CN110192119B - 用于使用无线通信芯片组的雷达感测的雷达调制 - Google Patents

用于使用无线通信芯片组的雷达感测的雷达调制 Download PDF

Info

Publication number
CN110192119B
CN110192119B CN201880007506.1A CN201880007506A CN110192119B CN 110192119 B CN110192119 B CN 110192119B CN 201880007506 A CN201880007506 A CN 201880007506A CN 110192119 B CN110192119 B CN 110192119B
Authority
CN
China
Prior art keywords
wireless communication
radar
signal
chipset
communication chipset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880007506.1A
Other languages
English (en)
Other versions
CN110192119A (zh
Inventor
连寄楣
顾昌展
埃里克·M·奥尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Priority to CN202011339987.1A priority Critical patent/CN112731295B/zh
Publication of CN110192119A publication Critical patent/CN110192119A/zh
Application granted granted Critical
Publication of CN110192119B publication Critical patent/CN110192119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

描述了使得能实现用于使用无线通信芯片组的雷达感测的雷达调制的技术和装置。控制器初始化或者控制由所述无线通信芯片组执行的调制。以这种方式,所述控制器可使得所述无线通信芯片组能够执行调制以进行无线通信或雷达感测。在一些情况下,所述控制器可进一步选择无线通信信道以设置雷达信号的频率和带宽,从而避免多个雷达信号之间或所述雷达信号与通信信号之间的干扰。在其它情况下,所述控制器可使所述无线通信芯片组使用雷达调制来对包含通信数据的信号进行调制。这使得接收到所述信号的另一设备能够执行无线通信或雷达感测。通过利用这些技术,所述无线通信芯片组可被用于无线通信或雷达感测。

Description

用于使用无线通信芯片组的雷达感测的雷达调制
相关申请的交叉引用
本申请要求2018年3月22日提交的美国实用新型申请No.15/928,386的权益,所述实用新型申请又要求2017年5月31日提交的美国临时申请No.62/512,961的优先权,它们的公开内容特此通过引用全文合并于此。
背景技术
雷达是可检测和跟踪物体、绘制表面并识别目标的有用设备。在许多情况下,雷达可以替换诸如相机的笨重且昂贵的传感器,并且在诸如低照明和雾的不同环境条件的存在下或者在具有移动或重叠目标情况下提供改进的性能。
尽管使用雷达感测可以是有利的,但是存在与将雷达传感器并入商业设备中相关联的许多挑战。较小的消费者设备例如限制雷达传感器的尺寸,这可能限制性能。此外,常规雷达使用定制设计的雷达专用硬件来生成雷达专用信号。这种硬件可能是昂贵的并且如果被并入,需要消费者设备中的附加空间。因此,由于附加成本和空间约束,消费者设备不太可能并入雷达传感器。
发明内容
描述了使得能实现用于使用无线通信芯片组的雷达感测的雷达调制的技术和装置。控制器初始化或者控制由所述无线通信芯片组执行的调制。以这种方式,所述控制器可使得所述无线通信芯片组能够执行调制以进行无线通信或雷达感测。在一些情况下,所述控制器可进一步选择无线通信信道以设置雷达信号的频率和带宽,从而避免多个雷达信号之间或所述雷达信号与通信信号之间的干扰。在其它情况下,所述控制器可使所述无线通信芯片组将通信数据调制到所述雷达信号上。这使得接收到所述信号的另一设备能够执行无线通信或雷达感测。通过利用这些技术,所述无线通信芯片组可被用于无线通信或雷达感测。
在下面描述的各方面包括一种无线通信芯片组、一种处理器和一种包括计算机可执行指令的计算机可读存储介质,所述计算机可执行指令响应于由所述处理器执行而实现控制器。所述无线通信芯片组包括同相和正交调制器。所述无线通信芯片组被配置为经由所述同相和正交调制器基于调制类型对信号进行调制。所述控制器被配置为选择所述调制类型以使得能够检测反射所述信号的目标。
在下面描述的各方面还包括一种选择第一调制类型以使得能够确定目标的位置的方法。所述方法包括选择第二调制类型以使得能够以无线方式传送通信数据。所述方法还包括经由无线通信芯片组基于所述第一调制类型对信号进行调制以产生雷达信号。此外,所述方法包括经由所述无线通信芯片组基于所述第二调制类型对另一信号进行调制以产生通信信号。所述方法进一步包括控制所述雷达信号和所述通信信号的发射以经由所述无线通信芯片组使得能实现雷达感测和无线通信。
在下面描述的各方面还包括一种系统,所述系统具有用于控制无线通信芯片组以产生用于雷达感测的雷达信号的装置以及用于选择由所述无线通信芯片组执行的调制类型的装置以用于支持雷达感测或无线通信。
附图说明
参考以下附图描述使得能实现用于使用无线通信芯片组的雷达感测的雷达调制的装置和技术。在所有附图中使用相同的标号来引用相似的特征和部件:
图1图示出描述使用无线通信芯片组的雷达感测的示例环境。
图2图示出具有执行无线通信和雷达感测的多个通信设备的示例环境。
图3图示出示例计算设备。
图4图示出示例无线通信芯片组。
图5图示出用于全双工操作的示例通信设备。
图6-1图示出用于连续波雷达的无线通信芯片组的全双工操作。
图6-2图示出用于脉冲多普勒雷达的无线通信芯片组的全双工操作。
图7图示出用于数字波束形成的示例数字波束形成器和无线通信芯片组。
图8-1图示出用于数字波束形成的示例无线通信芯片组。
图8-2图示出用于数字波束形成的另一示例无线通信芯片组。
图9图示出用于雷达调制的示例雷达调制器和无线通信芯片组。
图10图示出执行无线通信和雷达感测的示例通信设备。
图11图示出用于执行用于使用无线通信芯片组的雷达感测的全双工操作的示例方法。
图12图示出用于执行用于使用无线通信芯片组的雷达感测的数字波束形成的示例方法。
图13图示出用于执行用于使用无线通信芯片组的雷达感测的雷达调制的示例方法。
图14图示出具体实现用于雷达感测的无线通信芯片组或者可以在其中实现使得能够使用用于雷达感测的无线通信芯片组的技术的示例计算系统。
具体实施方式
概要
虽然许多计算设备可能不具有雷达传感器,但是这些计算设备可以受益于雷达感测。雷达感测可增强例如借助于手势识别的用户界面、借助于接近检测的节电技术等。
然而,计算设备可以包括无线通信芯片组,所述无线通信芯片组可使得用户能够与朋友交谈、下载信息、共享图片、远程控制家用设备、接收全球定位信息或者收听无线电台。尽管无线通信芯片组被用于发射和接收无线通信信号,但是无线通信芯片组包括许多与雷达传感器类似的组件,诸如天线、收发器和处理器。此外,用于无线通信的频率可以类似于用于雷达感测的那些频率(例如S波段、C波段、X波段、毫米波频率等)。
然而,通常无线通信芯片组被设计用于无线通信而不是雷达感测。例如,无线通信芯片组可以被装配为使用时分双工技术以在发射通信信号与接收通信信号之间切换,对于雷达感测这可能不便于检测近距离目标。另外,无线通信芯片组可以被装配为利用单个发射链或接收链,对于雷达感测这可能不便于确定目标的角位置。此外,无线通信芯片组可以被装配为利用通信调制,对于雷达感测这可能不便于确定目标的距离和多普勒效应。
因此,本文档描述用于使用无线通信芯片组来实现雷达感测技术的技术和设备。该技术利用使得无线通信芯片组能够发射和接收除了无线通信信号之外或代替无线通信信号的雷达信号的控制器。特别地,控制器可使无线通信芯片组执行全双工操作、支持数字波束形成或者产生雷达调制。
全双工操作使得能够在时间的同一部分上发生发射和接收,从而使得能够使用连续波雷达或脉冲多普勒雷达技术。数字波束形成使得能实现用于确定目标的角位置的定制波束导向(beamsteering)和整形(shaping)。使用数字波束形成技术,各种雷达场可被无线通信芯片组发射或者接收。雷达调制使得雷达信号能够被无线通信芯片组发射和接收,从而支持用于雷达感测的频率调制(FM)测距或多普勒感测技术。
使用这些技术,无线通信芯片组可被用于检测用户的存在、跟踪用户的手势以进行无触摸控制、提供碰撞避免以进行自动驾驶等的基于雷达的应用。根据计算设备的目的,无线通信芯片组可被重新目的化以用于雷达感测或者提供无线通信和雷达感测两者。包括无线通信芯片组的计算设备因此可利用雷达感测并从雷达感测中受益而无需使用雷达传感器或雷达专用硬件。此外,可针对具有不同配置的各种不同的无线通信芯片组定制或者优化一些技术。使雷达感测价格低廉并对于许多计算设备可用可以进一步使得多个计算设备能够实现主动、被动或双基地雷达技术。本文档现在转向示例环境,在所述示例环境之后描述示例装置、示例方法和示例计算系统。
示例环境
图1是在其中可以具体实现利用使用无线通信芯片组的雷达感测的技术以及包括使用无线通信芯片组的雷达感测的装置的示例环境100的图示。环境100包括计算设备102,所述计算设备102包括用于通过无线通信链路108(无线链路108)与基站106通信的无线通信芯片组104。在此示例中,计算设备102被实现为智能电话。然而,如参考图2和图3进一步详细地描述的,计算设备102可以被实现为任何适合的计算或电子设备。
基站106经由无线链路108与计算设备102进行通信,所述无线链路108可以被实现为任何适合类型的无线链路。尽管被描绘为蜂窝网络的塔台,然而基站106可以表示或者被实现为另一设备,诸如卫星、有线电视头端、地面电视广播塔台、接入点、对等设备、网状网络节点、物联网(IoT)设备等。因此,计算设备102可以经由无线链路108与基站106或另一设备进行通信。
无线链路108可包括从基站106传送到计算设备102的数据或控制信息的下行链路或从计算设备102传送到基站106的其它数据或控制信息的上行链路。可以使用任何适合的通信协议或标准来实现无线链路108,所述通信协议或标准包括用于蜂窝网络(例如第三代合作伙伴计划长期演进(3GPP LTE)或第五代(5G))、IEEE 802.11(例如802.11n/ac/ad/g/a/b)、Wi-Fi、WiGigTM、WiMAXTM、BluetoothTM、多输入多输出(MIMO)网络等的那些通信协议或标准。
计算设备102利用无线通信芯片组104以进行雷达感测而不是具有雷达传感器。如图1中所示,示例雷达感测应用包括使得被携带在手提包中的计算设备102能够检测在手提包外做出的手势的遮挡手势识别应用110-1。另一手势识别应用程序110-2使得计算设备102(示出为可穿戴智能手表)能够提供在其中用户可以在内部做出手势以与计算设备102交互的雷达场(示出为虚线立方体)。示例医学诊断应用110-3使得计算设备102能够测量生理特性或者评估用户的异常身体运动,诸如面部抽搐。这些测量可帮助诊断各种身体状况(例如中风或帕金森病的症状)。示例绘图应用110-4使得计算设备102能够生成周围环境的三维地图以用于场境感知。如关于图2进一步详细地描述的,计算设备102使用无线通信芯片组104可实现主动或被动雷达感测技术。
图2图示出具有执行无线通信和雷达感测的多个通信设备102的示例环境200。环境200中的计算设备102包括图1的计算设备102、智能电话202和智能冰箱204,其中的每一个均包括无线通信芯片组104。计算设备102和智能电话202使用无线通信芯片组104分别经由无线链路108-1和无线链路108-2与基站106进行通信。同样地,智能冰箱204经由无线链路108-3与计算设备102进行通信。
除了经由无线链路108发射和接收通信信号之外,这些设备中的每一个还可执行雷达感测。使用无线通信芯片组104,计算设备102、智能电话202和智能冰箱可通过发射和接收分别通过雷达场206-1、206-2和206-3示出的它们自己的雷达信号来作为单基地雷达操作。
在存在多于一个计算设备102的环境中,诸如在环境200中,多个计算设备102可一起工作以实现双基地雷达、多基地雷达或网络雷达。换句话说,一个或多个计算设备102可发射雷达信号并且一个或多个其它计算设备102可接收雷达信号。对于协作式雷达感测,计算设备102可使用原子钟、全球定位系统(GPS)时间、蜂窝同步、无线通信等在时间上同步。
在一些情况下,可根据每一个设备的能力和位置来在计算设备102之间分配雷达感测操作。例如,具有最高发射功率或较宽视场的设备例如可用于发射雷达信号。还可跨越所有计算设备102共享通过协作式或非协作式技术收集的雷达数据,这可提高发现概率、目标定位精度、目标跟踪以及目标定向和形状估计。由多个计算设备102提供的雷达数据还可用于减少虚警、执行三角测量或者支持干涉度量。
使用多个计算设备102以进行雷达感测使得能够照射周围环境的大部分并且能够从不同的视角收集雷达数据。与雷达感测相关联的时间或功率成本还可分布在多个计算设备102上,从而使得具有有限资源的计算设备102能够执行雷达感测。
更详细地,考虑将无线通信芯片组104图示为计算设备102的一部分的图3。以多种非限制性示例设备图示计算设备102,包括台式计算机102-1、平板102-2、膝上型电脑102-3、电视102-4、计算手表102-5、计算眼镜102-6、游戏系统102-7、微波炉102-8和车辆102-9。还可以使用其它设备,诸如无线路由器、无人机、跟踪板、绘图板、上网本、电子阅读器、家庭自动化和控制系统以及其它家用电器。注意的是,计算设备102可以是可穿戴的、不可穿戴但移动的或相对固定的(例如台式机和电器)。
计算设备102可以包括用于通过有线、无线或光网络传送数据的网络接口302。例如,网络接口302可以通过局域网(LAN)、无线局域网(WLAN)、个域网(PAN)、有线区域网(WAN)、内联网、互联网、对等网络、点对点网络、网状网络等传送数据。计算设备102还可以包括显示器(未示出)。
计算设备102还包括一个或多个计算机处理器304和包括存储器介质和存储介质的计算机可读介质306。计算机可读介质306被实现为存储计算设备102的指令、数据和其它信息,因此不包括暂时性传播信号或载波。被具体实现为计算机可读介质306上的计算机可读指令的应用和/或操作系统(未示出)可由计算机处理器304执行以提供本文描述的功能中的一些。计算机可读介质306包括基于雷达的应用308和控制器310。基于雷达的应用308使用由无线通信芯片组104提供的雷达数据来执行雷达感测功能,诸如检测用户的存在、跟踪用户的手势以进行无触摸控制、检测障碍物以进行自动驾驶等。
控制器310控制用于无线通信或雷达感测的无线通信芯片组104的操作。在图3中,控制器310被示出为存储在计算机可读介质306上并由计算机处理器304执行的软件模块。在一些实施方式中,控制器310包括被传输到无线通信芯片组104或者存储在无线通信芯片组104上并由无线通信芯片组104执行的软件或固件。在其它情况下,控制器310是集成在无线通信芯片组104内的控制器。
控制器310启动、设置或者操作无线通信芯片组104以提供用于雷达感测的特征。这些特征包括全双工操作、数字波束形成或雷达调制。控制器310还可基于优先级、基于雷达的应用308或用于雷达感测的预定更新速率来管理用于无线通信或雷达感测的无线通信芯片组104的时间共享。对无线通信或雷达感测的请求可由控制器310从与计算设备102相关联的其它应用获得。在一些情况下,如参考图10进一步详细地描述的,控制器310可使无线通信芯片组104同时地提供无线通信和雷达感测两者。参考图4进一步描述无线通信芯片组104。
图4图示出包括通信接口402的示例无线通信芯片组104。通信接口402向计算设备102或远程设备提供用于无线通信的通信数据或用于雷达感测的雷达数据。然而,在无线通信芯片组104被集成在计算设备102内时,不需要使用通信接口402。雷达数据可包括可由计算机处理器304经由基于雷达的应用308或控制器310进一步处理的原始同相或正交(I/Q)数据、预处理的距离多普勒图等。
无线通信芯片组104还包括至少一个天线404和至少一个收发器406。天线404可与无线通信芯片组104分离或者被集成在无线通信芯片组104内。天线404可包括用于天线分集、发射波束形成或MIMO网络的多个天线404。在一些情况下,多个天线404以二维形状(例如平面阵列)组织。多个天线404之间的间距可以小于、大于或等于雷达信号的中心波长的一半。使用天线404,控制器310可使无线通信芯片组104形成被导向的或非导向的、宽的或窄的、或者被整形(例如半球、立方体、扇形、锥形、圆柱形)的波束。如在下面进一步详细地描述的,可使用数字波束形成技术来实现导向和整形。
收发器406包括诸如滤波器、开关、放大器、混频器等的电路和逻辑以用于控制经由天线404发射或者接收的信号。收发器406还可包括用于执行诸如合成、编码、调制、解码、解调等的同相和正交(I/Q)操作的逻辑。基于无线通信芯片组104支持的无线通信的类型,收发器406可发射和接收1GHz至400GHz范围、4GHz至100GHz范围和诸如57GHz至63GHz的较窄波段内的微波辐射。
无线通信芯片组104还包括一个或多个系统处理器408和系统介质410(例如一个或多个计算机可读存储介质)。系统处理器408还可以包括用于执行高速率采样过程的基带电路,所述高速率采样过程可包括模数转换、数模转换、快速傅里叶变换(FFT)、增益校正、偏斜校正、频率转换等。通常,系统处理器408可向收发器406提供通信数据以用于传输。系统处理器408还可处理来自收发器406的基带信号以生成可经由通信接口402提供给计算设备102以用于无线通信或雷达感测的数据。在一些情况下,控制器310的各部分可以在系统介质410中可用并且由系统处理器408执行。
控制器310使得无线通信芯片组104能够提供用于雷达感测的附加特征。特别地,控制器310可使第一无线通信芯片组104-1提供全双工操作416、使第二无线通信芯片组104-2经由数字波束形成器418支持数字波束形成或者使第三无线通信芯片组104-3实现雷达调制器420。
如图5中所示,全双工操作416可通过控制器310控制无线通信芯片组104中的不同收发器406和不同天线404之间的连接来实现。如图6-1中所示,全双工操作416的一些实施方式使得无线通信芯片组104能够被用于连续波雷达。如图6-2中所示,全双工操作416的其它实施方式使得能实现用于脉冲多普勒雷达的发射和接收的快速交织。全双工操作416使得无线通信芯片组104能够被用于检测近距离目标并且用于测量目标的距离和距离变化率。
如图7、图8-1和图8-2中所示,数字波束形成可通过控制器310使无线通信芯片组104将来自多个接收链(例如,多个收发器406和多个天线404)的基带数据提供给数字波束形成器418来实现。在一些实施方式中,数字波束形成器418由计算设备102经由计算机处理器304和计算机可读介质306来实现。如果无线通信芯片组104包括执行快速傅立叶变换(FFT)的电路和逻辑,则数字波束形成器418可以替换地由系统处理器408和系统介质410实现。此外,数字波束形成器418通过数字方式地执行相移和振幅渐减操作来提供对诸如模拟移相器的附加硬件部件的替换。
数字波束形成提供许多优点。例如,将数字波束形成技术应用于接收使得能够使用更少的天线404来发射雷达信号(例如,减少对用于雷达感测的发射波束形成的依赖)。还通过使得多个波束在接收期间能够数字方式地形成而不是随着时间发射多个窄笔形波束来高效地利用可用的时间资源。另外,数字波束形成器418使得能够生成多种方向图,这提供了用于支持跨不同的无线通信芯片组104的天线404的不同布置的灵活性。
如图9中所示,雷达调制可通过控制器310使无线通信芯片组104将同相和正交(I/Q)调制器和解调器作为雷达调制器420操作来实现。例如,I/Q调制器可由控制器310编程来数字方式地生成使得能够确定目标的距离和多普勒效应的雷达专用调制。这些雷达调制还可减少对其它雷达信号或通信信号的干扰。在一些情况下,如图10中所示,雷达调制器420可使得能实现并发的无线通信和雷达感测。
尽管被单独地示出,但是全双工操作416、数字波束形成器418和雷达调制器420的不同组合可被一起实现以用于使用无线通信芯片组104的雷达感测。参考图5-图10进一步描述这些特征。
全双工操作
图5图示出用于全双工操作的示例通信设备102。无线通信芯片组104包括多个收发器406-1、406-2...406-N,其中“N”表示正整数。每一个收发器406包括发射链和接收链,分别通过发射器502-1、502-2...502-N和接收器504-1、504-2...504-N来表示。无线通信芯片组104还包括开关506-1、506-2...和506-N以及天线404-1、404-2....404-N。开关506和天线404可在无线通信芯片组104内部或外部。在图5中,天线404、开关506和收发器406的数目被示出为相同的,然而不同的数量也是可能的。在一些情况下,收发器406可以耦接到多于一个天线404或者天线404可以耦接到多于一个收发器406。
在所描绘的实施方式中,每一个开关506将对应的发射器502或接收器504耦接到对应的天线404。在一些针对无线通信的情形下,无线通信芯片组104可使用时分双工(TDD)以在不同的时间发射或者接收。因此,在任何给定时间,开关506将发射器502或者接收器504耦接到天线404。
然而,对于雷达感测,使得无线通信芯片组104能够提供收发器406的全双工操作416是有利的,从而使得能实现近距离雷达感测。可通过控制器310经由双工操作信号508设置开关506的状态来实现全双工操作416。以这种方式,如参考图6-1和图6-2进一步详细地描述的,控制器310可使得无线通信芯片组104能够执行连续波雷达或脉冲多普勒雷达。开关506的使用进一步使得无线通信芯片组104能够容易地在用于雷达感测的全双工操作或用于无线通信的半双工操作之间切换。
图6-1图示出用于连续波雷达操作的无线通信芯片组104的全双工操作416。在所描绘的实施方式中,控制器310使发射器502的一部分和接收器504的一部分同时地连接到相应的天线404。例如,双工操作信号508使开关506-1将发射器502-1连接到天线404-1并且使开关506-2将接收器504-2连接到天线404-2。以这种方式,发射器502-1经由天线404-1发射雷达信号602,同时接收器504-2经由天线404-2接收被目标604反射的雷达信号602的一部分。
在一些情况下,如图606中所示,雷达信号602可包括频率调制信号。图606绘制发射雷达信号602-1和反射雷达信号602-2随着时间的频率。图606图示出全双工操作416,由此发射器502-1在接收器504-2接收反射雷达信号602-2的时间的一部分期间生成发射雷达信号602-1。通过测量发射雷达信号602-1与反射雷达信号602-2之间的随着时间的频率偏移,可通过基于雷达的应用308来确定目标604的距离和距离变化率。
对于共享用于发射链和接收链两者的部件的收发器406(例如,可在任何给定时间执行发射或接收的收发器406),可使用至少两个收发器406来实现用于连续波雷达的全双工操作416,由此来自收发器406中的每一个的发射链或接收链分别连接到天线404。或者,对于包括单独的发射链和接收链的收发器406(例如,可同时地执行发射和接收的收发器406),可通过将收发器406的发射器502和接收器504分别连接到天线404来实现用于连续波雷达的全双工操作416(如图8-2中所示)。
图6-2图示出用于脉冲多普勒雷达操作的无线通信芯片组104的全双工操作416。在所描绘的实施方式中,控制器310使得能实现发射器502与接收器504之间的快速切换。使用双工操作信号508,控制器310可进一步协调跨多个开关506的切换。对于脉冲多普勒雷达,控制器310使发射操作和接收操作交织,使得发射雷达信号602-1的脉冲可由发射器502-1和502-2发射并且反射雷达信号602-2的脉冲可由接收器504-1和504-2接收。作为优点,脉冲多普勒雷达操作使得具有单个收发器406或单个天线404的无线通信芯片组104能够执行雷达感测。与图6-1中描述的连续波雷达技术相比较,还可使用脉冲多普勒雷达通过使得能实现用于发射和接收两者的天线404的双重使用来增加灵敏度。
图608绘制发射雷达信号602-1和反射雷达信号602-2随着时间的频率。如所示出的,发射雷达信号602-1包括多个发射脉冲610-1、610-2...610-P,其中“P”表示正整数。每一个发射脉冲610之间的时间被称作脉冲间周期(IPP)。在每一个发射脉冲610期间,控制器310使发射器502连接到天线404。在每一个发射脉冲610之间,控制器310使接收器504连接以用于接收反射脉冲612,诸如反射脉冲612-1和612-2。尽管图608图示出未同时发射和接收的单独的脉冲,但是快速切换使得能够跨同一时间段发射或者接收雷达信号602的各部分,从而实现全双工操作416的版本。
尽管在图6-1和图6-2中明确示出了两个收发器406、两个天线404和两个开关506,但是可将用于连续波雷达或脉冲多普勒雷达的技术应用于任何数目的收发器406、天线404和开关506。对于使用循环器而不是开关506的无线通信芯片组104,也可执行连续波雷达操作和脉冲多普勒雷达操作两者。
数字波束形成
图7图示出用于数字波束形成的示例数字波束形成器418和无线通信芯片组104。使用数字波束形成技术,可发射或者接收各种雷达场,包括宽场、窄场、整形场(半球、立方体、扇形、锥形、圆柱形)、导向场、非导向场、近距离场、远距离场等。虽然在下面参考接收雷达信号602讨论数字波束形成,但是数字波束形成还可被实现以用于发射雷达信号602。在所描绘的配置中,接收器504-1至504-N分别处理经由天线404-1至404-N接收到的反射雷达信号602-2以生成基带数据702-1至702-N。通常,来自天线404的响应由单独的接收链单独地处理。基带数据702可包括跨一个时间段并针对与雷达信号602相关联的不同波数收集的数字I/Q数据。
数字波束形成器418从无线通信芯片组104(例如,如果数字波束形成器418被实现为与无线通信芯片组104分离,则经由通信接口402)获得基带数据702并且将基带数据702乘以复数加权值704-1至704-N。数字波束形成器418执行求和706以组合来自接收链中的每一个的结果以形成空间响应708。可将空间响应708提供给基于雷达的应用308以用于确定目标604的角位置。通常,空间响应708包括角度、距离和时间的集合的振幅和相位信息。
在一些实施方式中,控制器310可设置或者提供复数加权值704以控制用于生成空间响应708的天线方向图的形状。复数加权值704可基于预定值并且可使得能够同时地形成数千个波束。复数加权值704还可由控制器310实时地动态调整以减少来自干扰源或噪声源的干扰(例如,通过在干扰方向上将天线方向图导向零)。如参考图8-1和图8-2进一步详细地描述的,控制器310还可配置无线通信芯片组104以改进数字波束形成。
图8-1图示出用于数字波束形成的无线通信芯片组104的示例配置。无线通信芯片组104包括具有多个天线404的天线阵列802。在所描绘的配置中,天线阵列802是具有天线404的二维布置(例如,三角形、矩形、圆形或六边形布置)的平面阵列,这使得能够确定与反射雷达信号602-2的到达角相关联的二维向量(例如,使得能够确定目标604的方位角和仰角两者)。天线阵列802可包括沿着角度空间的一个维度(例如,方位角或水平维度)放置的两个天线404以及沿着天线空间的相对于所述两个天线404中的一个的另一维度(例如,仰角或垂直维度)放置的另一天线404。天线阵列802的其它实施方式可包括线性阵列(例如,一维布置),使得可确定目标604的方位角或仰角。通常,二维天线阵列使得能实现两个平面(例如,方位角(azimuth)和仰角(elevation))中的波束导向并且与相同数目的天线和天线间距的一维天线阵列相比较具有较高的方向性。
在所描绘的配置中,天线阵列802被示出为具有N×M矩形布置,其中N和M是大于一的正整数并且彼此可以相等或者可以不相等。示例布置包括2×2阵列、2×3阵列、4×4阵列等。对于数字波束形成,控制器310可实现用于全双工操作416的技术以使得收发器406-1至406-NM的一部分能够使用天线阵列802中的天线404-1至404-NM的一部分来接收反射雷达信号602-2以进行数字波束形成。
在一些实施方式中,控制器310可选择天线404中的哪一个被用于数字波束形成。这可通过控制天线阵列802中的天线404中的哪一个被连接到接收器504来实现(例如,经由上面所描述的用于全双工操作416技术)。这使得控制器310能够通过选择实现预定间距的天线404来促进经由无线通信芯片组104的雷达感测,所述预定间距减少相互耦合的影响,增强方向性等。为了控制角度模糊,控制器310还可基于雷达信号602的中心波长来选择天线404以实现有效的天线间距。示例天线间距可包括近似的雷达信号602的中心波长、中心波长的一半或中心波长的三分之一。此外,控制器310可通过选择在天线阵列802内等间距的天线404来降低数字波束形成的复杂度。在一些实施方式中,如图8-2中所示,可选取天线404使得形成二维阵列以用于发射和接收。
