像システム及び撮像装置
JP2017-206335 2017-10-25
PCT/JP2017/040155 WO2018142707A1 (ja) 2017-02-01 2017-11-07 撮像システム及び撮像装置

Publications (2)

Publication Number Publication Date
CN110226325A true CN110226325A (zh) 2019-09-10
CN110226325B CN110226325B (zh) 2022-04-15

Family

ID=63039507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780084589.XA Active CN110226325B (zh) 2017-02-01 2017-11-07 摄像系统和摄像装置

Country Status (2)

Country Link
CN (1) CN110226325B (zh)
WO (1) WO2018142707A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896958A4 (en) * 2018-12-11 2022-04-13 Sony Semiconductor Solutions Corporation IMAGING DEVICE
CN111146222A (zh) * 2019-12-10 2020-05-12 南京威派视半导体技术有限公司 一种基于多晶圆堆叠技术的多区块像元阵列
KR20230035058A (ko) * 2020-07-07 2023-03-10 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 장치 및 전자기기

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188678A (zh) * 2006-11-20 2008-05-28 索尼株式会社 图像处理装置,图像处理方法及程序
US20080158363A1 (en) * 2006-12-28 2008-07-03 Micron Technology, Inc. On-chip test system and method for active pixel sensor arrays
US20090295941A1 (en) * 2008-06-03 2009-12-03 Sony Corporation Image pickup device and image pickup method
CN101771801A (zh) * 2009-01-07 2010-07-07 索尼公司 固态成像器件和驱动控制方法
JP2014112760A (ja) * 2012-12-05 2014-06-19 Sony Corp 固体撮像装置および電子機器
CN104065894A (zh) * 2013-03-19 2014-09-24 索尼公司 固态成像装置,固态成像装置的驱动方法以及电子设备
JP2015501578A (ja) * 2011-10-14 2015-01-15 オムロン株式会社 射影空間監視のための方法および装置
US20150116513A1 (en) * 2012-07-20 2015-04-30 Huawei Technologies Co., Ltd. Method and Apparatus for Correcting Multi-Exposure Motion Image

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010068179A (ja) * 2008-09-10 2010-03-25 Dainippon Printing Co Ltd 固体撮像装置およびその駆動方法
JP2015144475A (ja) * 2015-03-11 2015-08-06 キヤノン株式会社 撮像装置、撮像装置の制御方法、プログラム及び記憶媒体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188678A (zh) * 2006-11-20 2008-05-28 索尼株式会社 图像处理装置,图像处理方法及程序
US20080158363A1 (en) * 2006-12-28 2008-07-03 Micron Technology, Inc. On-chip test system and method for active pixel sensor arrays
US20090295941A1 (en) * 2008-06-03 2009-12-03 Sony Corporation Image pickup device and image pickup method
CN101771801A (zh) * 2009-01-07 2010-07-07 索尼公司 固态成像器件和驱动控制方法
JP2015501578A (ja) * 2011-10-14 2015-01-15 オムロン株式会社 射影空間監視のための方法および装置
US20150116513A1 (en) * 2012-07-20 2015-04-30 Huawei Technologies Co., Ltd. Method and Apparatus for Correcting Multi-Exposure Motion Image
JP2014112760A (ja) * 2012-12-05 2014-06-19 Sony Corp 固体撮像装置および電子機器
CN104065894A (zh) * 2013-03-19 2014-09-24 索尼公司 固态成像装置,固态成像装置的驱动方法以及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王华: "基于CMOS图像传感器的HDR图像采集技术研究", 《优秀硕士论文》 *

Also Published As

Publication number Publication date
WO2018142707A1 (ja) 2018-08-09
CN110226325B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
JP6953274B2 (ja) 撮像システム及び撮像装置
EP3852358B1 (en) Imaging device
CN110168403A (zh) 距离测量装置、距离测量方法和距离测量系统
JP2020096347A (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
US20210218923A1 (en) Solid-state imaging device and electronic device
CN111630846B (zh) 摄像装置和校准方法
CN110226325A (zh) 摄像系统和摄像装置
JP2019146071A (ja) 撮像装置、撮像システム、および撮像方法
US20230300495A1 (en) Solid-state imaging device and control method of the same
US20230254442A1 (en) Imaging device and imaging system
CN110235434A (zh) 摄像系统、摄像装置和控制装置
US11463647B2 (en) Imaging device, imaging system, and imaging method
TW202231056A (zh) 攝像裝置
US11743449B2 (en) Imaging device and electronic apparatus
JPWO2020121699A1 (ja) 撮像装置
KR20240024796A (ko) 촬상 장치, 전자 기기 및 광 검출 방법
WO2023032416A1 (ja) 撮像装置
WO2022172642A1 (ja) 固体撮像素子および撮像方法、並びに電子機器
EP4398592A1 (en) Imaging device
WO2023021774A1 (ja) 撮像装置及び撮像装置を備える電子機器
WO2023074177A1 (ja) 撮像装置
US20240089637A1 (en) Imaging apparatus
WO2022201802A1 (ja) 固体撮像装置および電子機器
WO2024135083A1 (en) Light detecting device and processing device
WO2023210324A1 (ja) 固体撮像装置および電子機器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant