WO2021253143A1 - Coexistence between wireless sensing and wireless communication in cellular bands - Google Patents

Coexistence between wireless sensing and wireless communication in cellular bands Download PDF

Info

Publication number
WO2021253143A1
WO2021253143A1 PCT/CN2020/096025 CN2020096025W WO2021253143A1 WO 2021253143 A1 WO2021253143 A1 WO 2021253143A1 CN 2020096025 W CN2020096025 W CN 2020096025W WO 2021253143 A1 WO2021253143 A1 WO 2021253143A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
sensing
occasion
sensing signal
criterion
Prior art date
Application number
PCT/CN2020/096025
Other languages
French (fr)
Inventor
Jing Dai
Yuwei REN
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/096025 priority Critical patent/WO2021253143A1/en
Publication of WO2021253143A1 publication Critical patent/WO2021253143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to user equipment configured to use radio-frequency (RF) circuitry for wireless sensing.
  • RF radio-frequency
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • Short-range radar sensing is becoming increasingly useful for a variety of different applications.
  • smartphones, smartwatches, and other user equipment (UE) may include short-range radar sensors configured to detect gestures by a user and control various operations based on gesture classification.
  • vehicles may include short-range radar sensors for in-car controls.
  • a UE may use sensing signals in a licensed cellular band.
  • the licensed cellular band may be assigned to a radio access network (RAN) of a radio access technology (RAT) , such as 5G New Radio (NR) .
  • RAN radio access network
  • RAT radio access technology
  • 5G NR RANs may include frequency regime 1 (FR1) and/or frequency regime 2 (FR2) corresponding to sub-6 gigahertz (GHz) bands and millimeter wave (mmW) bands, respectively, and may offer larger bandwidth than other earlier cellular systems, especially in FR2 bands.
  • FR1 frequency regime 1
  • FR2 frequency regime 2
  • mmW millimeter wave
  • mmW may provide relatively large bandwidths and/or apertures for extraction of more accurate range, velocity, and/or angle information for environmental imaging.
  • mmW radar circuitry may be available in more compact form factors, and therefore, may be particularly suited to UE (and other mobile device) applications.
  • short-range radar sensing may also be operable when configured in sub-6 GHz bands.
  • UEs that support cellular communications may include radio-frequency (RF) components configured for signaling in the same bands that may be used for short-range radar sensing.
  • UEs may include antennas and RF chains configured for signaling in mmW bands (and/or sub-6 GHz bands) .
  • an on-device short-range radar sensor may be configured to share RF components with a cellular system transceiver. Such a configuration may reduce costs and/or UE form factor, as additional RF front-end modules for the radar sensor may be redundant, and therefore unnecessary.
  • a UE configured to share RF components between a short-range radar sensor and a cellular system transceiver may be unable to simultaneously perform wireless sensing using the short-range radar sensor and wireless communication using the cellular system transceiver.
  • the cellular system transceiver may be unable to communicate with a base station (e.g., gNB) .
  • the UE may be able to (dynamically) change the times at which wireless sensing is performed (e.g., according to parameters of UE applications and/or UE user operations) , the scheduling for wireless communications configured by the base station may conflict with the wireless sensing times.
  • the UE and base station may experience various wireless communication failures, as the base station may be unaware of the wireless sensing times of the UE.
  • the apparatus may be a UE configured to detect if a first schedule for wireless communication conflicts with a first sensing occasion, and in response to detection of the first schedule conflicting with the first sensing occasion, determine to communicate either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on a first criterion.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a diagram of an example configuration for wireless sensing by a UE at a set of sensing occasions.
  • FIG. 5 is a call flow diagram illustrating example operations for allocating a set of RF components between a radar sensor and a cellular system transceiver.
  • FIG. 6 is a diagram illustrating an example configuration of a wireless communication schedule and wireless sensing occasions.
  • FIG. 7 is a diagram illustrating an example configuration for wireless sensing occasions.
  • FIG. 8 is a flowchart of an example method of allocating a set of RF components between a radar sensor and a cellular system transceiver by a UE.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 gigahertz (GHz) unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • GHz gigahertz
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum.
  • EHF Extremely high frequency
  • EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • Frequency range bands include frequency regime 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency regime 2 (FR2) , which includes frequency bands above 24.250 GHz.
  • mmW /near mmW radio frequency (RF) band e.g., 3 GHz –300 GHz
  • Base stations /UEs may operate within one or more frequency range bands.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile communications
  • the UE 104 may include a set of RF components (e.g., a set of antennas, a set of RF chains, etc. ) , a cellular system transceiver, and a sensor configured to use a first sensing signal to detect a first remote object during a first sensing occasion.
  • the UE 104 may further include a processor configured to detect if a first schedule for wireless communication conflicts with the first sensing occasion.
  • the processor of the UE 104 may be further configured to, in response to detection of the first schedule conflicting with the first sensing occasion, determine to communicate either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on a first criterion (198) .
  • the processor of the UE 104 may allocate the set of RF components to either the first sensing signal or the wireless communication based on the first criterion.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe.
  • the 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with (198) of FIG. 1.
  • Radar sensing is becoming increasingly useful for a variety of different applications.
  • smartphones, smartwatches, and other UE may include short-range radar sensors configured to detect gestures by a user and control various operations based on gesture classification.
  • vehicles may include short-range radar sensors for in-car controls.
  • a UE may use sensing signals in a licensed cellular band.
  • the licensed cellular band may be assigned to a RAN of a RAT, such as 5G NR.
  • 5G NR RANs may include FR1 and/or FR2 corresponding to sub-6 GHz bands and mmW bands, respectively, and may offer larger bandwidth than other earlier cellular systems, especially in FR2 bands.
  • mmW may provide relatively large bandwidths and/or apertures for extraction of more accurate range, velocity, and/or angle information for environmental imaging.
  • mmW radar circuitry may be available in more compact form factors, and therefore, may be particularly suited to UE (and other mobile device) applications.
  • short-range radar sensing may also be operable when configured in sub-6 GHz bands.
  • UEs that support cellular communications may include RF components configured for signaling in the same bands that may be used for short-range radar sensing.
  • UEs may include antennas and RF chains configured for signaling in mmW bands (and/or sub-6 GHz bands) .
  • an on-device short-range radar sensor may be configured to share RF components with a cellular system transceiver. Such a configuration may reduce costs and/or UE form factor, as additional RF front-end modules for the radar sensor may be redundant, and therefore unnecessary.
  • a UE configured to share RF components between a short-range radar sensor and a cellular system transceiver may be unable to simultaneously perform wireless sensing using the short-range radar sensor and wireless communication using the cellular system transceiver.
  • the cellular system transceiver may be unable to communicate with a base station (e.g., gNB) .
  • a base station e.g., gNB
  • the UE may be able to (dynamically) change the times at which wireless sensing is performed (e.g., according to parameters of UE applications and/or UE user operations)
  • the scheduling for wireless communications configured by the base station may conflict with the wireless sensing times. Consequently, the UE and base station may experience various wireless communication failures, as the base station may be unaware of the wireless sensing times of the UE.
  • FIGs. 4-8 various aspects are described for allocating a set of RF components to either a wireless sensing signal or wireless communication based on at least one criterion.
  • FIG. 4 illustrates a diagram of an example wireless sensing 400 during a wireless sensing occasion and an example configuration 420 of wireless sensing occasions for a UE 404.
  • example wireless sensing 400 may occur at least partially during a sensing occasion (SO) .
  • An SO may be a time period during which the on-device short-range radar sensor 410 of a UE 404 uses wireless sensing signaling 408 in order to detect a remote object 406, such as a gesture by a user.
  • the short-range radar sensor 410 may transmit radar signals with a pre-defined waveform, e.g., frequency-modulated continuous-wave (FMCW) , pulse waveforms, or OFDM-based waveform.
  • FMCW frequency-modulated continuous-wave
  • the short-range radar sensor 410 may then receive reflected signals 412, which may provide the raw data for radar signaling processing (RSP) 414.
  • RSP radar signaling processing
  • the UE 404 may correlate the received reflected signals with transmitted signals, which may be based on FFT. According to the correlation, the UE 404 may obtain range, Doppler (velocity) , and/or angle information that corresponds to the remote object 406.
  • the UE 404 may then apply machine learning 416, which may include classification, regression, and/or an artificial intelligence (AI) agent to determine the remote object 406.
  • machine learning 416 may include classification, regression, and/or an artificial intelligence (AI) agent to determine the remote object 406.
  • the remote object 406 may be classified as one of a set of different gestures.
  • the UE 404 may perform at least one action 418 based on the detected remote object 406.
  • the application of machine learning 416 classifies the remote object 406 as a user rotating fingers in a clockwise direction, the UE 404 may perform an action 418 of increasing a volume.
  • the UE 404 may be configured with at least one of two wireless SOs: deterministic SOs 422 and potential SOs 424 (although different terminology other than “deterministic” and “potential” may be used to refer to the SOs 422, 424 in other aspects) .
  • the UE 404 may use a relatively lower resolution sensing waveform with a relatively lower power and a relatively longer periodicity for deterministic SOs 422, whereas the UE 404 may use a relatively higher resolution sensing waveform with a relatively higher power and relatively shorter periodicity for potential SOs 424.
  • the short-range radar sensor 410 of the UE 404 may share a set of RF components with a cellular system transceiver of the UE 404, different priorities may be established in the UE 404 for at least one of the SOs 422, 424 relative to scheduling with which the cellular system transceiver is configured for various wireless communications and/or channels. If the UE 404 is configured with both deterministic SOs 422 and potential SOs 424, the priorities for SOs 422, 424 relative to scheduling with which the cellular system transceiver is configured may be different for DSOs 422 than it is for PSOs 424.
  • FIG. 5 is a call flow diagram illustrating example operations 500 for allocating a set of RF components between a short-range radar sensor and a cellular system transceiver by a UE 504.
  • the UE 504 may include, inter alia, a short-range radar sensor 510, at least one processor 512, a cellular system transceiver 514, and a set of RF components 516.
  • the set of RF components 516 may include a set of antenna components (e.g., antenna arrays and antenna panels) connected with a set of RF chains (e.g., each RF chain may be digital and/or analog and may include an amplifier, a filter, a mixer, an attenuator, a modulation detector, and/or other components) .
  • a set of antenna components e.g., antenna arrays and antenna panels
  • RF chains e.g., each RF chain may be digital and/or analog and may include an amplifier, a filter, a mixer, an attenuator, a modulation detector, and/or other components
  • the set of RF components 516 may be configured to communicate signaling in at least one licensed cellular band, which may include at least one of a mmW band and/or sub-6 GHz band.
  • the set of RF components 516 may be connected with both short-range radar sensor 510 and the cellular system transceiver 514.
  • the processor 512 may be configured to allocate the set of RF components 516 to either the radar sensor 510 or the transceiver 514.
  • the radar sensor 510 may be configured to use a sensing signal to detect a remote object during an SO.
  • sensing signals may be transmitted according to a predefined waveform and reflected signals may be received to be correlated with the transmitted signals for RSP.
  • relatively lower resolution sensing signals with relatively lower power may be used for deterministic SOs, whereas relatively higher resolution sensing signals with relatively higher power may be used for potential SOs.
  • the base station 502 may configure SOs for the UE 504.
  • the base station 502 may configure a periodicity at which deterministic SOs 422 occur and/or the base station 502 may configure a periodicity at which potential SOs 424 occur.
  • the UE 504 may perform some variation of the wireless sensing 400, e.g., with relatively lower resolution and power consumption for deterministic SOs 422 or relatively higher resolution and higher power consumption for potential SOs 424.
  • the base station 502 may transmit, and the UE 504 may receive, sensing configuration information 522.
  • the UE 504 may then configure SOs to occur based on the sensing configuration information 522.
  • the UE 504 may configure deterministic SOs 422 to occur at a first periodicity, and may configure potential SOs 424 to occur at a second periodicity that is shorter than the first periodicity.
  • the base station 502 may schedule wireless communication with the UE 504.
  • the base station 502 may schedule uplink and/or downlink wireless communication.
  • the base station 502 may transmit wireless communication schedule information 524 to the UE 502.
  • the schedule information 524 may be included in DCI and/or in system information (e.g., in one or more SIBs) .
  • the schedule information 524 may indicate a schedule for SSBs transmitted by the base station 502.
  • the schedule information 524 may indicate monitoring occasions (MOs) on a downlink control channel (e.g., PDCCH) .
  • the schedule information 524 may indicate a periodicity of periodic signals (e.g., CSI-RS, SRS, etc. ) .
  • the schedule information 524 may schedule downlink data on a downlink data channel (e.g., PDSCH) and/or uplink data on an uplink data channel (e.g., PUSCH) .
  • the UE 504 may then detect 526 if a first schedule for wireless communication conflicts with a first SO.
  • the UE 504 e.g., the processor 512
  • the schedule information 524 may detect if the schedule information 524 schedules uplink and/or downlink communication that conflicts with a deterministic SO or potential SO configured by the sensing configuration information 522.
  • the UE 504 may detect that a schedule for wireless communication conflicts with an SO if the UE 504 is scheduled to transmit, receive, and/or monitor using the cellular system transceiver 514 at the same time as the radar sensor 510 is to use a sensing signal during a SO.
  • the UE 504 e.g., the processor 512
  • the UE 504 may detect that a schedule for wireless communication conflicts with an SO if the UE 504 is scheduled to transmit, receive, and/or monitor using the cellular system transceiver 514 with a threshold time period of an SO.
  • the UE 504 may allocate the set of RF components 516 to either the radar sensor 510 for a wireless sensing signal or the transceiver 514 for wireless communication based on at least one criterion.
  • the at least one criterion may include prioritization of a wireless sensing signal relative to at least one type of wireless signaling.
  • the at least one criterion may include prioritization of a wireless sensing signal relative to at least one wireless communication channel (e.g., PDCCH, PDSCH, PUCCH, PUSCH, etc. ) .
  • the at least one criterion comprises prioritization of the first sensing signal relative to at least one MO for the wireless communication.
  • the at least one criterion may include prioritization of SSBs over wireless sensing signals.
  • the processor 512 may allocate the set of RF components 516 to the cellular system transceiver 514 in order to receive a wireless communication 530 that includes at least one SSB. Consequently, the radar sensor 510 may refrain from detecting a gesture 532 (or other remote object) , as the set of RF components 516 may not be allocated to the radar sensor 510 for either a potential SO or a deterministic SO.
  • the at least one criterion may include prioritization of control channel (e.g., PDCCH) MOs and corresponding data communications on an uplink data channel (e.g., PUSCH) or downlink data channel (e.g., PDSCH) over wireless sensing signals of a deterministic SO.
  • control channel e.g., PDCCH
  • PUSCH uplink data channel
  • PDSCH downlink data channel
  • the processor 512 may allocate the set of RF components 516 to the cellular system transceiver 514 in order to detect for a wireless communication 530 during an MO 544, receive control information (e.g., on a PDCCH) during the MO 544, and, based on the control information, transmit uplink data on an uplink data channel (e.g., PUSCH) or receive downlink data on a downlink data channel (e.g., PDSCH) . Consequently, the radar sensor 510 may refrain from detecting a gesture 532 (or other remote object) during a deterministic SO, as the set of RF components 516 may not be allocated to the radar sensor 510.
  • control information e.g., on a PDCCH
  • uplink data channel e.g., PUSCH
  • a downlink data channel e.g., PDSCH
  • the MO 544 may be associated with receiving system information, such as an MO associated with a system information (SI) radio network temporary identifier (RNTI) .
  • SI system information
  • RNTI radio network temporary identifier
  • the cellular system transceiver 514 may receive wireless communication 530 that includes the system information and corresponding downlink data on a downlink data channel (e.g., PDSCH) .
  • a downlink data channel e.g., PDSCH
  • the MO 544 may be associated with receiving random access information (e.g., MO associated with a random access (RA) RNTI, MsgB-RNTI, and/or temporary cell (TC) RNTI) .
  • random access information e.g., MO associated with a random access (RA) RNTI, MsgB-RNTI, and/or temporary cell (TC) RNTI
  • the cellular system transceiver 514 may receive wireless communication 530 that includes the random access information and corresponding downlink data on a downlink data channel (e.g., PDSCH) .
  • a downlink data channel e.g., PDSCH
  • the MO 544 may be associated with receiving a paging message (e.g., MO associated with a paging (P) RNTI) .
  • a paging message e.g., MO associated with a paging (P) RNTI
  • the cellular system transceiver 514 may receive wireless communication 530 that includes the paging message and corresponding downlink data on a downlink data channel (e.g., PDSCH) .
  • a downlink data channel e.g., PDSCH
  • the MO 544 may be associated with transmitting or receiving high priority data, such as ultra-reliable low-latency communications (URLLC) data (e.g., MO associated with a modulation and coding scheme (MCS) cell (C) RNTI) .
  • URLLC ultra-reliable low-latency communications
  • MCS modulation and coding scheme
  • the cellular system transceiver 514 may receive wireless communication 530 that includes the high priority data on a downlink data channel (e.g., PDSCH) or may transmit wireless communication that includes high priority data on an uplink data channel (e.g., PUSCH) .
  • a downlink data channel e.g., PDSCH
  • an uplink data channel e.g., PUSCH
  • the at least one criterion may indicate that scheduling requests (SRs) on an uplink control channel (e.g., PUCCH) for high-priority uplink data (e.g., URLLC) data transmission are to be prioritized over wireless sensing signals of deterministic SOs.
  • the processor 512 may allocate the set of RF components 516 to the cellular system transceiver 514 in order to transmit SRs on an uplink control channel and corresponding high-priority uplink data. Consequently, the radar sensor 510 may refrain from detecting a gesture 532 (or other remote object) during a deterministic SO, as the set of RF components 516 may not be allocated to the radar sensor 510.
  • the at least one criterion may indicate that wireless sensing signals of deterministic SOs are to be prioritized over periodic and/or semi-persistent signals and/or channels.
  • the processor 512 may allocate the set of RF components 516 to the radar sensor 510 for wireless sensing signaling in an SO 546, which may be a deterministic SO, and may detect the gesture 536 (or other remote object) .
  • the cellular system transceiver 514 may refrain from communicating the wireless communication 534, such as by refraining from receiving periodic and/or semi-persistent CSI-RSs, periodic and/or semi-persistent SRS, and periodic and/or semi-persistent normal priority downlink data configured on a downlink data channel (e.g., PDSCH) , and/or refraining from transmitting periodic and/or semi-persistent normal priority data on an uplink data channel (e.g., PUSCH) and periodic uplink control information on an uplink control channel (e.g., PUCCH) , such as periodic CSI reporting.
  • a downlink data channel e.g., PDSCH
  • an uplink data channel e.g., PUSCH
  • periodic uplink control information on an uplink control channel e.g., PUCCH
  • the at least one criterion may include prioritization of wireless communications having priority over wireless sensing signals during deterministic SOs over wireless sensing signals of potential SOs, as well. That is, if the at least one criterion indicates that a wireless communication is prioritized over a deterministic SO, then the wireless communication may also be prioritized over a potential SO.
  • the at least one criterion may indicate that an MO associated with a downlink control channel (e.g., PDCCH) may be prioritized over wireless sensing signals of a potential SO. Further, the at least one criterion may indicate that periodic and/or semi-persistent signals and/or channels are to be prioritized over wireless sensing signals of potential SOs.
  • a downlink control channel e.g., PDCCH
  • the processor 512 may allocate the set of RF components 516 to the transceiver 514 for receiving periodic and/or semi-persistent CSI-RSs, periodic and/or semi-persistent SRS, and periodic and/or semi-persistent normal priority downlink data configured on a downlink data channel (e.g., PDSCH) , and for transmitting periodic and/or semi-persistent normal priority data on an uplink data channel (e.g., PUSCH) and periodic uplink control information on an uplink control channel (e.g., PUCCH) , such as periodic CSI reporting.
  • a downlink data channel e.g., PDSCH
  • periodic uplink control information e.g., PUCCH
  • FIG. 6 is a diagram illustrating an example configuration of a wireless communication schedule and wireless sensing occasions.
  • the at least one criterion may include a first threshold number of symbols 606 N 2 .
  • the processor 512 may allocate the set of RF components 516 to either the radar sensor 510 for a wireless sensing signals or to the transceiver 514 for wireless communication based on comparison of the first threshold number of symbols 606 to a number of symbols between a last symbol of downlink control information 610 on a downlink control channel and a potential SO 604a.
  • Some aperiodic wireless communications 612 e.g., aperiodic SRS, aperiodic CSI-RS, PUSCH, PDSCH
  • control information 610 e.g., on a PDCCH
  • Some aperiodic wireless communications 612 may be prioritized over wireless sensing signals of a potential SO 604a if the time period (e.g., number of symbols) between the end (e.g., last symbol) of the control information 610 and the beginning of the potential SO 604a is no smaller than the first threshold number of symbols 606.
  • the at least one criterion may include a second threshold number of symbols 608 N 1 .
  • the processor 512 may allocate the set of RF components 516 to either the radar sensor 510 for a wireless sensing signals or to the transceiver 514 for wireless communication based on comparison of the second threshold number of symbols 608 to a number of symbols between a last symbol of downlink data 620 on a downlink data channel (e.g., PDSCH) and a potential SO 604b.
  • a downlink data channel e.g., PDSCH
  • Some HARQ feedback 622 on an uplink control channel (e.g., PUCCH) corresponding to the downlink data 620 (e.g., on a PDSCH) may be prioritized over wireless sensing signals of a potential SO 604b if the time period (e.g., number of symbols) between the end (e.g., last symbol) of the downlink data 622 and the beginning of the potential SO 604b is no smaller than the second threshold number of symbols 608.
  • PUCCH uplink control channel
  • the at least one criterion may indicate that SSB and paging monitoring and receiving (e.g., paging scheduling PDCCH and scheduled PDSCH, respectively) is to be prioritized over wireless sensing signals of both deterministic and potential SOs.
  • FIG. 7 is a diagram illustrating an example configuration for wireless sensing occasions.
  • SOs 704 may be based on a discontinuous reception (DRX) configuration of the UE 504.
  • the base station 502 may transmit the DRX configuration to the UE 504, which may indicate when the UE 504 is to operate in a high-power state and when the UE 504 is to operate in a low-power state.
  • Each SO 704 may be offset by a predetermined duration (e.g., 0 or more symbols, 0 or more milliseconds, etc. ) from a high-power state 710 of the DRX configuration during each DRX cycle.
  • the high-power state 710 may be an on cycle when the UE 504 is operating in an connected mode and the DRX configuration is connected mode DRX (C-DRX) , or the high-power state 710 may be a paging occasion when the UE 504 is operating in an idle mode or inactive mode and the DRX configuration is idle mode or inactive mode DRX (I-DRX) .
  • FIG. 8 is a flowchart of an example method 800 of allocating a set of RF components between a radar sensor and a cellular system transceiver.
  • the method 800 may be performed by a UE (e.g., the UE 104, 350, 404, 504) .
  • a UE e.g., the UE 104, 350, 404, 504
  • one or more of the illustrated operations may be transposed, omitted, and/or contemporaneously performed.
  • the UE may detect if a first schedule for a wireless communication conflicts with a first SO.
  • the first SO is based on a DRX configuration of the UE.
  • the first SO may be offset by a predetermined duration from a high power state of the DRX configuration, and the high power state of the DRX configuration is different from a low power state of the DRX configuration.
  • the high power state may include an on cycle when the DRX configuration is connected mode, and the high power state may include a paging occasion when the DRX configuration is idle mode.
  • the UE 404, 504 may detect if wireless communication scheduled by the scheduling information 524 conflicts with a deterministic SO 422 or a potential SO 424.
  • the UE may, in response to detection of the first schedule conflicting with the first SO, determine to communicate (e.g., transmit and/or receive) either a first sensing signal in the first SO or the wireless communication according to the first schedule based on a first criterion. For example, the UE may allocate a set of RF components to either a first sensing signal or the wireless communication based on the first criterion, and the set of RF components may include at least one of a set of antennas or a set of RF chains.
  • the first sensing signal and the wireless communication may be configured to be communicated in at least one licensed cellular band that includes at least one of a mmW band or a sub-6 GHz band. For example, referring to FIGs.
  • the UE 404, 504 may, in response to detection of the schedule conflicting with a deterministic SO 422 or a potential SO 424, allocate the set of RF components 516 to either a first sensing signal used by the radar sensor 510 or the wireless communication used by the transceiver 514 based on a first criterion.
  • the first criterion may include prioritization of the first sensing signal relative to at least one type of wireless signaling, and the wireless communication may include the at least one type of wireless signaling.
  • the first criterion may include prioritization of the first sensing signal relative to at least one wireless communication channel, and the wireless communication may be carried on the at least one wireless communication channel.
  • the first criterion may include prioritization of the first sensing signal relative to at least one monitoring occasion for the wireless communication.
  • the first criterion may include a threshold number of symbols
  • the UE is further configured to allocate the set of RF components to either the first sensing signal or the wireless communication based on comparison of the threshold number of symbols to a number of symbols between a last symbol of downlink control information on a downlink control channel and a start of the first sensing occasion.
  • the first criterion may include a threshold number of symbols
  • the UE is further configured to allocate the set of RF components to either the first sensing signal or the wireless communication based on comparison of the threshold number of symbols to a number of symbols between a last symbol of a downlink transmission on a downlink data channel and a start of the first sensing occasion, the wireless communication being associated with the downlink transmission.
  • the first criterion may include prioritization of SSBs over the first sensing signal, and the wireless communication may include at least one SSB. In yet other aspects, the first criterion may include prioritization of paging monitoring occasions and paging messages over the first sensing signal relative, and the wireless communication may include at least one paging message in at least one paging monitoring occasion.
  • the UE may communicate with a base station if the set of RF components is allocated to the wireless communication.
  • the UE 404, 504 may communicate with the base station 502, e.g., by receiving the wireless communication 530 during the MO 544 when the set of RF components 516 is allocated to the transceiver 514.
  • the UE may detect a remote object if the set of RF components is allocated to the first sensing signal. For example, referring to FIGs. 4-7, the UE 404, 504, may detect the gesture 536 during the SO 546 when the set of RF components 516 is allocated to the radar sensor 510.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