图8-2图示出用于数字波束形成的另一示例无线通信芯片组104。无线通信芯片组104包括八个天线404-1至404-8和四个收发器406-1至406-4。天线404-1至404-4形成发射天线阵列802-1并且天线404-5至404-8形成接收天线阵列802-2。在所描绘的配置中,发射器502-1至502-4分别耦接到发射天线阵列802-1中的天线404-1至404-4,并且接收器504-1至504-4分别耦接到接收天线阵列802-2中的天线404-5至404-8。以这种方式,可实现数字波束形成以用于雷达信号602的发射和接收两者。在其它实施方式中,发射天线阵列802-1可以具有与接收天线阵列802-2相同或不同的天线布置、天线404的数目或天线间距。
雷达调制
图9图示出用于雷达调制的示例雷达调制器420和无线通信芯片组104。在所描绘的配置中,无线通信芯片组104的收发器406包括I/Q调制器902和I/Q解调器904。对于无线通信,I/Q调制器902和I/Q解调器904可以被分别用于将通信数据调制到载波信号上或者将载波信号解调以提取通信数据。示例调制包括振幅、频率或相位调制。作为另一示例,正交频分复用(OFDM)可以由I/Q调制器902和I/Q解调器904执行。
对于雷达感测,控制器310可生成调制操作信号906以使I/Q调制器902和I/Q解调器904作为雷达调制器420而操作并且利用预定的雷达调制类型。示例雷达调制包括频率调制(例如线性频率调制(LFM)、锯齿频率调制或三角频率调制)、步进频率调制、相移键控(PSK)、伪噪声调制、扩频调制等。作为示例,控制器310针对频率调制的连续波(FMCW)雷达可使I/Q调制器902产生啁啾信号(chirp signal)并且使I/Q解调器904解调所述啁啾信号。
控制器310还可使用调制操作信号906来进一步指定用于发射和接收雷达信号602的影响雷达信号602的频率和带宽的无线通信信道。在一些方面中,不同的无线通信频率信道可被捆绑(bond)以增加雷达信号的带宽。利用较大的带宽增强经由无线通信芯片组104的雷达感测的距离分辨率(例如,增加距离精度并且使得能够在距离内分辨多个目标)。如参考图10进一步详细地描述的,I/Q调制器902和I/Q解调器904还可用于支持同时地执行多个雷达感测操作或者同时地执行无线通信和雷达感测两者。
图10图示出使用控制器310和无线通信芯片组104来执行无线通信和雷达感测的计算设备102。在此示例中,无线通信芯片组104支持MIMO和OFDM。基于调制操作信号906,无线通信芯片组104经由通过发射器502-1、502-2...502-N表示的单独的发射链生成信号1000-1、1000-2...1000-N。信号1000-1、1000-2和1000-N分别被调制以用于雷达感测、无线通信以及雷达感测和无线通信两者。可通过使用雷达调制来对包含通信数据的信号进行调制而实现信号1000-N。以这种方式,接收到信号1000-N的其它计算设备102可处理信号1000-N以用于无线通信或者用于雷达感测(例如,使用如图3中所描述的双基地、多基地或网络雷达的技术)。
为了避免多个信号1000之间的干扰,控制器310可使得I/Q调制器902使信号1000变为彼此正交。在其它方面中,可使用不相交(disjoint)的无线通信信道来发射信号1000-1、1000-2和1000-3。不同的无线通信信道还可被用于不同的雷达调制,从而使得能够同时地发射不同的雷达信号602。如果在无线通信芯片组104中时间、天线或收发器资源是有限的,则控制器310可基于优先级、预定的更新速率或来自另一应用的请求来调度无线通信和雷达感测以在不同的时间发生。
示例方法
图11-图13描绘用于使用无线通信芯片组104的雷达感测的示例方法1100、1200和1300。方法1100、1200和1300被示出为执行的操作(或行为)的集合,但是不一定限于在本文中示出这些操作的次序或组合。进一步地,可以重复、组合、重组或者连接这些操作中的一个或多个中的任一个以提供多种附加的和/或替换的方法。在以下讨论的各部分中,可以参考图1和图2的环境100和200以及图3-图10中详述的实体,对它们的参考仅用于示例。技术不限于由在一个设备上操作的一个实体或多个实体执行。
图11图示出用于执行用于使用无线通信芯片组的雷达感测的全双工操作的示例方法。在1102处,使无线通信芯片组的发射器连接到第一天线。例如,控制器310可使无线通信芯片组104将发射器502连接到天线阵列802中的天线404中的至少一个。
在1104处,使无线通信芯片组的接收器连接到第二天线。例如,控制器310可使无线通信芯片组104将接收器504连接到天线阵列802中的至少一个其它天线404。发射器502和接收器504可以与无线通信芯片组104中的相同的收发器406或不同的收发器406相关联。
在1106处,经由发射器和第一天线发射信号。例如,发射器502-1和天线404-1可发射雷达信号602。在一些情况下,雷达信号602可以是如图6-1中所示的连续波雷达信号或如图6-2中所示的脉冲雷达信号。
在1108处,经由接收器和第二天线接收被目标反射的信号。信号的接收发生在发射器正在发射信号的时间的至少一部分期间。例如,雷达信号602可被目标604反射并且经由接收器504-2和第二天线404-2接收。在一些实施方式中,接收器504-1可与第一天线404-1一起使用。对于连续波雷达,可以同时地发射雷达信号602的各部分,同时接收信号的其它部分。对于脉冲多普勒雷达,雷达信号602的不同脉冲可以在发射的其它脉冲之间被接收。
在1110处,处理接收到的信号以确定目标的位置。例如,系统处理器408或计算机处理器304可处理雷达信号602以确定目标604的距离或角位置。
图12图示出用于执行用于使用无线通信芯片组的雷达感测的数字波束形成的示例方法。在1202处,经由无线通信芯片组的多个接收链来接收被目标反射的雷达信号。例如,如图7中所示,可经由无线通信芯片组104的接收器504-1至504-N的至少一部分和天线404-1至404-N的至少一部分来接收反射雷达信号602-2。通常,每一个接收链与收发器406和一个或多个天线404相关联。在一些情况下,控制器310可通过双工操作信号508来初始化或者设置无线通信芯片组104以用于接收反射雷达信号602-2。控制器310还可进一步选择哪些接收链被用于接收反射雷达信号602-2,这可以进一步优化无线通信芯片组104以进行数字波束形成。
在1204处,经由无线通信芯片组生成与多个接收链中的每一个相关联的基带数据。例如,基带数据702-1至702-N由无线通信芯片组104生成。基带数据702-1至702-N可包括由接收器504-1至504-N产生的数字I/Q数据。
在1206处,基带数据被提供给数字波束形成器。例如,可将数字波束形成器418实现在无线通信芯片组104或计算设备102内。在一些实施方式中,可经由通信接口402将基带数据702传送到数字波束形成器418。
在1208处,经由数字波束形成器通过基于基带数据生成空间响应来执行数字波束形成。数字波束形成器418例如可根据复数加权值来缩放基带数据702并且组合来自接收链中的每一个的数据以产生空间响应708。通常,空间响应708表示不同角度的振幅和相位信息。
在1210处,基于空间响应来确定目标的角位置。可经由基于雷达的应用308基于空间响应708来确定角位置。在一些情况下,角位置可以包括目标604的方位角和仰角。
图13图示出用于执行用于使用无线通信芯片组的雷达感测的雷达调制的示例方法。在1302处,选择第一调制类型以使得能够确定目标的位置。例如,第一调制类型可包括雷达调制,诸如线性频率调制、步进频率调制、相移键控等。
在1304处,选择第二调制类型以使得能够以无线方式传送通信数据。通信调制类型可以包括正交频分复用。
在1306处,经由无线通信芯片组基于第一调制类型对信号进行调制以产生雷达信号。例如,无线通信芯片组104可包括I/Q调制器902。控制器310可经由调制操作信号906使I/Q调制器902使用雷达调制来产生雷达信号602、信号1000-1或信号1000-N。
在1308处,经由无线通信芯片组基于第二调制类型对另一信号进行调制以产生通信信号。例如,控制器130可经由调制操作信号906使I/Q调制器902使用通信调制来产生信号1000-2或信号1000-N。
在1310处,控制雷达信号和通信信号的发射使得能实现经由无线通信芯片组的雷达感测和无线通信。例如,如果无线通信芯片组104具有有限的资源(例如,有限数目的收发器406和天线404),则控制器310可使无线通信芯片组104在不同的时间发射雷达信号1000-1和通信信号1000-2。或者,控制器310可使无线通信芯片组104同时地发射雷达信号1000-1和通信信号1000-2,诸如在无线通信芯片组104支持MIMO的情况下。在一些情况下,雷达信号1000-1和通信信号1000-2的发射可基于相应的优先级、雷达感测的预定更新速率或者按照由与无线通信芯片组104相关联的诸如基于雷达的应用308的应用的请求。
示例计算系统
图14图示出示例计算系统1400的各种部件,所述示例计算系统1400可被实现为如参考前面的图1-图10所描述的任何类型的客户端、服务器和/或计算设备以使用无线通信芯片组104(无线通信芯片组104)来实现雷达感测。
计算系统1400包括通信设备1402,所述通信设备1402使得能实现设备数据1404(例如,接收到的数据、正在接收的数据、被调度以用于广播的数据、数据的数据分组)的有线和/或无线通信。设备数据1404或其它设备内容可包括设备的配置设置、存储在设备上的媒体内容和/或与设备的用户相关联的信息。存储在计算系统1400上的媒体内容可包括任何类型的音频、视频和/或图像数据。计算系统1400包括一个或多个数据输入1406,可经由所述一个或多个数据输入1406接收任何类型的数据、媒体内容和/或输入,诸如人类发言、基带数据702、空间响应708、其它类型的雷达数据(例如,数字基带数据或距离多普勒图)、用户可选输入(显式的或隐式的)、消息、音乐、电视媒体内容、录制的视频内容以及从任何内容和/或数据源接收到的任何其它类型的音频、视频和/或图像数据。
计算系统1400还包括通信接口1408,所述通信接口1408可被实现为串行和/或并行接口、无线接口、任何类型的网络接口、调制解调器中的任何一个或多个以及被实现为任何其它类型的通讯接口。通信接口1408提供计算系统1400与通信网络之间的连接和/或通信链路,其它电子、计算和通信设备通过所述通信接口1408向计算系统1400传送数据。
计算系统1400包括一个或多个处理器1410(例如,微处理器、控制器等中的任一个),所述一个或多个处理器1410处理多种计算机可执行指令以控制计算系统1400的操作并且以使得能实现用于使用无线通信芯片组104的雷达感测的技术或者可以在所述计算系统1400中具体实现使用无线通信芯片组104的雷达感测。或者或此外,可用连接通常在1412处标识的处理和控制电路实现的硬件、固件或固定逻辑电路中的任何一个或组合来实现计算系统1400。尽管未示出,但是计算系统1400可包括耦合设备内的各种部件的系统总线或数据传输系统。系统总线可包括不同的总线结构中的任何一种或组合,诸如存储器总线或存储器控制器、外围总线、通用串行总线和/或利用各种总线架构中的任一种的处理器或局部总线。
计算系统1400还包括计算机可读介质1414,诸如使得能实现持久和/或非暂时性数据存储(即,与仅信号发射相反)的一个或多个存储器设备,所述计算机可读介质1414的示例包括随机存取存储器(RAM)、非易失性存储器(例如,只读存储器(ROM)、闪速存储器、EPROM、EEPROM等中的任何一个或多个)和磁盘存储设备。可以将磁盘存储设备实现为任何类型的磁或光学存储设备,诸如硬盘驱动器、可记录和/或可重写光盘(CD)、任何类型的数字通用盘(DVD)等。计算系统1400还可包括大容量存储介质设备(存储介质)1416。
计算机可读介质1414提供用于存储设备数据1404和各种设备应用1418以及与计算系统1400的操作方面有关的任何其它类型的信息和/或数据的数据存储机制。例如,操作系统1420可作为计算机应用与计算机可读介质1414一起被维护并在处理器1410上执行。设备应用1418可以包括设备管理器,诸如任何形式的控制应用、软件应用、信号处理和控制模块、特定设备产生的代码、用于特定设备的硬件抽象层等。
设备应用1418还包括用于实现使用无线通信芯片组104的雷达感测的任何系统部件、引擎或管理器。在此示例中,设备应用1418包括基于雷达的应用308、控制器310和数字波束形成器418。
结论
尽管已经用特定于特征和/或方法的语言描述了利用使用无线通信芯片组的雷达感测的技术以及包括使用无线通信芯片组的雷达感测的装置,但是应该理解的是,所附权利要求的主题不一定限于所描述的特定特征或方法。相反,特定特征和方法作为使用无线通信芯片组的雷达感测的示例实施方式被公开。

Claims (16)

1.一种雷达感测和无线通信装置,包括:
无线通信芯片组,所述无线通信芯片组包括同相和正交调制器,所述无线通信芯片组被配置为经由所述同相和正交调制器基于第一调制类型对第一信号进行调制;以及
控制器,所述控制器被配置为选择所述第一调制类型以使得能够检测反射所调制的第一信号的目标;
其中,所述无线通信芯片组包括另一同相和正交调制器;
其中,所述无线通信芯片组被配置为经由所述另一同相和正交调制基于第二调制类型对第二信号进行调制;
其中,所述控制器被配置为选择所述第二调制类型以使得数据能够以无线方式向另一装置传送;
其中,所述第一调制类型和所述第二调制类型使所述第一信号和所述第二信号彼此正交;以及
其中,所述无线通信芯片组被配置为同时发射所述第一信号的一部分和所述第二信号的一部分,其中,所述第一信号包括雷达信号。
2.根据权利要求1所述的装置,其中,所述第一调制类型包括线性频率调制。
3.根据权利要求2所述的装置,其中,所述控制器被配置为选择无线通信信道以设置所述雷达信号的频率和带宽。
4.根据权利要求3所述的装置,其中,所述控制器被配置为使用所述无线通信信道和另一无线通信信道来执行信道捆绑,以使得所述雷达信号的所述带宽能够包含所述无线通信信道中的频率的至少一部分和所述另一无线通信信道中的频率的至少另一部分。
5.根据权利要求2所述的装置,其中,所述控制器被配置为使所述同相和正交调制器将通信数据调制到所述雷达信号上以使得所述雷达信号能够被另一装置用于无线通信或雷达感测。
6.根据权利要求1-5中的任一项所述的装置,其中,所述装置被包括在蜂窝电话内。
7.根据权利要求1-5中的任一项所述的装置,其中,所述无线通信芯片组包括处理器和计算机可读存储介质,所述处理器和所述计算机可读存储介质一起实现所述控制器。
8.一种使得能实现雷达感测和无线通信的方法,包括:
选择第一调制类型以使得能够确定目标的位置;
选择第二调制类型以使得能够以无线方式传送通信数据;
经由无线通信芯片组基于所述第一调制类型对第一信号进行调制以产生雷达信号;
经由所述无线通信芯片组基于所述第二调制类型对第二信号进行调制以产生通信信号;以及
控制所述雷达信号和所述通信信号的发射以使得能实现经由所述无线通信芯片组的雷达感测和无线通信;
其中,控制所述雷达信号和所述通信信号的发射包括同时发射所述雷达信号的一部分和所述通信信号的一部分;以及其中,选择所述第一调制类型和选择所述第二调制类型使所述雷达信号和所述通信信号彼此正交,以减轻所述雷达信号与所述通信信号之间的干扰。
9.根据权利要求8所述的方法,其中,控制所述雷达信号和所述通信信号的发射包括经由所述无线通信芯片组在不同的时间发射所述雷达信号和所述通信信号。
10.根据权利要求9所述的方法,其中,用于发射所述雷达信号和所述通信信号的次序基于所述雷达信号和所述通信信号的相应的优先级。
11.根据权利要求9所述的方法,其中,所述雷达信号的所述发射基于与所述雷达感测相关联的预定更新速率。
12.根据权利要求9所述的方法,进一步包括:
接收对执行雷达感测或无线通信的请求;以及
响应于所述请求,使所述雷达信号或所述通信信号分别经由所述无线通信芯片组发射。
13.根据权利要求8所述的方法,其中,选择所述第一调制类型和选择所述第二调制类型使所述雷达信号和所述通信信号利用不相交的无线通信信道。
14.根据权利要求8至13中的任一项所述的方法,进一步包括:启动所述无线通信芯片组以进行全双工操作以使得所述无线通信芯片组能够在所述雷达信号被发射的时间段的至少一部分期间接收所述雷达信号。
15.根据权利要求8至13中的任一项所述的方法,进一步包括:使包括所述无线通信芯片组的设备和包括另一无线通信芯片组的另一设备同步以使得所述设备和所述另一设备能够基于所述雷达信号作为双基地雷达而操作。
16.根据权利要求15所述的方法,
经由所述无线通信芯片组接收由所述另一设备发射的另一雷达信号,所述另一雷达信号包括通信数据并且被所述目标反射;
经由所述无线通信芯片组从所述雷达信号中提取所述通信数据;以及
基于接收到的所述另一雷达信号来执行数字波束形成以确定所述目标的角位置。
CN201880007506.1A 2017-05-31 2018-03-30 用于使用无线通信芯片组的雷达感测的雷达调制 Active CN110192119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011339987.1A CN112731295B (zh) 2017-05-31 2018-03-30 用于使用无线通信芯片组的雷达感测的雷达调制