A user equipment (UE) may include a set of radio-frequency (RF) components (e.g., a set of antennas, a set of RF chains, etc. ), a cellular system transceiver, and a sensor configured to use a first sensing signal to detect a first remote object during a first sensing occasion. The UE may further include a processor configured to detect if a first schedule for wireless communication conflicts with the first sensing occasion. The processor of the UE may be further configured to, in response to detection of the first schedule conflicting with the first sensing occasion, allocate the set of RF components to either the first sensing signal or the wireless communication based on a first criterion.

Description

COEXISTENCE BETWEEN WIRELESS SENSING AND WIRELESS COMMUNICATION IN CELLULAR BANDS BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to user equipment configured to use radio-frequency (RF) circuitry for wireless sensing.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Short-range radar sensing is becoming increasingly useful for a variety of different applications. For example, smartphones, smartwatches, and other user equipment (UE) may include short-range radar sensors configured to detect gestures by a user and control various operations based on gesture classification. Similarly, vehicles may include short-range radar sensors for in-car controls.
For such short-range radar sensing, a UE may use sensing signals in a licensed cellular band. The licensed cellular band may be assigned to a radio access network (RAN) of a radio access technology (RAT) , such as 5G New Radio (NR) . For example, 5G NR RANs may include frequency regime 1 (FR1) and/or frequency regime 2 (FR2) corresponding to sub-6 gigahertz (GHz) bands and millimeter wave (mmW) bands, respectively, and may offer larger bandwidth than other earlier cellular systems, especially in FR2 bands.
Compared to other bands in which short-range radar sensing may be configured, mmW may provide relatively large bandwidths and/or apertures for extraction of more accurate range, velocity, and/or angle information for environmental imaging. Furthermore, mmW radar circuitry may be available in more compact form factors, and therefore, may be particularly suited to UE (and other mobile device) applications. However, short-range radar sensing may also be operable when configured in sub-6 GHz bands.
UEs that support cellular communications (e.g., 5G NR) may include radio-frequency (RF) components configured for signaling in the same bands that may be used for short-range radar sensing. For example, UEs may include antennas and RF chains configured for signaling in mmW bands (and/or sub-6 GHz bands) . In a UE, therefore, an on-device short-range radar sensor may be configured to share RF components with a cellular system transceiver. Such a configuration may reduce  costs and/or UE form factor, as additional RF front-end modules for the radar sensor may be redundant, and therefore unnecessary.
However, a UE configured to share RF components between a short-range radar sensor and a cellular system transceiver may be unable to simultaneously perform wireless sensing using the short-range radar sensor and wireless communication using the cellular system transceiver. For example, when the UE allocates the RF components to the short-range radar sensor, the cellular system transceiver may be unable to communicate with a base station (e.g., gNB) . As the UE may be able to (dynamically) change the times at which wireless sensing is performed (e.g., according to parameters of UE applications and/or UE user operations) , the scheduling for wireless communications configured by the base station may conflict with the wireless sensing times. Consequently, the UE and base station may experience various wireless communication failures, as the base station may be unaware of the wireless sensing times of the UE. Thus, a need exists for techniques and solutions to allocating RF components of the UE between the on-device short-range radar sensor for wireless sensing and the cellular system transceiver for wireless communications with the base station.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE configured to detect if a first schedule for wireless communication conflicts with a first sensing occasion, and in response to detection of the first schedule conflicting with the first sensing occasion, determine to communicate either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on a first criterion.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a diagram of an example configuration for wireless sensing by a UE at a set of sensing occasions.
FIG. 5 is a call flow diagram illustrating example operations for allocating a set of RF components between a radar sensor and a cellular system transceiver.
FIG. 6 is a diagram illustrating an example configuration of a wireless communication schedule and wireless sensing occasions.
FIG. 7 is a diagram illustrating an example configuration for wireless sensing occasions.
FIG. 8 is a flowchart of an example method of allocating a set of RF components between a radar sensor and a cellular system transceiver by a UE.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such  elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core  (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO)  antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 gigahertz (GHz) unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a  traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Frequency range bands include frequency regime 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency regime 2 (FR2) , which includes frequency bands above 24.250 GHz. Communications using the mmW /near mmW radio frequency (RF) band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range. Base stations /UEs may operate within one or more frequency range bands. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.  Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio  player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Although the present disclosure may focus on 5G NR, the concepts and various aspects described herein may be applicable to other similar areas, such as LTE, LTE-Advanced (LTE-A) , Code Division Multiple Access (CDMA) , Global System for Mobile communications (GSM) , or other wireless/radio access technologies.
Referring again to FIG. 1, in certain aspects, the UE 104 may include a set of RF components (e.g., a set of antennas, a set of RF chains, etc. ) , a cellular system transceiver, and a sensor configured to use a first sensing signal to detect a first remote object during a first sensing occasion. The UE 104 may further include a processor configured to detect if a first schedule for wireless communication conflicts with the first sensing occasion. The processor of the UE 104 may be further configured to, in response to detection of the first schedule conflicting with the first sensing occasion, determine to communicate either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on a first criterion (198) . For example, the processor of the UE 104 may allocate the set of RF components to either the first sensing signal or the wireless communication based on the first criterion.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe. The 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed  (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G/NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the  subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a  number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement  reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX  processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information  reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
In some aspects, at least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with (198) of FIG. 1.
Radar sensing is becoming increasingly useful for a variety of different applications. For example, smartphones, smartwatches, and other UE may include short-range radar sensors configured to detect gestures by a user and control various operations based on gesture classification. Similarly, vehicles may include short-range radar sensors for in-car controls.
For such short-range radar sensing, a UE may use sensing signals in a licensed cellular band. The licensed cellular band may be assigned to a RAN of a RAT, such as 5G NR. For example, 5G NR RANs may include FR1 and/or FR2 corresponding to sub-6 GHz bands and mmW bands, respectively, and may offer larger bandwidth than other earlier cellular systems, especially in FR2 bands.
Compared to other bands in which short-range radar sensing may be configured, mmW may provide relatively large bandwidths and/or apertures for extraction of more accurate range, velocity, and/or angle information for environmental imaging. Furthermore, mmW radar circuitry may be available in more compact form factors, and therefore, may be particularly suited to UE (and other mobile device) applications. However, short-range radar sensing may also be operable when configured in sub-6 GHz bands.
UEs that support cellular communications (e.g., 5G NR) may include RF components configured for signaling in the same bands that may be used for short-range radar sensing. For example, UEs may include antennas and RF chains configured for signaling in mmW bands (and/or sub-6 GHz bands) . In a UE, therefore, an on-device short-range radar sensor may be configured to share RF components with a cellular system transceiver. Such a configuration may reduce costs and/or UE form factor, as additional RF front-end modules for the radar sensor may be redundant, and therefore unnecessary.
However, a UE configured to share RF components between a short-range radar sensor and a cellular system transceiver may be unable to simultaneously perform wireless sensing using the short-range radar sensor and wireless communication using the cellular system transceiver. For example, when the UE allocates the RF components to the short-range radar sensor, the cellular system transceiver may be unable to communicate with a base station (e.g., gNB) . As the UE may be able to (dynamically) change the times at which wireless sensing is performed (e.g., according to parameters of UE applications and/or UE user operations) , the scheduling for wireless communications configured by the base station may conflict with the wireless sensing times. Consequently, the UE and base station may experience various wireless communication failures, as the base station may be unaware of the wireless sensing times of the UE.
Thus, a need exists for techniques and solutions to allocating RF components of the UE between the on-device short-range radar sensor for wireless sensing and the cellular system transceiver for wireless communications with the base station. Referring to FIGs. 4-8, various aspects are described for allocating a set of RF components to either a wireless sensing signal or wireless communication based on at least one criterion.
FIG. 4 illustrates a diagram of an example wireless sensing 400 during a wireless sensing occasion and an example configuration 420 of wireless sensing occasions for a UE 404. According to various aspects, example wireless sensing 400 may occur at least partially during a sensing occasion (SO) . An SO may be a time period during which the on-device short-range radar sensor 410 of a UE 404 uses wireless sensing signaling 408 in order to detect a remote object 406, such as a gesture by a user. In using the wireless sensing signaling 408, the short-range radar sensor 410 may transmit radar signals with a pre-defined waveform, e.g., frequency-modulated continuous-wave (FMCW) , pulse waveforms, or OFDM-based waveform.
The short-range radar sensor 410 may then receive reflected signals 412, which may provide the raw data for radar signaling processing (RSP) 414. For the RSP 414, the UE 404 may correlate the received reflected signals with transmitted signals, which may be based on FFT. According to the correlation, the UE 404 may obtain range, Doppler (velocity) , and/or angle information that corresponds to the remote object 406.
The UE 404 may then apply machine learning 416, which may include classification, regression, and/or an artificial intelligence (AI) agent to determine the remote object 406. For example, the remote object 406 may be classified as one of a set of different gestures. Subsequently, the UE 404 may perform at least one action 418 based on the detected remote object 406. Illustratively, if the application of machine learning 416 classifies the remote object 406 as a user rotating fingers in a clockwise direction, the UE 404 may perform an action 418 of increasing a volume.
Potentially, the UE 404 may be configured with at least one of two wireless SOs: deterministic SOs 422 and potential SOs 424 (although different terminology other than “deterministic” and “potential” may be used to refer to the  SOs  422, 424 in other aspects) . In some aspects, the UE 404 may use a relatively lower resolution sensing waveform with a relatively lower power and a relatively longer periodicity for deterministic SOs 422, whereas the UE 404 may use a relatively higher resolution sensing waveform with a relatively higher power and relatively shorter periodicity for potential SOs 424.
As the short-range radar sensor 410 of the UE 404 may share a set of RF components with a cellular system transceiver of the UE 404, different priorities may be established in the UE 404 for at least one of the  SOs  422, 424 relative to  scheduling with which the cellular system transceiver is configured for various wireless communications and/or channels. If the UE 404 is configured with both deterministic SOs 422 and potential SOs 424, the priorities for  SOs  422, 424 relative to scheduling with which the cellular system transceiver is configured may be different for DSOs 422 than it is for PSOs 424.
FIG. 5 is a call flow diagram illustrating example operations 500 for allocating a set of RF components between a short-range radar sensor and a cellular system transceiver by a UE 504. According to various aspects, the UE 504 may include, inter alia, a short-range radar sensor 510, at least one processor 512, a cellular system transceiver 514, and a set of RF components 516. The set of RF components 516 may include a set of antenna components (e.g., antenna arrays and antenna panels) connected with a set of RF chains (e.g., each RF chain may be digital and/or analog and may include an amplifier, a filter, a mixer, an attenuator, a modulation detector, and/or other components) .
The set of RF components 516 may be configured to communicate signaling in at least one licensed cellular band, which may include at least one of a mmW band and/or sub-6 GHz band. The set of RF components 516 may be connected with both short-range radar sensor 510 and the cellular system transceiver 514. The processor 512 may be configured to allocate the set of RF components 516 to either the radar sensor 510 or the transceiver 514.
The radar sensor 510 may be configured to use a sensing signal to detect a remote object during an SO. When the set of RF components 516 is allocated to the radar sensor 510, sensing signals may be transmitted according to a predefined waveform and reflected signals may be received to be correlated with the transmitted signals for RSP. For example, relatively lower resolution sensing signals with relatively lower power may be used for deterministic SOs, whereas relatively higher resolution sensing signals with relatively higher power may be used for potential SOs.
In some aspects, the base station 502 (e.g., gNB) may configure SOs for the UE 504. For example, in the context of FIG. 4, the base station 502 may configure a periodicity at which deterministic SOs 422 occur and/or the base station 502 may configure a periodicity at which potential SOs 424 occur. At each of the  SOs  422, 424, the UE 504 may perform some variation of the wireless sensing 400, e.g., with  relatively lower resolution and power consumption for deterministic SOs 422 or relatively higher resolution and higher power consumption for potential SOs 424.
To that end, the base station 502 may transmit, and the UE 504 may receive, sensing configuration information 522. The UE 504 may then configure SOs to occur based on the sensing configuration information 522. For example, the UE 504 may configure deterministic SOs 422 to occur at a first periodicity, and may configure potential SOs 424 to occur at a second periodicity that is shorter than the first periodicity.
In addition, the base station 502 may schedule wireless communication with the UE 504. For example, the base station 502 may schedule uplink and/or downlink wireless communication. Accordingly, the base station 502 may transmit wireless communication schedule information 524 to the UE 502. The schedule information 524 may be included in DCI and/or in system information (e.g., in one or more SIBs) .
In some aspects, the schedule information 524 may indicate a schedule for SSBs transmitted by the base station 502. In some other aspects, the schedule information 524 may indicate monitoring occasions (MOs) on a downlink control channel (e.g., PDCCH) . In still other aspects, the schedule information 524 may indicate a periodicity of periodic signals (e.g., CSI-RS, SRS, etc. ) . In yet further aspects, the schedule information 524 may schedule downlink data on a downlink data channel (e.g., PDSCH) and/or uplink data on an uplink data channel (e.g., PUSCH) .
The UE 504 may then detect 526 if a first schedule for wireless communication conflicts with a first SO. For example, the UE 504 (e.g., the processor 512) may detect if the schedule information 524 schedules uplink and/or downlink communication that conflicts with a deterministic SO or potential SO configured by the sensing configuration information 522.
In some aspects, the UE 504 (e.g., the processor 512) may detect that a schedule for wireless communication conflicts with an SO if the UE 504 is scheduled to transmit, receive, and/or monitor using the cellular system transceiver 514 at the same time as the radar sensor 510 is to use a sensing signal during a SO. In other words, the UE 504 (e.g., the processor 512) may detect that a schedule for wireless communication conflicts with an SO if the UE 504 is scheduled to use the cellular system transceiver 514 at a time period that overlaps with an SO (e.g., an SO that occurs at a configured periodicity) . In some other aspects, the UE 504 may detect  that a schedule for wireless communication conflicts with an SO if the UE 504 is scheduled to transmit, receive, and/or monitor using the cellular system transceiver 514 with a threshold time period of an SO.
In response to detection of the schedule for wireless communication conflicting with an SO, the UE 504 (e.g., the processor 512) may allocate the set of RF components 516 to either the radar sensor 510 for a wireless sensing signal or the transceiver 514 for wireless communication based on at least one criterion. In one aspect, the at least one criterion may include prioritization of a wireless sensing signal relative to at least one type of wireless signaling. In another aspect, the at least one criterion may include prioritization of a wireless sensing signal relative to at least one wireless communication channel (e.g., PDCCH, PDSCH, PUCCH, PUSCH, etc. ) . In still other aspects, the at least one criterion comprises prioritization of the first sensing signal relative to at least one MO for the wireless communication.
For example, the at least one criterion may include prioritization of SSBs over wireless sensing signals. Accordingly, the processor 512 may allocate the set of RF components 516 to the cellular system transceiver 514 in order to receive a wireless communication 530 that includes at least one SSB. Consequently, the radar sensor 510 may refrain from detecting a gesture 532 (or other remote object) , as the set of RF components 516 may not be allocated to the radar sensor 510 for either a potential SO or a deterministic SO.
In another example, the at least one criterion may include prioritization of control channel (e.g., PDCCH) MOs and corresponding data communications on an uplink data channel (e.g., PUSCH) or downlink data channel (e.g., PDSCH) over wireless sensing signals of a deterministic SO. Accordingly, the processor 512 may allocate the set of RF components 516 to the cellular system transceiver 514 in order to detect for a wireless communication 530 during an MO 544, receive control information (e.g., on a PDCCH) during the MO 544, and, based on the control information, transmit uplink data on an uplink data channel (e.g., PUSCH) or receive downlink data on a downlink data channel (e.g., PDSCH) . Consequently, the radar sensor 510 may refrain from detecting a gesture 532 (or other remote object) during a deterministic SO, as the set of RF components 516 may not be allocated to the radar sensor 510.
In one aspect, the MO 544 may be associated with receiving system information, such as an MO associated with a system information (SI) radio network temporary identifier (RNTI) . When allocated the set of RF components 516, the cellular system transceiver 514 may receive wireless communication 530 that includes the system information and corresponding downlink data on a downlink data channel (e.g., PDSCH) .
In another aspect, the MO 544 may be associated with receiving random access information (e.g., MO associated with a random access (RA) RNTI, MsgB-RNTI, and/or temporary cell (TC) RNTI) . When allocated the set of RF components 516, the cellular system transceiver 514 may receive wireless communication 530 that includes the random access information and corresponding downlink data on a downlink data channel (e.g., PDSCH) .
In still another aspect, the MO 544 may be associated with receiving a paging message (e.g., MO associated with a paging (P) RNTI) . When allocated the set of RF components 516, the cellular system transceiver 514 may receive wireless communication 530 that includes the paging message and corresponding downlink data on a downlink data channel (e.g., PDSCH) .
In a further aspect, the MO 544 may be associated with transmitting or receiving high priority data, such as ultra-reliable low-latency communications (URLLC) data (e.g., MO associated with a modulation and coding scheme (MCS) cell (C) RNTI) . When allocated the set of RF components 516, the cellular system transceiver 514 may receive wireless communication 530 that includes the high priority data on a downlink data channel (e.g., PDSCH) or may transmit wireless communication that includes high priority data on an uplink data channel (e.g., PUSCH) .