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762512961P 2017-05-31 2017-05-31
US62/512,961 2017-05-31
US15/928,386 US10754005B2 (en) 2017-05-31 2018-03-22 Radar modulation for radar sensing using a wireless communication chipset
US15/928,386 2018-03-22
PCT/US2018/025506 WO2018222268A1 (en) 2017-05-31 2018-03-30 Radar modulations for radar sensing using a wireless communication chipset

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202011339987.1A Division CN112731295B (zh) 2017-05-31 2018-03-30 用于使用无线通信芯片组的雷达感测的雷达调制

Publications (2)

Publication Number Publication Date
CN110192119A CN110192119A (zh) 2019-08-30
CN110192119B true CN110192119B (zh) 2020-11-17

Family

ID=62044987

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011339987.1A Active CN112731295B (zh) 2017-05-31 2018-03-30 用于使用无线通信芯片组的雷达感测的雷达调制
CN201880007506.1A Active CN110192119B (zh) 2017-05-31 2018-03-30 用于使用无线通信芯片组的雷达感测的雷达调制

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202011339987.1A Active CN112731295B (zh) 2017-05-31 2018-03-30 用于使用无线通信芯片组的雷达感测的雷达调制

Country Status (6)

Country Link
US (2) US10754005B2 (zh)
EP (2) EP3571525B1 (zh)
JP (1) JP7100657B2 (zh)
KR (2) KR102312915B1 (zh)
CN (2) CN112731295B (zh)
WO (1) WO2018222268A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914834B2 (en) 2017-05-10 2021-02-09 Google Llc Low-power radar
US10754005B2 (en) 2017-05-31 2020-08-25 Google Llc Radar modulation for radar sensing using a wireless communication chipset
US10782390B2 (en) 2017-05-31 2020-09-22 Google Llc Full-duplex operation for radar sensing using wireless communication chipset
US10795009B2 (en) 2017-05-31 2020-10-06 Google Llc Digital beamforming for radar sensing using wireless communication chipset
JP6926775B2 (ja) * 2017-07-24 2021-08-25 日本電気株式会社 移動目標探知システム及び移動目標探知方法
WO2019095050A1 (en) * 2017-11-14 2019-05-23 Biointeractive Technologies, Inc. Apparatus and methods for detecting, quantifying, and providing feedback on user gestures
WO2020044192A1 (en) 2018-08-26 2020-03-05 Celeno Communications (Israel) Ltd. Wi-fi radar detection using synchronized wireless access point
US11105912B2 (en) 2018-12-31 2021-08-31 Celeno Communications (Israel) Ltd. Coherent Wi-Fi radar using wireless access point
US11102750B2 (en) 2019-01-01 2021-08-24 Celeno Communications (Israel) Ltd. Positioning system based on distributed transmission and reception of Wi-Fi signals
CN113272027A (zh) 2019-01-09 2021-08-17 华为技术有限公司 用于无线通信和感测的低成本收发器结构
US11194032B2 (en) 2019-03-22 2021-12-07 Apple Inc. Systems and methods for object detection by radio frequency systems
US11454696B2 (en) * 2019-04-05 2022-09-27 Infineon Technologies Ag FMCW radar integration with communication system
DE102019205638A1 (de) * 2019-04-17 2020-10-22 BSH Hausgeräte GmbH Hausgerät und Verfahren zur Verbesserung von Radar-basierten Messungen
US11867827B2 (en) * 2019-05-03 2024-01-09 Nxp B.V. Radar sensing
CN113614676B (zh) 2019-05-20 2024-03-26 谷歌有限责任公司 用于提供多模式界面的基于移动设备的雷达系统及其方法
CN113826024A (zh) 2019-06-14 2021-12-21 索尼集团公司 无线电通信终端中的低功率雷达
US11249177B2 (en) * 2019-06-17 2022-02-15 The Boeing Company Transceiver assembly for detecting objects
WO2020256692A1 (en) 2019-06-17 2020-12-24 Google Llc Mobile device-based radar system for applying different power modes to a multi-mode interface
DE102019209968A1 (de) * 2019-07-06 2021-01-07 Robert Bosch Gmbh OFDM-Radarsensor mit mehreren Sendekanälen und fortschreitender Berechnung von Zeitsignalen
CN112305543A (zh) * 2019-07-15 2021-02-02 华为技术有限公司 一种检测方法、信号发送方法及装置
US11487363B2 (en) * 2019-07-29 2022-11-01 Qualcomm Incorporated Gesture detection in interspersed radar and network traffic signals
US11229002B2 (en) * 2019-09-05 2022-01-18 Apple Inc. Ranging with a mobile cellular device
US11774592B2 (en) 2019-09-18 2023-10-03 Infineon Technologies Ag Multimode communication and radar system resource allocation
US20210318423A1 (en) * 2019-09-27 2021-10-14 Google Llc Proximity Detection Using Calculated Voltage Standing Wave Ratio Readings
CN113220112B (zh) * 2020-01-21 2023-07-18 华为技术有限公司 手势识别方法、装置、终端设备及计算机存储介质
KR102321422B1 (ko) * 2020-01-29 2021-11-04 울산과학기술원 레이더-통신 결합 시스템의 신호 생성 방법
US11137488B1 (en) * 2020-03-10 2021-10-05 Nokia Technologies Oy Radar excitation signals for wireless communications system
DE102020204381B4 (de) 2020-04-03 2022-07-07 Vitesco Technologies GmbH Verfahren zum Betreiben eines Radarsystems, sowie Radarsystem
WO2021215080A1 (ja) * 2020-04-24 2021-10-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 通信装置及びセンシング方法
KR102437393B1 (ko) * 2020-04-29 2022-08-30 주식회사 대호 가축용 성장촉진제의 제조방법
WO2021253143A1 (en) * 2020-06-15 2021-12-23 Qualcomm Incorporated Coexistence between wireless sensing and wireless communication in cellular bands
DE102020117450A1 (de) * 2020-07-02 2022-01-05 Tridonic Gmbh & Co Kg Netzwerkfähige Gebäudetechnikvorrichtung mit Präsenzsensor
CN111650582B (zh) * 2020-07-27 2021-12-17 四川长虹电器股份有限公司 一种基于mimo毫米波雷达的手势识别方法
US20220066014A1 (en) * 2020-09-03 2022-03-03 Qualcomm Incorporated Measurement Reporting for Bistatic and Multi-static Radar in Cellular Systems
KR102547192B1 (ko) * 2020-12-24 2023-06-26 한국항공우주연구원 레이더 신호를 이용하여 데이터 통신을 수행하기 위한 장치 및 방법
JPWO2023281913A1 (zh) * 2021-07-09 2023-01-12
US20230076874A1 (en) * 2021-08-30 2023-03-09 Samsung Electronics Co., Ltd. Power control and beam management for communication and sensing
US20240322935A1 (en) * 2023-03-24 2024-09-26 Qualcomm Incorporated Jammer detection
CN116643280B (zh) * 2023-07-27 2023-10-13 禾昆科技(北京)有限公司 雷达控制装置和雷达控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529970A (zh) * 2001-05-31 2004-09-15 Ħ��������˾ 移动无线通信设备中的多普勒展宽/速度估计及其方法
CN1894981A (zh) * 2003-11-13 2007-01-10 摩托罗拉公司 用于移动无线电设备速度估计的方法和装置
WO2010099268A1 (en) * 2009-02-25 2010-09-02 Xanthia Global Limited Wireless physiology monitor
CN102087362A (zh) * 2009-12-08 2011-06-08 北京邮电大学 卡尔曼滤波、数字锁相环滤波和信号跟踪的方法和装置
CN103416036A (zh) * 2011-03-14 2013-11-27 古河电气工业株式会社 正交解调装置

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843351A (en) 1987-08-28 1989-06-27 Hewlett-Packard Company Vector modulation signal generator
US4912477A (en) 1988-11-18 1990-03-27 Grumman Aerospace Corporation Radar system for determining angular position utilizing a linear phased array antenna
US5121124A (en) 1991-05-01 1992-06-09 Thermo Electron Technologies Corp. Microwave camera
JP2688010B2 (ja) 1994-02-24 1997-12-08 防衛庁技術研究本部長 無人水中航走体用航法装置
FI956060A (fi) 1995-12-15 1997-06-16 Nokia Telecommunications Oy Sektoroitu tukiasema
JP2919461B1 (ja) 1998-05-11 1999-07-12 三菱電機株式会社 通信装置
JP2001051049A (ja) 1999-08-10 2001-02-23 Oki Electric Ind Co Ltd レーダ装置
JP4232879B2 (ja) 1999-09-02 2009-03-04 パナソニック株式会社 通信装置
IL134518A0 (en) 2000-02-13 2001-04-30 Hexagon System Engineering Ltd Integrated radar and communication system
JP4324320B2 (ja) * 2000-11-14 2009-09-02 アンリツ株式会社 レーダ・車々間通信共用システムおよび車載用アンテナ
JP3608003B2 (ja) 2001-03-09 2005-01-05 三菱電機株式会社 通信レーダ装置
US7092690B2 (en) 2002-03-13 2006-08-15 Gregory Zancewicz Genetic algorithm-based adaptive antenna array processing method and system
US6816116B2 (en) 2002-03-22 2004-11-09 Quanta Computer, Inc. Smart antenna for portable devices
JP3575694B2 (ja) 2002-04-24 2004-10-13 株式会社ホンダエレシス 走査型fmcwレーダ
US6633254B1 (en) 2002-08-15 2003-10-14 Bae Systems Information And Electronics Systems Integration Inc. Self-modulating remote moving target detector
US20080065291A1 (en) 2002-11-04 2008-03-13 Automotive Technologies International, Inc. Gesture-Based Control of Vehicular Components
WO2004042544A1 (en) 2002-11-07 2004-05-21 Personics A/S Control system including an adaptive motion detector
DE10256620A1 (de) * 2002-12-03 2004-07-08 Daimlerchrysler Ag Radarsystem mit integrierter Datenübertragung
GB0325622D0 (en) 2003-11-03 2003-12-10 Cambridge Consultants System for determining positional information
JP2005181193A (ja) 2003-12-22 2005-07-07 Tdk Corp パルス波レーダー装置
KR100592767B1 (ko) 2003-12-26 2006-06-26 한국전자통신연구원 개선된 전력증폭기 효율을 가진 듀얼 안테나 다이버시티송신기 및 시스템
US7768445B2 (en) 2004-08-02 2010-08-03 Mitsubishi Electric Corporation Frequency-modulated radar system with variable pulse interval capability
US8560972B2 (en) 2004-08-10 2013-10-15 Microsoft Corporation Surface UI for gesture-based interaction
JP2007180597A (ja) 2004-09-01 2007-07-12 Nokia Corp 中継器及び中継方法
JP4626238B2 (ja) * 2004-09-15 2011-02-02 日本電気株式会社 無線通信システム、無線通信装置、レーダ検出回路及びそれらに用いるレーダ検出方法
JP4735830B2 (ja) 2005-12-14 2011-07-27 日本電気株式会社 無線通信装置及びそれを用いたレーダ波検出方法
JP4553387B2 (ja) 2006-02-02 2010-09-29 株式会社東芝 ウェイト算出方法、ウェイト算出装置、アダプティブアレーアンテナ、及びレーダ装置
JP2007232498A (ja) 2006-02-28 2007-09-13 Hitachi Ltd 障害物検知システム
US8254865B2 (en) 2006-04-07 2012-08-28 Belair Networks System and method for frequency offsetting of information communicated in MIMO-based wireless networks
US8654885B2 (en) * 2006-06-06 2014-02-18 Qualcomm Incorporated Fast in-phase and quadrature imbalance calibration
JP2008145423A (ja) 2006-11-15 2008-06-26 Matsushita Electric Ind Co Ltd レーダ装置
US20090017910A1 (en) 2007-06-22 2009-01-15 Broadcom Corporation Position and motion tracking of an object
KR100888864B1 (ko) 2007-05-21 2009-03-17 한국과학기술원 바이오 레이더와 기울기 센서를 이용한 문자 입력 장치
US8169358B1 (en) 2007-06-25 2012-05-01 Bbn Technologies Coherent multi-band radar and communications transceiver
JP4575409B2 (ja) * 2007-08-22 2010-11-04 株式会社東芝 無線通信装置
US8254433B2 (en) * 2008-01-08 2012-08-28 Raytheon Company Non-federated multi-function Ka-band exciter system and method
DE102008038365A1 (de) 2008-07-02 2010-01-07 Adc Automotive Distance Control Systems Gmbh Fahrzeug-Radarsystem und Verfahren zur Bestimmung einer Position zumindest eines Objekts relativ zu einem Fahrzeug
CN101354438B (zh) 2008-08-28 2011-12-28 阮树成 毫米波时分线性调频多目标检测汽车防撞雷达
US8588805B2 (en) 2008-12-13 2013-11-19 Broadcom Corporation Receiver utilizing multiple radiation patterns to determine angular position
US8994536B2 (en) 2009-02-25 2015-03-31 Xanthia Global Limited Wireless physiology monitor
JP4389000B2 (ja) 2009-03-12 2009-12-24 富士通株式会社 レーダ装置およびアクティブターゲット装置
US9086476B1 (en) 2009-03-25 2015-07-21 Raytheon Company Method and apparatus for rejecting intermodulation products
US20110140949A1 (en) 2009-12-16 2011-06-16 Electronics And Telecommunications Research Institute Mimo radar apparatus and wireless communication method using the same
US20110181510A1 (en) * 2010-01-26 2011-07-28 Nokia Corporation Gesture Control
US9335825B2 (en) 2010-01-26 2016-05-10 Nokia Technologies Oy Gesture control
US8610771B2 (en) 2010-03-08 2013-12-17 Empire Technology Development Llc Broadband passive tracking for augmented reality
US9477324B2 (en) 2010-03-29 2016-10-25 Hewlett-Packard Development Company, L.P. Gesture processing
EP2428814A1 (en) 2010-09-13 2012-03-14 France Telecom Object detection method, device and system
WO2012037680A1 (en) * 2010-09-20 2012-03-29 Corporation De L'ecole Polytechnique De Montreal Radar system with integrated communication functionality
US8519885B2 (en) 2011-09-21 2013-08-27 Mobile Joose, Inc. Combination hand-held phone and radar system
US9569003B2 (en) 2010-09-30 2017-02-14 Broadcom Corporation Portable computing device including a three-dimensional touch screen
KR101199169B1 (ko) 2011-01-12 2012-11-07 주식회사 만도 타깃물체 감지 방법 및 레이더 장치
JP5588912B2 (ja) 2011-04-07 2014-09-10 株式会社日立製作所 無線通信装置および無線通信方法
US20120270564A1 (en) 2011-04-19 2012-10-25 Qualcomm Incorporated Methods and apparatuses for use in a mobile device to detect signaling apertures within an environment
US20120280900A1 (en) 2011-05-06 2012-11-08 Nokia Corporation Gesture recognition using plural sensors
PT2723615T (pt) 2011-06-24 2023-05-24 Surveillance Guard Co Ltd Um sistema de prevenção de acidente e um veículo que inclui o sistema de prevenção de acidente
CN103797440B (zh) 2011-09-15 2016-12-21 皇家飞利浦有限公司 具有用户反馈的基于姿势的用户界面
EP2587347A3 (en) 2011-10-25 2016-01-20 Broadcom Corporation Portable computing device including a three-dimensional touch screen
JP2014059284A (ja) 2012-05-09 2014-04-03 Rcs:Kk 相互間距離測定機能を付加した安全運転支援装置
US8819812B1 (en) 2012-08-16 2014-08-26 Amazon Technologies, Inc. Gesture recognition for device input
US9230160B1 (en) 2012-08-27 2016-01-05 Amazon Technologies, Inc. Method, medium, and system for online ordering using sign language
US8798695B1 (en) 2012-09-17 2014-08-05 Amazon Technologies, Inc. Proximity sensor using antennas of a user device
CN104871031B (zh) 2012-12-19 2017-05-24 索尼公司 用于操作手提式筛选设备的方法及手提式筛选设备
US9075429B1 (en) 2012-12-19 2015-07-07 Amazon Technologies, Inc. Distortion correction for device display
US20140188989A1 (en) 2012-12-27 2014-07-03 Google Inc. Exchanging content across multiple devices
WO2014190074A1 (en) 2013-05-22 2014-11-27 New York University System and method for estimating direction of arrival of a signal incident on an antenna array
US10397793B2 (en) * 2013-09-04 2019-08-27 Qualcomm Incorporated Radar detection in wireless network that uses frequency-division duplexing
JP6255248B2 (ja) 2014-01-14 2017-12-27 パナソニック株式会社 マルチセクタレーダ
FR3017722A1 (fr) 2014-02-17 2015-08-21 Tounwendsida Ulysse Philippe Semde Dispositif permettant a toutes personnes valide, ou handicapee moteur, ou sourde-muette d'editer, modifier et publier un logiciel informatique, de facon autonome, sans connaissances prealables en informatique et sans contact physique avec le terminal
WO2015184406A1 (en) 2014-05-30 2015-12-03 Texas Tech University System Hybrid fmcw-intererometry radar for positioning and monitoring and methods of using the same
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
KR101566622B1 (ko) 2014-06-23 2015-11-06 재단법인대구경북과학기술원 통신 기능을 포함하는 레이더 장치 및 레이더 장치의 신호 처리 방법
US9746901B2 (en) 2014-07-31 2017-08-29 Google Technology Holdings LLC User interface adaptation based on detected user location
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
KR102214194B1 (ko) 2014-08-19 2021-02-09 삼성전자 주식회사 Rf센서를 가진 디스플레이장치 및 디스플레이장치의 사용자 감지방법
US9813222B2 (en) * 2014-08-28 2017-11-07 Toyota Jidosha Kabushiki Kaisha Single channel full-duplex joint radar and communication
KR101603851B1 (ko) 2014-11-10 2016-03-15 재단법인대구경북과학기술원 통신 기능을 가지는 레이더 장치 및 방법
US20160174842A1 (en) * 2014-12-17 2016-06-23 Elwha Llc Epidermal electronics systems having radio frequency antennas systems and methods
US10317512B2 (en) 2014-12-23 2019-06-11 Infineon Technologies Ag RF system with an RFIC and antenna system
US20160306034A1 (en) 2014-12-23 2016-10-20 Infineon Technologies Ag RF System with an RFIC and Antenna System
US9817109B2 (en) 2015-02-27 2017-11-14 Texas Instruments Incorporated Gesture recognition using frequency modulated continuous wave (FMCW) radar with low angle resolution
US9977122B2 (en) 2015-03-27 2018-05-22 The Boeing Company Multi-function shared aperture array
US9277418B1 (en) * 2015-07-21 2016-03-01 RadComm, Inc. Methods, devices and systems for separating overlappingly transmitted signals and enabling joint spectrum access
EP3329296B1 (en) 2015-07-29 2021-09-15 QUALCOMM Incorporated Angular velocity sensing using arrays of antennas
KR102006583B1 (ko) 2015-09-08 2019-10-01 빔웨이브 에이비 대용량-mimo를 위한 아날로그 처리 시스템
US20170086202A1 (en) 2015-09-21 2017-03-23 Qualcomm Incorporated Wi-fi indoor radar
US10324166B2 (en) 2015-09-28 2019-06-18 Rockwell Collins, Inc. Affordable combined pulsed/FMCW radar AESA
US10817065B1 (en) 2015-10-06 2020-10-27 Google Llc Gesture recognition using multiple antenna
US20170289766A1 (en) 2016-03-29 2017-10-05 Microsoft Technology Licensing, Llc Digital Assistant Experience based on Presence Detection
WO2017175190A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
JP6270901B2 (ja) * 2016-04-21 2018-01-31 三菱電機株式会社 Fmcwレーダ装置
US9945935B2 (en) * 2016-04-25 2018-04-17 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
EP3449272B1 (en) * 2016-04-25 2022-11-02 Uhnder, Inc. Vehicle radar system with a shared radar and communication system, and method for managing such a system in a vehicle
CN106093931B (zh) * 2016-05-31 2018-11-09 西安电子科技大学 基于数字阵列天线的通信雷达一体化收发方法
US10969481B2 (en) 2016-06-01 2021-04-06 Sony Corporation Coexistence of radio communication and radar probing
US10141993B2 (en) 2016-06-16 2018-11-27 Intel Corporation Modular antenna array beam forming
US10598763B2 (en) * 2016-07-27 2020-03-24 Raytheon Company System and method for concurrent communication of different signal types by a radar
KR101809371B1 (ko) * 2016-07-29 2017-12-14 전자부품연구원 고속 첩 신호를 이용한 차량용 RadCom 시스템 및 방법
KR101814486B1 (ko) 2016-09-29 2018-01-05 재단법인대구경북과학기술원 레이더 및 무선 통신 기능을 가지는 차량용 레이더 장치 및 그것을 이용한 자원 조절 방법
US10466772B2 (en) * 2017-01-09 2019-11-05 Infineon Technologies Ag System and method of gesture detection for a remote device
US10914834B2 (en) 2017-05-10 2021-02-09 Google Llc Low-power radar
US10754005B2 (en) 2017-05-31 2020-08-25 Google Llc Radar modulation for radar sensing using a wireless communication chipset
US10795009B2 (en) * 2017-05-31 2020-10-06 Google Llc Digital beamforming for radar sensing using wireless communication chipset
US10782390B2 (en) 2017-05-31 2020-09-22 Google Llc Full-duplex operation for radar sensing using wireless communication chipset
WO2020216522A1 (en) 2019-04-26 2020-10-29 Sony Corporation Radar probing using radio communication terminals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529970A (zh) * 2001-05-31 2004-09-15 Ħ��������˾ 移动无线通信设备中的多普勒展宽/速度估计及其方法
CN1894981A (zh) * 2003-11-13 2007-01-10 摩托罗拉公司 用于移动无线电设备速度估计的方法和装置
WO2010099268A1 (en) * 2009-02-25 2010-09-02 Xanthia Global Limited Wireless physiology monitor
CN102087362A (zh) * 2009-12-08 2011-06-08 北京邮电大学 卡尔曼滤波、数字锁相环滤波和信号跟踪的方法和装置
CN103416036A (zh) * 2011-03-14 2013-11-27 古河电气工业株式会社 正交解调装置