In still a further aspect, the at least one criterion may indicate that scheduling requests (SRs) on an uplink control channel (e.g., PUCCH) for high-priority uplink data (e.g., URLLC) data transmission are to be prioritized over wireless sensing signals of deterministic SOs. Accordingly, the processor 512 may allocate the set of RF components 516 to the cellular system transceiver 514 in order to transmit SRs on an uplink control channel and corresponding high-priority uplink data. Consequently, the radar sensor 510 may refrain from detecting a gesture 532 (or other remote object) during a deterministic SO, as the set of RF components 516 may not be allocated to the radar sensor 510.
In yet other aspects, the at least one criterion may indicate that wireless sensing signals of deterministic SOs are to be prioritized over periodic and/or semi-persistent signals and/or channels. For example, the processor 512 may allocate the set of RF components 516 to the radar sensor 510 for wireless sensing signaling in an SO 546, which may be a deterministic SO, and may detect the gesture 536 (or other remote object) . Consequently, the cellular system transceiver 514 may refrain from communicating the wireless communication 534, such as by refraining from receiving periodic and/or semi-persistent CSI-RSs, periodic and/or semi-persistent SRS, and periodic and/or semi-persistent normal priority downlink data configured on a downlink data channel (e.g., PDSCH) , and/or refraining from transmitting periodic and/or semi-persistent normal priority data on an uplink data channel (e.g., PUSCH) and periodic uplink control information on an uplink control channel (e.g., PUCCH) , such as periodic CSI reporting.
In some other aspects, the at least one criterion may include prioritization of wireless communications having priority over wireless sensing signals during deterministic SOs over wireless sensing signals of potential SOs, as well. That is, if the at least one criterion indicates that a wireless communication is prioritized over a deterministic SO, then the wireless communication may also be prioritized over a potential SO.
In some additional aspects, the at least one criterion may indicate that an MO associated with a downlink control channel (e.g., PDCCH) may be prioritized over wireless sensing signals of a potential SO. Further, the at least one criterion may indicate that periodic and/or semi-persistent signals and/or channels are to be prioritized over wireless sensing signals of potential SOs. For example, the processor 512 may allocate the set of RF components 516 to the transceiver 514 for receiving periodic and/or semi-persistent CSI-RSs, periodic and/or semi-persistent SRS, and periodic and/or semi-persistent normal priority downlink data configured on a downlink data channel (e.g., PDSCH) , and for transmitting periodic and/or semi-persistent normal priority data on an uplink data channel (e.g., PUSCH) and periodic uplink control information on an uplink control channel (e.g., PUCCH) , such as periodic CSI reporting.
FIG. 6 is a diagram illustrating an example configuration of a wireless communication schedule and wireless sensing occasions. In one aspect, the at least one criterion may include a first threshold number of symbols 606 N 2. The processor  512 may allocate the set of RF components 516 to either the radar sensor 510 for a wireless sensing signals or to the transceiver 514 for wireless communication based on comparison of the first threshold number of symbols 606 to a number of symbols between a last symbol of downlink control information 610 on a downlink control channel and a potential SO 604a. Some aperiodic wireless communications 612 (e.g., aperiodic SRS, aperiodic CSI-RS, PUSCH, PDSCH) corresponding to control information 610 (e.g., on a PDCCH) may be prioritized over wireless sensing signals of a potential SO 604a if the time period (e.g., number of symbols) between the end (e.g., last symbol) of the control information 610 and the beginning of the potential SO 604a is no smaller than the first threshold number of symbols 606.
In another aspect, the at least one criterion may include a second threshold number of symbols 608 N 1. The processor 512 may allocate the set of RF components 516 to either the radar sensor 510 for a wireless sensing signals or to the transceiver 514 for wireless communication based on comparison of the second threshold number of symbols 608 to a number of symbols between a last symbol of downlink data 620 on a downlink data channel (e.g., PDSCH) and a potential SO 604b. Some HARQ feedback 622 on an uplink control channel (e.g., PUCCH) corresponding to the downlink data 620 (e.g., on a PDSCH) may be prioritized over wireless sensing signals of a potential SO 604b if the time period (e.g., number of symbols) between the end (e.g., last symbol) of the downlink data 622 and the beginning of the potential SO 604b is no smaller than the second threshold number of symbols 608.
In still other aspects, when the UE 504 is operating in an idle or inactive mode, the at least one criterion may indicate that SSB and paging monitoring and receiving (e.g., paging scheduling PDCCH and scheduled PDSCH, respectively) is to be prioritized over wireless sensing signals of both deterministic and potential SOs.
FIG. 7 is a diagram illustrating an example configuration for wireless sensing occasions. In some aspects, SOs 704 may be based on a discontinuous reception (DRX) configuration of the UE 504. For example, the base station 502 may transmit the DRX configuration to the UE 504, which may indicate when the UE 504 is to operate in a high-power state and when the UE 504 is to operate in a low-power state. Each SO 704 may be offset by a predetermined duration (e.g., 0 or more symbols, 0 or more milliseconds, etc. ) from a high-power state 710 of the DRX configuration during each DRX cycle. The high-power state 710 may be an on cycle  when the UE 504 is operating in an connected mode and the DRX configuration is connected mode DRX (C-DRX) , or the high-power state 710 may be a paging occasion when the UE 504 is operating in an idle mode or inactive mode and the DRX configuration is idle mode or inactive mode DRX (I-DRX) .
FIG. 8 is a flowchart of an example method 800 of allocating a set of RF components between a radar sensor and a cellular system transceiver. The method 800 may be performed by a UE (e.g., the  UE  104, 350, 404, 504) . According to different aspects, one or more of the illustrated operations may be transposed, omitted, and/or contemporaneously performed.
At 802, the UE may detect if a first schedule for a wireless communication conflicts with a first SO. In some aspects, the first SO is based on a DRX configuration of the UE. For example, the first SO may be offset by a predetermined duration from a high power state of the DRX configuration, and the high power state of the DRX configuration is different from a low power state of the DRX configuration. Potentially, the high power state may include an on cycle when the DRX configuration is connected mode, and the high power state may include a paging occasion when the DRX configuration is idle mode. For example, referring to FIGs. 4-7, the  UE  404, 504 may detect if wireless communication scheduled by the scheduling information 524 conflicts with a deterministic SO 422 or a potential SO 424.
At 804, the UE may, in response to detection of the first schedule conflicting with the first SO, determine to communicate (e.g., transmit and/or receive) either a first sensing signal in the first SO or the wireless communication according to the first schedule based on a first criterion. For example, the UE may allocate a set of RF components to either a first sensing signal or the wireless communication based on the first criterion, and the set of RF components may include at least one of a set of antennas or a set of RF chains. The first sensing signal and the wireless communication may be configured to be communicated in at least one licensed cellular band that includes at least one of a mmW band or a sub-6 GHz band. For example, referring to FIGs. 4-7, the UE 404, 504 (e.g., the processor 512) may, in response to detection of the schedule conflicting with a deterministic SO 422 or a potential SO 424, allocate the set of RF components 516 to either a first sensing signal used by the radar sensor 510 or the wireless communication used by the transceiver 514 based on a first criterion.
In one aspect, the first criterion may include prioritization of the first sensing signal relative to at least one type of wireless signaling, and the wireless communication may include the at least one type of wireless signaling. In another aspect, the first criterion may include prioritization of the first sensing signal relative to at least one wireless communication channel, and the wireless communication may be carried on the at least one wireless communication channel. In still another aspect, the first criterion may include prioritization of the first sensing signal relative to at least one monitoring occasion for the wireless communication.
In some further aspects, the first criterion may include a threshold number of symbols, and the UE is further configured to allocate the set of RF components to either the first sensing signal or the wireless communication based on comparison of the threshold number of symbols to a number of symbols between a last symbol of downlink control information on a downlink control channel and a start of the first sensing occasion.
In some other aspects, the first criterion may include a threshold number of symbols, and the UE is further configured to allocate the set of RF components to either the first sensing signal or the wireless communication based on comparison of the threshold number of symbols to a number of symbols between a last symbol of a downlink transmission on a downlink data channel and a start of the first sensing occasion, the wireless communication being associated with the downlink transmission.
In still other aspects, the first criterion may include prioritization of SSBs over the first sensing signal, and the wireless communication may include at least one SSB. In yet other aspects, the first criterion may include prioritization of paging monitoring occasions and paging messages over the first sensing signal relative, and the wireless communication may include at least one paging message in at least one paging monitoring occasion.
At 806, the UE may communicate with a base station if the set of RF components is allocated to the wireless communication. For example, referring to FIGs. 4-7, the  UE  404, 504 may communicate with the base station 502, e.g., by receiving the wireless communication 530 during the MO 544 when the set of RF components 516 is allocated to the transceiver 514.
At 808, the UE may detect a remote object if the set of RF components is allocated to the first sensing signal. For example, referring to FIGs. 4-7, the  UE  404,  504, may detect the gesture 536 during the SO 546 when the set of RF components 516 is allocated to the radar sensor 510.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more  member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
Figure PCTCN2020096025-appb-000001
Figure PCTCN2020096025-appb-000002
Figure PCTCN2020096025-appb-000003
Figure PCTCN2020096025-appb-000004
Figure PCTCN2020096025-appb-000005
Figure PCTCN2020096025-appb-000006
Figure PCTCN2020096025-appb-000007

Claims (37)

  1. A wireless communication device, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    detect if a first schedule for wireless communication conflicts with a first sensing occasion, and
    in response to detection of the first schedule conflicting with the first sensing occasion, determine to communicate either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on a first criterion.
  2. The wireless communication device of claim 1, wherein the processor is further configured to detect if a second schedule for a second wireless communication conflicts with a second sensing occasion, and in response to detection of the second schedule conflicting with the second sensing occasion, determine to communicate either a second sensing signal in the second sensing occasion or the second wireless communication according to the second schedule based on a second criterion different from the first criterion.
  3. The wireless communication device of claim 1, wherein the determination to communicate either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on the first criterion comprises to:
    allocate a set of RF components to either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on the first criterion, wherein the set of RF components comprises at least one of a set of antennas or a set of RF chains.
  4. The wireless communication device of claim 1, the first sensing signal and the wireless communication are configured to be communicated in at least one licensed cellular band that includes at least one of a millimeter wave (mmW) band or a sub-6 gigahertz (GHz) band.
  5. The wireless communication device of claim 1, wherein the first criterion comprises prioritization of the first sensing signal relative to at least one type of wireless signaling, and the wireless communication comprises the at least one type of wireless signaling.
  6. The wireless communication device of claim 1, wherein the first criterion comprises prioritization of the first sensing signal relative to at least one wireless communication channel, and the wireless communication is carried on the at least one wireless communication channel.
  7. The wireless communication device of claim 1, wherein the first criterion comprises prioritization of the first sensing signal relative to at least one monitoring occasion for the wireless communication.
  8. The wireless communication device of claim 1, wherein the first criterion comprises a threshold number of symbols, and
    wherein the processor is further configured to determine to communicate either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on comparison of the threshold number of symbols to a number of symbols between a last symbol of downlink control information on a downlink control channel and a start of the first sensing occasion.
  9. The wireless communication device of claim 1, wherein the first criterion comprises a threshold number of symbols, and
    wherein the processor is further configured to determine to communicate either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on comparison of the threshold number of symbols to a number of symbols between a last symbol of a downlink transmission on a downlink data channel and a start of the first sensing occasion, the wireless communication being associated with the downlink transmission.
  10. The wireless communication device of claim 1, wherein the first criterion comprises prioritization of synchronization signal blocks (SSBs) over the first sensing signal, and the wireless communication comprises at least one SSB.
  11. The wireless communication device of claim 1, wherein the first criterion comprises prioritization of paging monitoring occasions and paging messages over the first sensing signal relative, and the wireless communication comprises at least one paging message in at least one paging monitoring occasion.
  12. The wireless communication device of claim 1, wherein the first sensing occasion is based on a discontinuous reception (DRX) configuration of the wireless communication device.
  13. The wireless communication device of claim 12, wherein the first sensing occasion is offset by a predetermined duration from a high power state of the DRX configuration, and wherein the high power state of the DRX configuration is different from a low power state of the DRX configuration.
  14. The wireless communication device of claim 13, wherein the high power state comprises an on cycle when the DRX configuration is connected mode, and the high power state comprises a paging occasion when the DRX configuration is idle mode.
  15. A method of wireless communication by a wireless communication device, comprising:
    detecting if a first schedule for wireless communication conflicts with a first sensing occasion; and
    in response to detection of the first schedule conflicting with the first sensing occasion, determining to communicate either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on a first criterion.
  16. The method of claim 15, wherein the determining to communicate either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on the first criterion comprises:
    allocating a set of RF components to either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on  the first criterion, wherein the set of RF components comprises at least one of a set of antennas or a set of RF chains.
  17. The method of claim 15, wherein the first sensing signal and the wireless communication are configured to be communicated in at least one licensed cellular band that includes at least one of a millimeter wave (mmW) band or a sub-6 gigahertz (GHz) band.
  18. The method of claim 15, wherein the first criterion comprises prioritization of the first sensing signal relative to at least one type of wireless signaling, and the wireless communication comprises the at least one type of wireless signaling.
  19. The method of claim 15, wherein the first criterion comprises prioritization of the first sensing signal relative to at least one wireless communication channel, and the wireless communication is carried on the at least one wireless communication channel.
  20. The method of claim 15, wherein the first criterion comprises prioritization of the first sensing signal relative to at least one monitoring occasion for the wireless communication.
  21. The method of claim 15, wherein the first criterion comprises a threshold number of symbols, and
    wherein the determining to communicate either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule is based on comparison of the threshold number of symbols to a number of symbols between a last symbol of downlink control information on a downlink control channel and a start of the first sensing occasion.
  22. The method of claim 15, wherein the first criterion comprises a threshold number of symbols, and
    wherein the determining to communicate either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule is based on comparison of the threshold number of symbols to a number of symbols between a last symbol of a downlink transmission on a downlink data channel and a  start of the first sensing occasion, the wireless communication being associated with the downlink transmission.
  23. The method of claim 15, wherein the first criterion comprises prioritization of synchronization signal blocks (SSBs) over the first sensing signal, and the wireless communication comprises at least one SSB.
  24. The method of claim 15, wherein the first criterion comprises prioritization of paging monitoring occasions and paging messages over the first sensing signal relative, and the wireless communication comprises at least one paging message in at least one paging monitoring occasion.
  25. The method of claim 15, wherein the first sensing occasion is based on a discontinuous reception (DRX) configuration of the wireless communication device.
  26. An apparatus for wireless communication, comprising:
    means for detecting if a first schedule for wireless communication conflicts with a first sensing occasion; and
    in response to detection of the first schedule conflicting with the first sensing occasion, determining to communicate either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on a first criterion.
  27. The apparatus of claim 26, wherein the means for determining to communicate either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on the first criterion is configured to:
    allocate a set of RF components to either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on the first criterion, wherein the set of RF components comprises at least one of a set of antennas or a set of RF chains.
  28. The apparatus of claim 26, wherein the first sensing signal and the wireless communication are configured to be communicated in at least one licensed cellular band  that includes at least one of a millimeter wave (mmW) band or a sub-6 gigahertz (GHz) band.
  29. The apparatus of claim 26, wherein the first criterion comprises prioritization of the first sensing signal relative to at least one type of wireless signaling, and the wireless communication comprises the at least one type of wireless signaling.
  30. The apparatus of claim 26, wherein the first criterion comprises prioritization of the first sensing signal relative to at least one wireless communication channel, and the wireless communication is carried on the at least one wireless communication channel.
  31. The apparatus of claim 26, wherein the first criterion comprises prioritization of the first sensing signal relative to at least one monitoring occasion for the wireless communication.
  32. The apparatus of claim 26, wherein the first criterion comprises a threshold number of symbols, and
    wherein the means for determining to communicate either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule is configured based on comparison of the threshold number of symbols to a number of symbols between a last symbol of downlink control information on a downlink control channel and a start of the first sensing occasion.
  33. The apparatus of claim 26, wherein the first criterion comprises a threshold number of symbols, and
    wherein the means for determining to communicate either the first sensing signal in the first sensing occasion or the wireless communication according to the first schedule is configured based on comparison of the threshold number of symbols to a number of symbols between a last symbol of a downlink transmission on a downlink data channel and a start of the first sensing occasion, the wireless communication being associated with the downlink transmission.
  34. The apparatus of claim 26, wherein the first criterion comprises prioritization of synchronization signal blocks (SSBs) over the first sensing signal, and the wireless communication comprises at least one SSB.
  35. The apparatus of claim 26, wherein the first criterion comprises prioritization of paging monitoring occasions and paging messages over the first sensing signal relative, and the wireless communication comprises at least one paging message in at least one paging monitoring occasion.
  36. The apparatus of claim 26, wherein the first sensing occasion is based on a discontinuous reception (DRX) configuration of the wireless communication device.
  37. A computer-readable medium storing computer-executable code for wireless communication by a wireless communication device, the code when executed by a processor cause the processor to:
    detect if a first schedule for wireless communication conflicts with a first sensing occasion; and
    determine to communicate, in response to detection of the first schedule conflicting with the first sensing occasion, either a first sensing signal in the first sensing occasion or the wireless communication according to the first schedule based on a first criterion.
PCT/CN2020/096025 2020-06-15 2020-06-15 Coexistence between wireless sensing and wireless communication in cellular bands WO2021253143A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096025 WO2021253143A1 (en) 2020-06-15 2020-06-15 Coexistence between wireless sensing and wireless communication in cellular bands

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096025 WO2021253143A1 (en) 2020-06-15 2020-06-15 Coexistence between wireless sensing and wireless communication in cellular bands

Publications (1)

Publication Number Publication Date
WO2021253143A1 true WO2021253143A1 (en) 2021-12-23

Family

ID=79268879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096025 WO2021253143A1 (en) 2020-06-15 2020-06-15 Coexistence between wireless sensing and wireless communication in cellular bands

Country Status (1)

Country Link
WO (1) WO2021253143A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630981A (en) * 2008-07-14 2010-01-20 华为技术有限公司 Method, device and system for scheduling resources
CN106961289A (en) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 AF panel during the operation simultaneously of multiple radio in a wireless device
WO2018082571A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for transmission scheduling in a wireless communication system
US20180348339A1 (en) * 2017-05-31 2018-12-06 Google Llc Radar Modulation For Radar Sensing Using a Wireless Communication Chipset

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630981A (en) * 2008-07-14 2010-01-20 华为技术有限公司 Method, device and system for scheduling resources
CN106961289A (en) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 AF panel during the operation simultaneously of multiple radio in a wireless device
WO2018082571A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for transmission scheduling in a wireless communication system
US20180348339A1 (en) * 2017-05-31 2018-12-06 Google Llc Radar Modulation For Radar Sensing Using a Wireless Communication Chipset

Similar Documents

Publication Publication Date Title
EP3874852B1 (en) Methods to avoid transmission collisions for nr v2x and lte v2x within the same device
CN113508637B (en) Methods and apparatus for facilitating multiplexing wake-up signals with other resources
WO2022021223A1 (en) Bandwidth limited downlink communication for sub-bwp frequency hopping
WO2021243499A1 (en) Power control for wireless sensing
WO2021248404A1 (en) Method and apparatus of multi-cycle wireless radar sensing
WO2021243597A1 (en) Radio frequency sensing coexistence with wireless communication
WO2023283019A1 (en) Early beam failure detection
US11818729B2 (en) Reporting on lean synchronization signal blocks to enable beam management
US20230100345A1 (en) Carrier selection for pucch repetition with pucch carrier switching
US20210112434A1 (en) Preconfigured gaps for measurements based on configured bwps
WO2023000123A1 (en) Configuration and procedure for search space used in small data transfer over pre-configured uplink resources
US11616558B2 (en) Procedural delays and scheduling restriction based on component carrier groups
US20220191827A1 (en) Single frequency full-duplex resource management methods for v2x systems
WO2022056711A1 (en) Method and apparatus with improved cell selection
WO2022021196A1 (en) Inter-band downlink carrier aggregation with reception switching for a reduced capability user equipment
WO2021231330A1 (en) Conflict resolution for self interference measurement
WO2021253143A1 (en) Coexistence between wireless sensing and wireless communication in cellular bands
US11632796B2 (en) Uplink cancelation-assisted listen-before-talk for full-duplex base station
US11805548B2 (en) Supporting UL LBT status report in NR-U
US11844055B2 (en) Power control for beacon and echo procedure for channel state information measurement in sidelink networks
US11576216B2 (en) SR/PRACH indicating DG or CG request
US11943784B2 (en) Reference signal for skipped PDSCH
WO2022193204A1 (en) Pathloss rs and beam determination in unified tci framework
WO2022006750A1 (en) Positioning for secondary cell dormancy
US20230077982A1 (en) Faster ue beam refinement in multi-cell scenario

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940901

Country of ref document: EP

Kind code of ref document: A1