Also Published As

Publication number Publication date
KR20190120411A (ko) 2019-10-23
CN110192119A (zh) 2019-08-30
KR20210127771A (ko) 2021-10-22
US20200348390A1 (en) 2020-11-05
KR102440915B1 (ko) 2022-09-06
US11079470B2 (en) 2021-08-03
EP3571525A1 (en) 2019-11-27
EP3712655A1 (en) 2020-09-23
EP3571525B1 (en) 2020-06-03
CN112731295B (zh) 2024-07-05
CN112731295A (zh) 2021-04-30
WO2018222268A1 (en) 2018-12-06
JP2020523805A (ja) 2020-08-06
US20180348339A1 (en) 2018-12-06
KR102312915B1 (ko) 2021-10-15
EP3712655B1 (en) 2024-02-21
JP7100657B2 (ja) 2022-07-13
US10754005B2 (en) 2020-08-25

Similar Documents

Publication Publication Date Title
CN110192119B (zh) 用于使用无线通信芯片组的雷达感测的雷达调制
JP7274544B2 (ja) 無線通信チップセットを使用するレーダー感知のための全二重動作
CN110462432B (zh) 使用无线通信芯片组进行用于雷达感测的数字波束形成
TWI771923B (zh) 用於雷達調變之方法及設備
TWI681204B (zh) 通信設備及用於執行數位波束成形之方法及相關電腦可讀儲存媒體
TWI681644B (zh) 使用無線通訊晶片組之用於雷達感測之全雙工操作

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant