WO2022193204A1 - Pathloss rs and beam determination in unified tci framework - Google Patents

Pathloss rs and beam determination in unified tci framework Download PDF

Info

Publication number
WO2022193204A1
WO2022193204A1 PCT/CN2021/081423 CN2021081423W WO2022193204A1 WO 2022193204 A1 WO2022193204 A1 WO 2022193204A1 CN 2021081423 W CN2021081423 W CN 2021081423W WO 2022193204 A1 WO2022193204 A1 WO 2022193204A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication
sri
plrs
unified
tci
Prior art date
Application number
PCT/CN2021/081423
Other languages
French (fr)
Inventor
Fang Yuan
Yan Zhou
Sony Akkarakaran
Tao Luo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/081423 priority Critical patent/WO2022193204A1/en
Publication of WO2022193204A1 publication Critical patent/WO2022193204A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to a wireless communication system with pathloss reference signal (RS) (PLRS) and a unified transmission configuration indication (TCI) framework.
  • RS pathloss reference signal
  • TCI transmission configuration indication
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • a method, a computer-readable medium, and an apparatus at a UE may determine a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for utilizing a beam or a pathloss reference signal (PLRS) for an uplink channel transmission.
  • the UE may transmit, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission.
  • the UE may receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  • a method, a computer-readable medium, and an apparatus at a base station may receive, from a UE, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission.
  • the base station may determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission.
  • the base station may transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a diagram illustrating a base station in communication with a UE via a set of beams.
  • FIG. 5 is a diagram illustrating example SRI and unified TCI collision.
  • FIG. 6 is a diagram illustrating example communications between a UE and a base station.
  • FIG. 7 is a flowchart of a method of wireless communication.
  • FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • FIG. 9 is a flowchart of a method of wireless communication.
  • FIG. 10 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • FR1 frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –C 300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz –C 24.25 GHz
  • FR3 7.125 GHz –C 24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
  • higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz –C 71 GHz
  • FR4 52.6 GHz –114.25 GHz
  • FR5 114.25 GHz –300 GHz
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 may include an uplink component 198.
  • the uplink component 198 may be configured to determine a UE capability including support of at least one of an SRI indication or a unified TCI indication for utilizing a beam or a PLRS for an uplink channel transmission.
  • the uplink component 198 may be further configured to transmit, to a base station, such as the base station 180, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission.
  • the uplink component 198 may be further configured to receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  • the base station 180 may include a TCI/SRI indication component 199.
  • the TCI/SRI indication component 199 may be configured to receive, from a UE, such as the UE 104, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission.
  • the TCI/SRI indication component 199 may be further configured to determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission.
  • the TCI/SRI indication component 199 may be further configured to transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While subframes 3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) orthogonal frequency division multiplexing (OFDM) (CP-OFDM) symbols.
  • CP cyclic prefix
  • OFDM orthogonal frequency division multiplexing
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB.
  • CCEs control channel elements
  • REGs RE groups
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) .
  • CORESET control resource set
  • a UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) acknowledgment (ACK) (HARQ-ACK) information (ACK /negative ACK (NACK) ) feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.
  • Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354 RX receives a signal through its respective antenna 352.
  • Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with the uplink component 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with the TCI/SRI indication component 199 of FIG. 1.
  • FIG. 4 is a diagram 400 illustrating a base station 402 in communication with a UE 404.
  • the base station 402 may transmit a beamformed signal to the UE 404 in one or more of the directions 402a, 402b, 402c, 402d, 402e, 402f, 402g, 402h.
  • the UE 404 may receive the beamformed signal from the base station 402 in one or more receive directions 404a, 404b, 404c, 404d.
  • the UE 404 may also transmit a beamformed signal to the base station 402 in one or more of the directions 404a-404d.
  • the base station 402 may receive the beamformed signal from the UE 404 in one or more of the receive directions 402a-402h.
  • the base station 402 /UE 404 may perform beam training to determine the best receive and transmit directions for each of the base station 402 /UE 404.
  • the transmit and receive directions for the base station 402 may or may not be the same.
  • the transmit and receive directions for the UE 404 may or may not be the same.
  • the UE 404 may determine to switch beams, e.g., between beams 402a-402h.
  • the beam at the UE 404 may be used for reception of downlink communication and/or transmission of uplink communication.
  • the base station 402 may send a transmission that triggers a beam switch by the UE 404.
  • the base station 402 may indicate a TCI state change, and in response, the UE 404 may switch to a new beam for the new TCI state of the base station 402.
  • a TCI state may define a quasi-co-located (QCL’d) assumption between a source RS and a target RS.
  • QCL quasi-co-located
  • a source RS may be an SSB, a tracking reference signal (TRS) , a CSI-RS for beam management, a CSI-RS for CQI management, or the like.
  • a target RS may be a TRS, a CSI-RS for beam management, a CSI-RS for CQI management, a DM-RS for a PDSCH or a PDCCH, or the like.
  • a UE Before receiving a TCI state, a UE may assume that the antenna ports of one DM-RS port group of a PDSCH are spatially QCL’d with an SSB determined in the initial access procedure with respect to one or more of: a Doppler shift, a Doppler spread, an average delay, a delay spread, a set of spatial Rx parameters, or the like.
  • the UE After receiving the new TCI state, the UE may assume that the antenna ports of one DM-RS port group of a PDSCH of a serving cell are QCL’d with the RS (s) in the RS set with respect to the QCL type parameter (s) given by the indicated TCI state.
  • QCL type A may include the Doppler shift, the Doppler spread, the average delay, and the delay spread
  • QCL type B may include the Doppler shift and the Doppler spread
  • QCL type C may include the Doppler shift and the average delay
  • QCL type D may include the spatial Rx parameters (e.g., associated with beam information such as beamforming properties for finding a beam) .
  • a maximum number of TCI states may be 128.
  • a UE may receive a signal, from a base station, configured to trigger a TCI state change via, for example, a medium access control (MAC) control element (CE) (MAC-CE) , a downlink control information (DCI) , or a radio resource control (RRC) signal.
  • the TCI state change may cause the UE to find the best or most suitable UE receive beam corresponding to the TCI state indicated by the base station, and switch to such beam. Switching beams may allow for an enhanced or improved connection between the UE and the base station by ensuring that the transmitter and receiver use the same configured set of beams for communication.
  • a spatial relation change may trigger the UE to switch beams.
  • Beamforming may be applied to uplink channels, such as a PUSCH, a PUCCH, or an SRS. Beamforming may be based on configuring one or more spatial relations between the uplink and downlink signals. Spatial relation indicates that a UE may transmit the uplink signal using the same beam used for receiving the corresponding downlink signal.
  • the base station 402 may indicate a change in a PLRS that the UE may use to determine power control for uplink transmissions, such as a PUSCH, a PUCCH, or an SRS.
  • the UE 404 may determine to switch to a new beam.
  • a pool of joint DL/UL TCI states may be used for joint DL/UL TCI state updates for beam indication.
  • the base station 402 may transmit a pool of joint DL/UL TCI states to the UE 404.
  • the UE 404 may determine to switch transmission beams and reception beams based on the joint DL/UL TCI states.
  • the TCI state pool for separate DL and UL TCI state updates may be used.
  • the base station 402 may use RRC signaling to configure the TCI state pool.
  • joint TCI may or may not include UL specific parameter (s) such as UL PC/timing parameters, PLRS, panel-related indication, or the like. If the joint TCI includes the UL specific parameter (s) , the parameters may be used for the UL transmission of the DL and UL transmissions to which the joint TCI is applied.
  • UL specific parameter such as UL PC/timing parameters, PLRS, panel-related indication, or the like.
  • Some wireless communication systems may use codebook-based MIMO.
  • MIMO systems may allow multiple independent radio terminals, each of which has one or multiple antennas that communicate with a given access point in such a way that each radio terminal can fully utilize all the spectral resources simultaneously.
  • a MIMO system (such as the base station 402) may employ a procedure, such as precoding, to resolve the problem of interference among the signals transmitted from an access point to the multiple terminals in the same frequency band at the same time.
  • the precoding may be selected from a standardized codebook.
  • a non-codebook-based MIMO there may be no such codebook and the precoding may be dynamically determined.
  • an SRI field in DCI may indicate a set of precoders associated with an SRS resource set and a set of power control parameters which may include P0, alpha, Closedloopindex, PLRS, or the like.
  • P0 may represent a base station received power per resource block assuming a path loss of 0 decibels (dB) .
  • Alpha may represent possible values for uplink power control.
  • Closedloopindex may be an index of the closed power control loop associated with the SRI and the associated PUSCH.
  • a beam of the PUSCH may follow the SRS resource set. For example, all SRSs in the same SRS resource set may have a same beam and the SRI may not select a beam.
  • an SRI field in DCI may select an SRS resource from multiple SRSs in an SRS resource set for determining a beam for PUSCH transmission. For example, different SRS selected by SRI in the SRS resource set may have different beams.
  • a transmitted precoding matrix indicator (TPMI) in DCI may indicate precoders and the SRI field may indicate a set of power control parameters which may also include P0, alpha, Closedloopindex, PLRS, or the like.
  • beam indication for a PUSCH may be via SRI in the scheduling DCI.
  • the SRI may provide timely and dynamic beam/power control parameter indication including the PLRS.
  • PLRS indicated by SRI may be intended to the dynamically scheduled PUSCH.
  • PLRS indicated by SRI may be a precoder or SRI-dependent for non-codebook-based UL MIMO.
  • Unified TCI may provide the advantage of enabling a faster switching time between multi-transmission reception panel (TRP) and single-TRP operations for a UE.
  • unified TCI may enable fast power control parameter indication to a dynamic PUSCH.
  • UL TCI or a joint DL/UL TCI may provide a beam indication to multiple uplink channels.
  • a TCI indicated by one DCI may be applied to multiple UL channels such as one or more SRS, one or more PUSCHs, and one or more PUCCHs.
  • a PUSCH scheduled by a DCI may be indicated with a unified TCI by another non-scheduling DCI.
  • a DCI may indicate a unified TCI and a separate DCI may be transmitted to indicate TCI and schedule PUSCH (possibly with additional latency due to non-scheduling DCI) .
  • PLRS indicated by TCI may be beam-dependent and less timely compared with an SRI indication in scheduling DCI.
  • a PDCCH 502 received by a UE may include a unified TCI 2 that indicates a new beam that may be different from a currently used beam associated with unified TCI 1. There may be a delay in using the new beam because there may be a time offset (beam application time) for switching to the new beam. While switching to the new beam, the UE may receive an SRS set transmission 504. After the UE receives a PDCCH 508 that schedules a codebook (CB) -PUSCH 506 and associated with SRI, as previously described, the UE may determine the beam PUSCH based on the SRS resource set 504.
  • CB codebook
  • the new beam associated with the unified TCI 2 included in the PDCCH 502 may also be applied, which conflicts with the SRI-based indication.
  • the unified TCI may provide beam indication to multiple channels.
  • an UL TCI or a joint DL/UL TCI can provide a beam indication to multiple uplink channels.
  • the beam indication to a DCI scheduled PUSCH may be indicated by UL TCI with another non-scheduling DCI.
  • the UL TCI may or may not provide PLRS to a PUSCH.
  • the PLRS contained in UL TCI may also be applied to other channels than a PUSCH.
  • the beam indication to a DCI scheduled PUSCH may be indicated by SRI in the same scheduling DCI.
  • the SRI may also provide PLRS indication.
  • the PLRS contained in SRI may be solely applicable to a PUSCH. Therefore, the SRI-based indication and unified TCI-based indication may conflict with each other.
  • FIG. 6 is a diagram 600 illustrating example communications between a UE 602 and a base station 604.
  • the UE 602 may report a UE capability 610 to the base station 604 by indicating one of: (1) support of SRI-based indications for beam or PLRS and non-support of unified TCI-based indications for beam or PLRS, (2) non-support of SRI-based indications for beam or PLRS and support of unified TCI-based indications for beam or PLRS, or (3) support of SRI-based indications for beam or PLRS and support of unified TCI-based indications for beam or PLRS.
  • the UE 602 may determine its own UE capability at 606.
  • the base station may transmit a configuration 612 to the UE to: (1) enable SRI-based indications without enabling unified TCI-based indications, (2) enable unified TCI-based indications without enabling SRI-based indications or (3) enable unified TCI-based indications and SRI-based indications.
  • the configuration 612 may be transmitted via DCI.
  • the configuration 612 may be transmitted via a MAC-CE.
  • the configuration 612 may be transmitted via RRC signaling.
  • the base station may transmit an indication 614 based on the configuration to the UE.
  • the indication 614 may be transmitted via DCI.
  • the indication 614 may be transmitted via a MAC-CE.
  • the indication 614 may be transmitted via RRC signaling.
  • the UE 602 may receive an SRI-based indication 615A and a unified TCI-based indication 615B.
  • the SRI-based indication 615A may be received in a scheduling DCI for a PUSCH 618A and the unified TCI-based indication 615B may be received in another DCI or a MAC-CE.
  • the indication associated with the beam may be applied (e.g., for a PUSCH 618A or a PUCCH/SRS 618B) .
  • the indication associated with the PLRS may be applied.
  • the UE 602 may prioritize one beam or PLRS. For example, the UE 602 may prioritize the beam or PLRS indicated by the SRI-based indication 615A. In some aspects, the UE 602 may ignore the beam or PLRS indicated by the unified TCI-based indication 615B for a PUSCH 618A and use the beam or PLRS indicated by the unified TCI-based indication 615B for one or more other UL channels, such as PUCCH/SRS 618B.
  • the UE 602 may be enabled with the unified TCI-based indications and the SRI-based indications (e.g., the indication 614 indicates enabling unified TCI-based indications and SRI-based indications) and the SRI-based indication 615A and the unified TCI-based indication 615B may indicate two different beam or PLRSs for the PUSCH 618A.
  • both the SRI-based indication 615A and the unified TCI-based indication 615B may be associated with a PLRS.
  • the SRI-based indication 615A may indicate an associated SRS resource set with most recent transmission using a different beam from the beam indicated in the unified TCI indication 615B.
  • the UE 602 may prioritize one beam or PLRS in the unified TCI indication 615B or the SRI-based indication 615A for the PUSCH 618A. For example, if the UE 602 and the base station 604 are in non-codebook-based UL MIMO, the PLRS indicated by the SRI-based indication 615A may be prioritized. The UE 602 may ignore the PLRS in the unified TCI indication 615B for the PUSCH 618A, but may use the PLRS in the unified TCI indication 615B for the PUCCH/SRS 618B.
  • the PLRS indicated by the SRI-based indication 615A may be prioritized.
  • the UE may ignore the beam indicated in the unified TCI indication 615B if the most recent SRS transmission associated with the SRI-based indication 615A is not updated with the beam.
  • a unified TCI state if a unified TCI state is activated by a MAC-CE from a pool of TCI states, the MAC-CE may down select from a DCI transmitting the unified TCI-based indication 615A.
  • the pool of TCI states may indicate a possible total of 8 TCI states (e.g., in a 3-bit indication)
  • the DCI may indicate a possible total of 128 TCI states (e.g., in a 7-bit indication) .
  • the unified TCI state may be applicable to an UL transmission, such as the PUCCH/SRS 618B or the PUSCH 618A.
  • the MAC-CE may also activate a PLRS.
  • the PLRS may be the periodic DL source RS. In some aspects, if the activated TCI state has an aperiodic DL source RS as QCL Type D RS, the PLRS may be a periodic DL RS that is QCL’d (Type D) with the aperiodic DL source RS. In some aspects, if the activated TCI state has an UL source RS, the PL-RS may be a periodic DL RS that is QCL’d (Type D) with the UL source RS.
  • FIG. 7 is a flowchart 700 of a method of wireless communication.
  • the method may be performed by a UE (e.g., the UE 104, the UE 404, the UE 602; the apparatus 802) .
  • Optional steps are illustrated in dashed lines. The steps are not necessarily illustrated in chronological order.
  • the UE may determine a UE capability including support of at least one of an SRI indication or a unified TCI indication for utilizing a beam or a PLRS for an uplink channel transmission.
  • 702 may be performed by determining component 842 in FIG. 8.
  • 702 may correspond with the determining 606 described in connection with FIG. 6.
  • the UE may transmit, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission.
  • 704 may be performed by capability indication component 844 in FIG. 8.
  • the indication of the UE capability may indicate support of the SRI indication and non-support of the unified TCI indication.
  • the indication of the UE capability may indicate non-support of the SRI indication and support of the unified TCI indication.
  • the indication of the UE capability may indicate support of the SRI indication and support of the unified TCI indication.
  • the indication of the UE capability may correspond with the UE capability 610 described in connection with FIG. 6.
  • the indication of the UE capability may be a report of the UE capability.
  • the UE may receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  • 706 may be performed by configuration reception component 846 in FIG. 8.
  • the indication of the configuration may correspond with the configuration 612 described in connection with FIG. 6.
  • the indication of the configuration may be received via DCI, a MAC-CE, or RRC signaling.
  • the UE may receive, from the base station, at least one of the SRI indication or the unified TCI indication.
  • 708 may be performed by indication reception component 848 in FIG. 8.
  • the at least one of the SRI indication or the unified TCI indication may correspond with the indication 614 described in connection with FIG. 6.
  • the at least one of the SRI indication or the unified TCI indication may be received via DCI or a MAC-CE.
  • receiving the at least one of the SRI indication or the unified TCI indication may include receiving both of the SRI indication and the unified TCI indication.
  • the SRI indication may be associated with a first beam or a first PLRS and the unified TCI indication may be associated with a second beam or a second PLRS. In some aspects, the SRI indication and the unified TCI indication are both associated with a PLRS indication. In some aspects, the SRI indication may be associated with an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
  • the UE may enable, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  • 704 may be performed by enabling component 850 in FIG. 8.
  • the enabling may correspond with the determining and enabling 616 described in connection with FIG. 6.
  • enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission may include prioritizing one of the SRI indication or the unified TCI indication.
  • the uplink channel may be codebook-based and the first PLRS associated with the SRI indication may be prioritized.
  • the uplink channel may be non-codebook-based and the first beam associated with the SRI indication may be prioritized.
  • a most recent SRS transmission associated with the SRI indication may be not updated with the first beam and the UE may ignore the second beam (associated with the unified TCI indication) .
  • the UE may activate a unified TCI state among a pool of TCI states based on the unified TCI indication and a MAC-CE associated with the unified TCI indication.
  • 704 may be performed by activation component 852 in FIG. 8.
  • the UE may activate an PLRS based on the MAC-CE.
  • 714 may be performed by activation component 852 in FIG. 8.
  • the unified TCI state may be associated with a periodic DL source RS as a QCL type D RS and the PLRS may be the periodic DL source RS.
  • the unified TCI state may be associated with an aperiodic DL source RS as a QCL type D RS and the PLRS may be the aperiodic DL source RS. In some aspects, the unified TCI state may be associated with an UL source RS QCL with a periodic DL source RS and the PLRS may be the periodic DL source RS.
  • the UE may transmit, to the base station based on at least one of the SRI indication or the unified TCI indication, the uplink channel via the beam or the PLRS.
  • 716 may be performed by transmission component 834 in FIG. 8.
  • the uplink channel may correspond with the PUSCH 618A or the PUCCH/SRS 618B described in connection with FIG. 6.
  • the uplink channel may be a PUSCH or a PUCCH.
  • FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802.
  • the apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818.
  • the cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 804 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software.
  • the cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834.
  • the transmission component 834 may be configured to transmit, to a base station based on at least one of an SRI indication or a unified TCI indication, an uplink channel via a beam or a PLRS, e.g., as described in connection with 716 in FIG. 7.
  • the communication manager 832 includes the one or more illustrated components.
  • the components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 804.
  • the cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 802.
  • the communication manager 832 may include a determining component 842 that may be configured to determine a UE capability including support of at least one of an SRI indication or a unified TCI indication for utilizing a beam or a PLRS for an uplink channel transmission, e.g., as described in connection with 702 in FIG. 7.
  • the communication manager 832 may further include a capability indication component 844 that may be configured to transmit, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission, e.g., as described in connection with 704 in FIG. 7.
  • the communication manager 832 may further include a configuration reception component 846 that may be configured to receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission, e.g., as described in connection with 706 in FIG. 7.
  • the communication manager 832 may further include an indication reception component 848 that may be configured to receive, from the base station, at least one of the SRI indication or the unified TCI indication, e.g., as described in connection with 708 in FIG. 7.
  • the communication manager 832 may further include an enabling component 850 that may be configured to enable, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission, e.g., as described in connection with 710 in FIG. 7.
  • the communication manager 832 may further include an activation component 852 that may be configured to activate a unified TCI state among a pool of TCI states based on the unified TCI indication and a MAC-CE associated with the unified TCI indication and activate a PLRS based on the MAC-CE, e.g., as described in connection with 712 and 714 in FIG. 7.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 7. As such, each block in the aforementioned flowchart of FIG. 7 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 802 includes means for determining a UE capability including support of at least one of an SRI indication or a unified TCI indication for utilizing a beam or a PLRS for an uplink channel transmission.
  • the cellular baseband processor 804 may further include means for transmitting, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission.
  • the cellular baseband processor 804 may further include means for receiving, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  • the cellular baseband processor 804 may further include means for enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  • the cellular baseband processor 804 may further include means for transmitting, to the base station based on at least one of the SRI indication or the unified TCI indication, the uplink channel via the beam or the PLRS.
  • the cellular baseband processor 804 may further include means for receiving, from the base station, at least one of the SRI indication or the unified TCI indication.
  • the cellular baseband processor 804 may further include means for activating a unified TCI state among a pool of TCI states based on the unified TCI indication and a MAC-CE associated with the unified TCI indication.
  • the cellular baseband processor 804 may further include means for activating a PLRS based on the MAC-CE.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means.
  • the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 9 is a flowchart 900 of a method of wireless communication.
  • the method may be performed by a base station (e.g., the base station 102/180; the apparatus 1002.
  • a base station e.g., the base station 102/180; the apparatus 1002.
  • Optional steps are illustrated in dashed lines. The steps are not necessarily illustrated in chronological order.
  • the base station may receive, from a UE, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission.
  • 902 may be performed by capability reception component 1042 in FIG. 10.
  • the indication of the UE capability may indicate support of the SRI indication and non-support of the unified TCI indication.
  • the indication of the UE capability may indicate non-support of the SRI indication and support of the unified TCI indication.
  • the indication of the UE capability may indicate support of the SRI indication and support of the unified TCI indication.
  • the indication of the UE capability may correspond with the UE capability 610 described in connection with FIG. 6.
  • the indication of the UE capability may be a report of the UE capability.
  • the base station may determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. In some aspects, 904 may be performed by determining component 1044 in FIG. 10.
  • the base station may transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
  • 906 may be performed by configuration component 1046 in FIG. 10.
  • the indication of the configuration may correspond with the configuration 612 described in connection with FIG. 6.
  • the indication of the configuration may be transmitted via DCI, a MAC-CE, or RRC signaling.
  • the base station may transmit, to the UE, at least one of the SRI indication or the unified TCI indication.
  • 908 may be performed by indication component 1048 in FIG. 10.
  • the at least one of the SRI indication or the unified TCI indication may be transmitted via DCI or a MAC-CE.
  • transmitting the at least one of the SRI indication or the unified TCI indication may include transmitting both of the SRI indication and the unified TCI indication.
  • the SRI indication may be associated with a first beam or a first PLRS and the unified TCI indication may be associated with a second beam or a second PLRS.
  • the SRI indication and the unified TCI indication are both associated with a PLRS indication.
  • the SRI indication may be associated with an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
  • the base station may receive, from the UE, the uplink channel via the beam or the PLRS.
  • 910 may be performed by reception component 1030 in FIG. 10.
  • the uplink channel may correspond with the PUSCH 618A or the PUCCH/SRS 618B described in connection with FIG. 6.
  • the uplink channel may be a PUSCH or a PUCCH.
  • FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for an apparatus 1002.
  • the apparatus 1002 is a BS and includes a baseband unit 1004.
  • the baseband unit 1004 may communicate through a cellular RF transceiver 1022 with the UE 104.
  • the baseband unit 1004 may include a computer-readable medium /memory.
  • the baseband unit 1004 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 1004, causes the baseband unit 1004 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 1004 when executing software.
  • the baseband unit 1004 further includes a reception component 1030, a communication manager 1032, and a transmission component 1034.
  • the reception component 1030 may be configured to receive, from the UE, the uplink channel via the beam or the PLRS, e.g., as described in connection with 910 in FIG. 9.
  • the communication manager 1032 includes the one or more illustrated components.
  • the components within the communication manager 1032 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 1004.
  • the baseband unit 1004 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 1032 may include a capability reception component 1042 that may be configured to receive, from a UE, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission, e.g., as described in connection with 902 in FIG. 9.
  • the communication manager 1032 may further include a determining component 1044 that may be configured to determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission, e.g., as described in connection with 904 in FIG. 9.
  • the communication manager 1032 may further include a configuration component 1046 that may be configured to transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission, e.g., as described in connection with 906 in FIG. 9.
  • the communication manager 1032 may further include an indication component 1048 that may be configured to transmit, to the UE, at least one of the SRI indication or the unified TCI indication, e.g., as described in connection with 908 in FIG. 9.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 9. As such, each block in the aforementioned flowchart of FIG. 9 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 1002 includes means for receiving, from a UE, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission.
  • the baseband unit 1004 may further include means for determining, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission.
  • the baseband unit 1004 may further include means for transmitting, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
  • the baseband unit 1004 may further include means for receiving, from the UE, the uplink channel via the beam or the PLRS.
  • the baseband unit 1004 may further include means for transmitting, to the UE, at least one of the SRI indication or the unified TCI indication.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1002 configured to perform the functions recited by the aforementioned means.
  • the apparatus 1002 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.
  • Aspect 1 is a method of wireless communication at a UE, comprising: determining a UE capability including support of at least one of a SRI indication or a unified transmission TCI indication for utilizing a beam or a PLRS for an uplink channel transmission; transmitting, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and receiving, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  • Aspect 2 is the method of aspect 1, wherein the indication of the UE capability indicates support of the SRI indication and non-support of the unified TCI indication.
  • Aspect 3 is the method of any of aspects 1-2, wherein the indication of the UE capability indicates non-support of the SRI indication and support of the unified TCI indication.
  • Aspect 4 is the method of any of aspects 1-3, wherein the indication of the UE capability indicates support of the SRI indication and support of the unified TCI indication.
  • Aspect 5 is the method of any of aspects 1-4, further comprising: enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  • Aspect 6 is the method of any of aspects 1-5, further comprising: transmitting, to the base station based on at least one of the SRI indication or the unified TCI indication, the uplink channel via the beam or the PLRS.
  • Aspect 7 is the method of any of aspects 1-6, further comprising: receiving, from the base station, at least one of the SRI indication or the unified TCI indication.
  • Aspect 8 is the method of any of aspects 1-7, wherein the at least one of the SRI indication or the unified TCI indication is received via DCI or a MAC-CE.
  • Aspect 9 is the method of any of aspects 1-8, wherein receiving the at least one of the SRI indication or the unified TCI indication comprises receiving both of the SRI indication and the unified TCI indication.
  • Aspect 10 is the method of any of aspects 1-9, wherein enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission comprises prioritizing one of the SRI indication or the unified TCI indication.
  • Aspect 11 is the method of any of aspects 1-10, wherein the SRI indication is associated with a first beam or a first PLRS and the unified TCI indication is associated with a second beam or a second PLRS.
  • Aspect 12 is the method of any of aspects 1-11, wherein the SRI indication and the unified TCI indication are both associated with a PLRS indication.
  • Aspect 13 is the method of any of aspects 1-12, wherein the SRI indication is associated with an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
  • Aspect 14 is the method of any of aspects 1-13, wherein the uplink channel is codebook-based, and wherein the first PLRS associated with the SRI indication is prioritized.
  • Aspect 15 is the method of any of aspects 1-14, wherein the uplink channel is non-codebook-based, and wherein the first beam associated with the SRI indication is prioritized.
  • Aspect 16 is the method of any of aspects 1-15, wherein a most recent SRS transmission associated with the SRI indication is not updated with the first beam, and further comprising ignoring the second beam.
  • Aspect 17 is the method of any of aspects 1-16, further comprising: activating a unified TCI state among a pool of TCI states based on the unified TCI indication and a MAC-CE associated with the unified TCI indication; and activating a PLRS based on the MAC-CE.
  • Aspect 18 is the method of any of aspects 1-17, wherein the unified TCI state is associated with a periodic DL source RS as a QCL type D RS, and wherein the PLRS is the periodic DL source RS.
  • Aspect 19 is the method of any of aspects 1-18, wherein the unified TCI state is associated with an aperiodic DL source RS as a QCL type D RS, and wherein the PLRS is the aperiodic DL source RS.
  • Aspect 20 is the method of any of aspects 1-19, wherein the unified TCI state is associated with an UL source RS QCL with a periodic DL source RS, and wherein the PLRS is the periodic DL source RS.
  • Aspect 21 is the method of any of aspects 1-20, wherein the uplink channel is a PUSCH or a PUCCH.
  • Aspect 22 is the method of any of aspects 1-21, wherein the indication of the configuration is received via DCI, a MAC-CE, or RRC signaling.
  • Aspect 23 is the method of any of aspects 1-22, wherein the indication of the UE capability is a report of the UE capability.
  • Aspect 24 is method of wireless communication at a base station, comprising: receiving, from a UE, an indication of a UE capability including support of at least one of a SRI indication or a unified transmission TCI indication for a beam or a PLRS for an uplink channel transmission; determining, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and transmitting, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
  • Aspect 25 is the method of aspect 24, wherein the indication of the UE capability indicates support of the SRI indication and non-support of the unified TCI indication.
  • Aspect 26 is the method of any of aspects 24-25, wherein the indication of the UE capability indicates non-support of the SRI indication and support of the unified TCI indication.
  • Aspect 27 is the method of any of aspects 24-26, wherein the indication of the UE capability indicates support of the SRI indication and support of the unified TCI indication.
  • Aspect 28 is the method of any of aspects 24-27, further comprising: receiving, from the UE, the uplink channel via the beam or the PLRS.
  • Aspect 29 is the method of any of aspects 24-28, further comprising: transmitting, to the UE, at least one of the SRI indication or the unified TCI indication.
  • Aspect 30 is the method of any of aspects 24-29, wherein the at least one of the SRI indication or the unified TCI indication is transmitted via DCI or a MAC-CE.
  • Aspect 31 is the method of any of aspects 24-30, wherein transmitting, to the UE, the at least one of the SRI indication or the unified TCI indication comprises transmitting both of the SRI indication and the unified TCI indication.
  • Aspect 32 is the method of any of aspects 24-31, wherein the SRI indication is associated with a first beam or a first PLRS and the unified TCI indication is associated with a second beam or a second PLRS.
  • Aspect 33 is the method of any of aspects 24-32, wherein the SRI indication and the unified TCI indication are both associated with a PLRS indication.
  • Aspect 34 is the method of any of aspects 24-33, wherein the SRI indication is associated with an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
  • Aspect 35 is the method of any of aspects 24-34, wherein the uplink channel is a PUSCH or a PUCCH.
  • Aspect 36 is the method of any of aspects 24-35, wherein the indication of the configuration is transmitted via DCI, a MAC-CE, or RRC signaling.
  • Aspect 37 is the method of any of aspects 24-36, wherein the indication of the UE capability is a report of the UE capability.
  • Aspect 37 is an apparatus for wireless communication including at least one processor coupled to a memory and configured to implement a method as in any of aspects 1 to 23.
  • Aspect 38 is an apparatus for wireless communication including at least one processor coupled to a memory and configured to implement a method as in any of aspects 24 to 37.
  • Aspect 39 is an apparatus for wireless communication including means for implementing a method as in any of aspects 1 to 23.
  • Aspect 40 is an apparatus for wireless communication including means for implementing a method as in any of aspects 24 to 37.
  • Aspect 41 is a computer-readable medium storing computer executable code, where the code when executed by a processor causes the processor to implement a method as in any of aspects 1 to 23.
  • Aspect 42 is a computer-readable medium storing computer executable code, where the code when executed by a processor causes the processor to implement a method as in any of aspects 24 to 37.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Apparatus, methods, and computer program products for beam and PLRS determination in unified TCI framework are provided. An example method includes determining a UE capability including support of at least one of an SRI indication or a unified TCI indication for utilizing a beam or a PLRS for an uplink channel transmission. The example method further includes transmitting, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. The example method further includes receiving, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.

Description

PATHLOSS RS AND BEAM DETERMINATION IN UNIFIED TCI FRAMEWORK BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to a wireless communication system with pathloss reference signal (RS) (PLRS) and a unified transmission configuration indication (TCI) framework.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus at a UE are provided. The UE may determine a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for utilizing a beam or a pathloss reference signal (PLRS) for an uplink channel transmission. The UE may transmit, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. The UE may receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
In another aspect of the disclosure, a method, a computer-readable medium, and an apparatus at a base station are provided. The base station may receive, from a UE, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission. The base station may determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. The base station may transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be  employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a diagram illustrating a base station in communication with a UE via a set of beams.
FIG. 5 is a diagram illustrating example SRI and unified TCI collision.
FIG. 6 is a diagram illustrating example communications between a UE and a base station.
FIG. 7 is a flowchart of a method of wireless communication.
FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
FIG. 9 is a flowchart of a method of wireless communication.
FIG. 10 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The  detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can  comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For  example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear  channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –C 300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz –C 24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz –C 71 GHz) , FR4 (52.6 GHz –114.25 GHz) , and FR5 (114.25 GHz –300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly  represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The  BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless  terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 may include an uplink component 198. In some aspects, the uplink component 198 may be configured to determine a UE capability including support of at least one of an SRI indication or a unified TCI indication for utilizing a beam or a PLRS for an uplink channel transmission. In some aspects, the uplink component 198 may be further configured to transmit, to a base station, such as the base station 180, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. In some aspects, the uplink component 198 may be further configured to receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
In some aspects, the base station 180 may include a TCI/SRI indication component 199. In some aspects, the TCI/SRI indication component 199 may be configured to receive, from a UE, such as the UE 104, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission. In some aspects, the TCI/SRI indication component 199 may be further configured to determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. In some aspects, the TCI/SRI indication component 199 may be further configured to transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of  subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While  subframes  3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) orthogonal frequency division multiplexing (OFDM) (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has  a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . A UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can  determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) acknowledgment (ACK) (HARQ-ACK) information (ACK /negative ACK (NACK) ) feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control  (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.  Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354 RX receives a signal through its respective antenna 352. Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and  reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with the uplink component 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with the TCI/SRI indication component 199 of FIG. 1.
FIG. 4 is a diagram 400 illustrating a base station 402 in communication with a UE 404. Referring to FIG. 4, the base station 402 may transmit a beamformed signal to the UE 404 in one or more of the  directions  402a, 402b, 402c, 402d, 402e, 402f, 402g, 402h. The UE 404 may receive the beamformed signal from the base station 402 in  one or more receive  directions  404a, 404b, 404c, 404d. The UE 404 may also transmit a beamformed signal to the base station 402 in one or more of the directions 404a-404d. The base station 402 may receive the beamformed signal from the UE 404 in one or more of the receive directions 402a-402h. The base station 402 /UE 404 may perform beam training to determine the best receive and transmit directions for each of the base station 402 /UE 404. The transmit and receive directions for the base station 402 may or may not be the same. The transmit and receive directions for the UE 404 may or may not be the same.
In response to different conditions, the UE 404 may determine to switch beams, e.g., between beams 402a-402h. The beam at the UE 404 may be used for reception of downlink communication and/or transmission of uplink communication. In some examples, the base station 402 may send a transmission that triggers a beam switch by the UE 404. For example, the base station 402 may indicate a TCI state change, and in response, the UE 404 may switch to a new beam for the new TCI state of the base station 402. A TCI state may define a quasi-co-located (QCL’d) assumption between a source RS and a target RS. For example, a source RS may be an SSB, a tracking reference signal (TRS) , a CSI-RS for beam management, a CSI-RS for CQI management, or the like. A target RS may be a TRS, a CSI-RS for beam management, a CSI-RS for CQI management, a DM-RS for a PDSCH or a PDCCH, or the like. Before receiving a TCI state, a UE may assume that the antenna ports of one DM-RS port group of a PDSCH are spatially QCL’d with an SSB determined in the initial access procedure with respect to one or more of: a Doppler shift, a Doppler spread, an average delay, a delay spread, a set of spatial Rx parameters, or the like. After receiving the new TCI state, the UE may assume that the antenna ports of one DM-RS port group of a PDSCH of a serving cell are QCL’d with the RS (s) in the RS set with respect to the QCL type parameter (s) given by the indicated TCI state. Regarding the QCL types, QCL type A may include the Doppler shift, the Doppler spread, the average delay, and the delay spread; QCL type B may include the Doppler shift and the Doppler spread; QCL type C may include the Doppler shift and the average delay; and QCL type D may include the spatial Rx parameters (e.g., associated with beam information such as beamforming properties for finding a beam) . In some aspects, a maximum number of TCI states may be 128.
In some aspects, a UE may receive a signal, from a base station, configured to trigger a TCI state change via, for example, a medium access control (MAC) control element  (CE) (MAC-CE) , a downlink control information (DCI) , or a radio resource control (RRC) signal. The TCI state change may cause the UE to find the best or most suitable UE receive beam corresponding to the TCI state indicated by the base station, and switch to such beam. Switching beams may allow for an enhanced or improved connection between the UE and the base station by ensuring that the transmitter and receiver use the same configured set of beams for communication. 
In some aspects, a spatial relation change, such as a spatial relation update, may trigger the UE to switch beams. Beamforming may be applied to uplink channels, such as a PUSCH, a PUCCH, or an SRS. Beamforming may be based on configuring one or more spatial relations between the uplink and downlink signals. Spatial relation indicates that a UE may transmit the uplink signal using the same beam used for receiving the corresponding downlink signal.
In another aspect, the base station 402 may indicate a change in a PLRS that the UE may use to determine power control for uplink transmissions, such as a PUSCH, a PUCCH, or an SRS. In response to the change in the PLRS, the UE 404 may determine to switch to a new beam.
In some wireless communication systems, a pool of joint DL/UL TCI states may be used for joint DL/UL TCI state updates for beam indication. For example, the base station 402 may transmit a pool of joint DL/UL TCI states to the UE 404. The UE 404 may determine to switch transmission beams and reception beams based on the joint DL/UL TCI states. In some aspects, the TCI state pool for separate DL and UL TCI state updates may be used. In some aspects, the base station 402 may use RRC signaling to configure the TCI state pool. In some aspects, joint TCI may or may not include UL specific parameter (s) such as UL PC/timing parameters, PLRS, panel-related indication, or the like. If the joint TCI includes the UL specific parameter (s) , the parameters may be used for the UL transmission of the DL and UL transmissions to which the joint TCI is applied.
Some wireless communication systems may use codebook-based MIMO. MIMO systems may allow multiple independent radio terminals, each of which has one or multiple antennas that communicate with a given access point in such a way that each radio terminal can fully utilize all the spectral resources simultaneously. A MIMO system (such as the base station 402) may employ a procedure, such as precoding, to resolve the problem of interference among the signals transmitted from an access point to the multiple terminals in the same frequency band at the same time.
In a codebook-based MIMO wireless communication systems, the precoding may be selected from a standardized codebook. In a non-codebook-based MIMO, there may be no such codebook and the precoding may be dynamically determined. For some non-codebook-based MIMO in a PUSCH, an SRI field in DCI may indicate a set of precoders associated with an SRS resource set and a set of power control parameters which may include P0, alpha, Closedloopindex, PLRS, or the like. P0 may represent a base station received power per resource block assuming a path loss of 0 decibels (dB) . Alpha may represent possible values for uplink power control. Closedloopindex may be an index of the closed power control loop associated with the SRI and the associated PUSCH. A beam of the PUSCH may follow the SRS resource set. For example, all SRSs in the same SRS resource set may have a same beam and the SRI may not select a beam.
For some codebook-based MIMO in a PUSCH, an SRI field in DCI may select an SRS resource from multiple SRSs in an SRS resource set for determining a beam for PUSCH transmission. For example, different SRS selected by SRI in the SRS resource set may have different beams. A transmitted precoding matrix indicator (TPMI) in DCI may indicate precoders and the SRI field may indicate a set of power control parameters which may also include P0, alpha, Closedloopindex, PLRS, or the like.
In some wireless communication systems, beam indication for a PUSCH may be via SRI in the scheduling DCI. For example, the SRI may provide timely and dynamic beam/power control parameter indication including the PLRS. PLRS indicated by SRI may be intended to the dynamically scheduled PUSCH. PLRS indicated by SRI may be a precoder or SRI-dependent for non-codebook-based UL MIMO.
Unified TCI may provide the advantage of enabling a faster switching time between multi-transmission reception panel (TRP) and single-TRP operations for a UE. In addition, unified TCI may enable fast power control parameter indication to a dynamic PUSCH. To support unified TCI, UL TCI or a joint DL/UL TCI may provide a beam indication to multiple uplink channels. In other words, a TCI indicated by one DCI may be applied to multiple UL channels such as one or more SRS, one or more PUSCHs, and one or more PUCCHs. A PUSCH scheduled by a DCI may be indicated with a unified TCI by another non-scheduling DCI. For example, a DCI may indicate a unified TCI and a separate DCI may be transmitted to indicate TCI and schedule PUSCH (possibly with additional latency due to non-scheduling DCI) . PLRS  indicated by TCI may be beam-dependent and less timely compared with an SRI indication in scheduling DCI.
As illustrated in example 500 in FIG. 5, a PDCCH 502 received by a UE may include a unified TCI 2 that indicates a new beam that may be different from a currently used beam associated with unified TCI 1. There may be a delay in using the new beam because there may be a time offset (beam application time) for switching to the new beam. While switching to the new beam, the UE may receive an SRS set transmission 504. After the UE receives a PDCCH 508 that schedules a codebook (CB) -PUSCH 506 and associated with SRI, as previously described, the UE may determine the beam PUSCH based on the SRS resource set 504. However, the new beam associated with the unified TCI 2 included in the PDCCH 502 may also be applied, which conflicts with the SRI-based indication. In other words, the unified TCI may provide beam indication to multiple channels. For example, an UL TCI or a joint DL/UL TCI can provide a beam indication to multiple uplink channels. The beam indication to a DCI scheduled PUSCH may be indicated by UL TCI with another non-scheduling DCI. The UL TCI may or may not provide PLRS to a PUSCH. The PLRS contained in UL TCI may also be applied to other channels than a PUSCH. On the other hand, the beam indication to a DCI scheduled PUSCH may be indicated by SRI in the same scheduling DCI. The SRI may also provide PLRS indication. The PLRS contained in SRI may be solely applicable to a PUSCH. Therefore, the SRI-based indication and unified TCI-based indication may conflict with each other.
Aspects provided herein resolve the conflict between SRI-based indications and unified TCI-based indications. Aspects provided herein may be applicable to single TRP UEs and multi-TRP UEs. FIG. 6 is a diagram 600 illustrating example communications between a UE 602 and a base station 604. The UE 602 may report a UE capability 610 to the base station 604 by indicating one of: (1) support of SRI-based indications for beam or PLRS and non-support of unified TCI-based indications for beam or PLRS, (2) non-support of SRI-based indications for beam or PLRS and support of unified TCI-based indications for beam or PLRS, or (3) support of SRI-based indications for beam or PLRS and support of unified TCI-based indications for beam or PLRS. In some aspects, before transmitting the UE capability 610, the UE 602 may determine its own UE capability at 606.
In some aspects, if the UE 602 reported the UE capability 610 indicating support of SRI-based indications for beam or PLRS and support of unified TCI-based indications  for beam or PLRS, the base station may transmit a configuration 612 to the UE to: (1) enable SRI-based indications without enabling unified TCI-based indications, (2) enable unified TCI-based indications without enabling SRI-based indications or (3) enable unified TCI-based indications and SRI-based indications. In some aspects, the configuration 612 may be transmitted via DCI. In some aspects, the configuration 612 may be transmitted via a MAC-CE. In some aspects, the configuration 612 may be transmitted via RRC signaling. The base station may transmit an indication 614 based on the configuration to the UE. In some aspects, the indication 614 may be transmitted via DCI. In some aspects, the indication 614 may be transmitted via a MAC-CE. In some aspects, the indication 614 may be transmitted via RRC signaling.
The UE 602 may receive an SRI-based indication 615A and a unified TCI-based indication 615B. The SRI-based indication 615A may be received in a scheduling DCI for a PUSCH 618A and the unified TCI-based indication 615B may be received in another DCI or a MAC-CE. In some aspects, if the UE 602 is enabled with the unified TCI-based indications and the SRI-based indications (e.g., the indication 614 indicates enabling unified TCI-based indications and SRI-based indications) and if one of the SRI-based indication 615A or the unified TCI-based indication 615B is associated with a beam and the other one of the SRI-based indication 615A or the unified TCI-based indication 615B is not associated with a beam, the indication associated with the beam may be applied (e.g., for a PUSCH 618A or a PUCCH/SRS 618B) . In some aspects, if one of the SRI-based indication 615A or the unified TCI-based indication 615B is associated with a PLRS and the other one of the SRI-based indication 615A or the unified TCI-based indication 615B is not associated with a PLRS, the indication associated with the PLRS may be applied.
In some aspects, if the SRI-based indication 615A and the unified TCI-based indication 615B are both associated with a PLRS or a beam, the UE 602 may prioritize one beam or PLRS. For example, the UE 602 may prioritize the beam or PLRS indicated by the SRI-based indication 615A. In some aspects, the UE 602 may ignore the beam or PLRS indicated by the unified TCI-based indication 615B for a PUSCH 618A and use the beam or PLRS indicated by the unified TCI-based indication 615B for one or more other UL channels, such as PUCCH/SRS 618B.
In some aspects, the UE 602 may be enabled with the unified TCI-based indications and the SRI-based indications (e.g., the indication 614 indicates enabling unified TCI-based indications and SRI-based indications) and the SRI-based indication 615A and  the unified TCI-based indication 615B may indicate two different beam or PLRSs for the PUSCH 618A. In some aspects, both the SRI-based indication 615A and the unified TCI-based indication 615B may be associated with a PLRS. For example, the SRI-based indication 615A may indicate an associated SRS resource set with most recent transmission using a different beam from the beam indicated in the unified TCI indication 615B. The UE 602 may prioritize one beam or PLRS in the unified TCI indication 615B or the SRI-based indication 615A for the PUSCH 618A. For example, if the UE 602 and the base station 604 are in non-codebook-based UL MIMO, the PLRS indicated by the SRI-based indication 615A may be prioritized. The UE 602 may ignore the PLRS in the unified TCI indication 615B for the PUSCH 618A, but may use the PLRS in the unified TCI indication 615B for the PUCCH/SRS 618B. In another example, if the UE 602 and the base station 604 are in codebook-based UL MIMO, the PLRS indicated by the SRI-based indication 615A may be prioritized. The UE may ignore the beam indicated in the unified TCI indication 615B if the most recent SRS transmission associated with the SRI-based indication 615A is not updated with the beam.
In some aspects, if a unified TCI state is activated by a MAC-CE from a pool of TCI states, the MAC-CE may down select from a DCI transmitting the unified TCI-based indication 615A. For example, the pool of TCI states may indicate a possible total of 8 TCI states (e.g., in a 3-bit indication) , and the DCI may indicate a possible total of 128 TCI states (e.g., in a 7-bit indication) . In some aspects, the unified TCI state may be applicable to an UL transmission, such as the PUCCH/SRS 618B or the PUSCH 618A. The MAC-CE may also activate a PLRS. In some aspects, if the activated TCI state has a periodic DL source RS as QCL Type D RS, the PLRS may be the periodic DL source RS. In some aspects, if the activated TCI state has an aperiodic DL source RS as QCL Type D RS, the PLRS may be a periodic DL RS that is QCL’d (Type D) with the aperiodic DL source RS. In some aspects, if the activated TCI state has an UL source RS, the PL-RS may be a periodic DL RS that is QCL’d (Type D) with the UL source RS.
FIG. 7 is a flowchart 700 of a method of wireless communication. The method may be performed by a UE (e.g., the UE 104, the UE 404, the UE 602; the apparatus 802) . Optional steps are illustrated in dashed lines. The steps are not necessarily illustrated in chronological order.
At 702, the UE may determine a UE capability including support of at least one of an SRI indication or a unified TCI indication for utilizing a beam or a PLRS for an uplink channel transmission. In some aspects, 702 may be performed by determining component 842 in FIG. 8. In some aspects, 702 may correspond with the determining 606 described in connection with FIG. 6.
At 704, the UE may transmit, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. In some aspects, 704 may be performed by capability indication component 844 in FIG. 8. In some aspects, the indication of the UE capability may indicate support of the SRI indication and non-support of the unified TCI indication. In some aspects, the indication of the UE capability may indicate non-support of the SRI indication and support of the unified TCI indication. In some aspects, the indication of the UE capability may indicate support of the SRI indication and support of the unified TCI indication. In some aspects, the indication of the UE capability may correspond with the UE capability 610 described in connection with FIG. 6. In some aspects, the indication of the UE capability may be a report of the UE capability.
At 706, the UE may receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission. In some aspects, 706 may be performed by configuration reception component 846 in FIG. 8. In some aspects, the indication of the configuration may correspond with the configuration 612 described in connection with FIG. 6. In some aspects, the indication of the configuration may be received via DCI, a MAC-CE, or RRC signaling.
At 708, the UE may receive, from the base station, at least one of the SRI indication or the unified TCI indication. In some aspects, 708 may be performed by indication reception component 848 in FIG. 8. In some aspects, the at least one of the SRI indication or the unified TCI indication may correspond with the indication 614 described in connection with FIG. 6. In some aspects, the at least one of the SRI indication or the unified TCI indication may be received via DCI or a MAC-CE. In some aspects, receiving the at least one of the SRI indication or the unified TCI indication may include receiving both of the SRI indication and the unified TCI indication. In some aspects, the SRI indication may be associated with a first beam or a first PLRS and the unified TCI indication may be associated with a second beam or  a second PLRS. In some aspects, the SRI indication and the unified TCI indication are both associated with a PLRS indication. In some aspects, the SRI indication may be associated with an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
At 710, the UE may enable, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission. In some aspects, 704 may be performed by enabling component 850 in FIG. 8. In some aspects, the enabling may correspond with the determining and enabling 616 described in connection with FIG. 6. In some aspects, enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission may include prioritizing one of the SRI indication or the unified TCI indication. In some aspects, the uplink channel may be codebook-based and the first PLRS associated with the SRI indication may be prioritized. In some aspects, the uplink channel may be non-codebook-based and the first beam associated with the SRI indication may be prioritized. In some aspects, a most recent SRS transmission associated with the SRI indication may be not updated with the first beam and the UE may ignore the second beam (associated with the unified TCI indication) .
In some aspects, as part of 710, at 712, the UE may activate a unified TCI state among a pool of TCI states based on the unified TCI indication and a MAC-CE associated with the unified TCI indication. In some aspects, 704 may be performed by activation component 852 in FIG. 8. In some aspects, as part of 710, at 714, the UE may activate an PLRS based on the MAC-CE. In some aspects, 714 may be performed by activation component 852 in FIG. 8. In some aspects, the unified TCI state may be associated with a periodic DL source RS as a QCL type D RS and the PLRS may be the periodic DL source RS. In some aspects, the unified TCI state may be associated with an aperiodic DL source RS as a QCL type D RS and the PLRS may be the aperiodic DL source RS. In some aspects, the unified TCI state may be associated with an UL source RS QCL with a periodic DL source RS and the PLRS may be the periodic DL source RS.
At 716, the UE may transmit, to the base station based on at least one of the SRI indication or the unified TCI indication, the uplink channel via the beam or the PLRS. In some aspects, 716 may be performed by transmission component 834 in FIG. 8. In  some aspects, the uplink channel may correspond with the PUSCH 618A or the PUCCH/SRS 618B described in connection with FIG. 6. In some aspects, the uplink channel may be a PUSCH or a PUCCH.
FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802. The apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818. The cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180. The cellular baseband processor 804 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software. The cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834. In some aspects, the transmission component 834 may be configured to transmit, to a base station based on at least one of an SRI indication or a unified TCI indication, an uplink channel via a beam or a PLRS, e.g., as described in connection with 716 in FIG. 7. The communication manager 832 includes the one or more illustrated components. The components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 804. The cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 802.
The communication manager 832 may include a determining component 842 that may be configured to determine a UE capability including support of at least one of an SRI indication or a unified TCI indication for utilizing a beam or a PLRS for an uplink channel transmission, e.g., as described in connection with 702 in FIG. 7. The communication manager 832 may further include a capability indication component 844 that may be configured to transmit, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission, e.g., as described in connection with 704 in FIG. 7. The communication manager 832 may further include a configuration reception component 846 that may be configured to receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission, e.g., as described in connection with 706 in FIG. 7. The communication manager 832 may further include an indication reception component 848 that may be configured to receive, from the base station, at least one of the SRI indication or the unified TCI indication, e.g., as described in connection with 708 in FIG. 7. The communication manager 832 may further include an enabling component 850 that may be configured to enable, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission, e.g., as described in connection with 710 in FIG. 7. The communication manager 832 may further include an activation component 852 that may be configured to activate a unified TCI state among a pool of TCI states based on the unified TCI indication and a MAC-CE associated with the unified TCI indication and activate a PLRS based on the MAC-CE, e.g., as described in connection with 712 and 714 in FIG. 7.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 7. As such, each block in the aforementioned flowchart of FIG. 7 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 802, and in particular the cellular baseband processor 804, includes means for determining a UE capability including support of at least one of an SRI indication or a unified TCI indication for utilizing a beam or a PLRS for an uplink channel transmission. The cellular baseband processor 804 may further include means for transmitting, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. The cellular baseband processor 804 may further include means for receiving, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission. The cellular baseband processor 804 may further include means for enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission. The cellular baseband processor 804 may further include means for transmitting, to the base station based on at least one of the SRI indication or the unified TCI indication, the uplink channel via the beam or the PLRS. The cellular baseband processor 804 may further include means for receiving, from the base station, at least one of the SRI indication or the unified TCI indication. The cellular baseband processor 804 may further include means for activating a unified TCI state among a pool of TCI states based on the unified TCI indication and a MAC-CE associated with the unified TCI indication. The cellular baseband processor 804 may further include means for activating a PLRS based on the MAC-CE.
The aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 9 is a flowchart 900 of a method of wireless communication. The method may be performed by a base station (e.g., the base station 102/180; the apparatus 1002. Optional steps are illustrated in dashed lines. The steps are not necessarily illustrated in chronological order.
At 902, the base station may receive, from a UE, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission. In some aspects, 902 may be performed by capability reception component 1042 in FIG. 10. In some aspects, the indication of the UE capability may indicate support of the SRI indication and non-support of the unified TCI indication. In some aspects, the indication of the UE capability may indicate non-support of the SRI indication and support of the unified TCI indication. In some aspects, the indication of the UE capability may indicate support of the SRI indication and support of the unified TCI indication. In some aspects, the indication of the UE capability may correspond with the UE capability 610 described in connection with FIG. 6. In some aspects, the indication of the UE capability may be a report of the UE capability.
At 904, the base station may determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. In some aspects, 904 may be performed by determining component 1044 in FIG. 10.
At 906, the base station may transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission. In some aspects, 906 may be performed by configuration component 1046 in FIG. 10. In some aspects, the indication of the configuration may correspond with the configuration 612 described in connection with FIG. 6. In some aspects, the indication of the configuration may be transmitted via DCI, a MAC-CE, or RRC signaling.
At 908, the base station may transmit, to the UE, at least one of the SRI indication or the unified TCI indication. In some aspects, 908 may be performed by indication component 1048 in FIG. 10. In some aspects, the at least one of the SRI indication or the unified TCI indication may be transmitted via DCI or a MAC-CE. In some aspects, transmitting the at least one of the SRI indication or the unified TCI indication may include transmitting both of the SRI indication and the unified TCI indication. In some aspects, the SRI indication may be associated with a first beam or a first PLRS and the unified TCI indication may be associated with a second beam or a second PLRS. In some aspects, the SRI indication and the unified TCI indication are both associated with a PLRS indication. In some aspects, the SRI indication may be associated with  an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
At 910, the base station may receive, from the UE, the uplink channel via the beam or the PLRS. In some aspects, 910 may be performed by reception component 1030 in FIG. 10. In some aspects, the uplink channel may correspond with the PUSCH 618A or the PUCCH/SRS 618B described in connection with FIG. 6. In some aspects, the uplink channel may be a PUSCH or a PUCCH.
FIG. 10 is a diagram 1000 illustrating an example of a hardware implementation for an apparatus 1002. The apparatus 1002 is a BS and includes a baseband unit 1004. The baseband unit 1004 may communicate through a cellular RF transceiver 1022 with the UE 104. The baseband unit 1004 may include a computer-readable medium /memory. The baseband unit 1004 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 1004, causes the baseband unit 1004 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 1004 when executing software. The baseband unit 1004 further includes a reception component 1030, a communication manager 1032, and a transmission component 1034. In some aspects, the reception component 1030 may be configured to receive, from the UE, the uplink channel via the beam or the PLRS, e.g., as described in connection with 910 in FIG. 9. The communication manager 1032 includes the one or more illustrated components. The components within the communication manager 1032 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 1004. The baseband unit 1004 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 1032 may include a capability reception component 1042 that may be configured to receive, from a UE, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission, e.g., as described in connection with 902 in FIG. 9. The communication manager 1032 may further include a determining component 1044 that may be configured to determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission, e.g.,  as described in connection with 904 in FIG. 9. The communication manager 1032 may further include a configuration component 1046 that may be configured to transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission, e.g., as described in connection with 906 in FIG. 9. The communication manager 1032 may further include an indication component 1048 that may be configured to transmit, to the UE, at least one of the SRI indication or the unified TCI indication, e.g., as described in connection with 908 in FIG. 9.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 9. As such, each block in the aforementioned flowchart of FIG. 9 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 1002, and in particular the baseband unit 1004, includes means for receiving, from a UE, an indication of a UE capability including support of at least one of an SRI indication or a unified TCI indication for a beam or a PLRS for an uplink channel transmission. The baseband unit 1004 may further include means for determining, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission. The baseband unit 1004 may further include means for transmitting, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission. The baseband unit 1004 may further include means for receiving, from the UE, the uplink channel via the beam or the PLRS. The baseband unit 1004 may further include means for transmitting, to the UE, at least one of the SRI indication or the unified TCI indication.
The aforementioned means may be one or more of the aforementioned components of the apparatus 1002 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 1002 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX  Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are  known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
The following aspects are illustrative only and may be combined with other aspects or teachings described herein, without limitation.
Aspect 1 is a method of wireless communication at a UE, comprising: determining a UE capability including support of at least one of a SRI indication or a unified transmission TCI indication for utilizing a beam or a PLRS for an uplink channel transmission; transmitting, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and receiving, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
Aspect 2 is the method of aspect 1, wherein the indication of the UE capability indicates support of the SRI indication and non-support of the unified TCI indication.
Aspect 3 is the method of any of aspects 1-2, wherein the indication of the UE capability indicates non-support of the SRI indication and support of the unified TCI indication.
Aspect 4 is the method of any of aspects 1-3, wherein the indication of the UE capability indicates support of the SRI indication and support of the unified TCI indication.
Aspect 5 is the method of any of aspects 1-4, further comprising: enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
Aspect 6 is the method of any of aspects 1-5, further comprising: transmitting, to the base station based on at least one of the SRI indication or the unified TCI indication, the uplink channel via the beam or the PLRS.
Aspect 7 is the method of any of aspects 1-6, further comprising: receiving, from the base station, at least one of the SRI indication or the unified TCI indication.
Aspect 8 is the method of any of aspects 1-7, wherein the at least one of the SRI indication or the unified TCI indication is received via DCI or a MAC-CE.
Aspect 9 is the method of any of aspects 1-8, wherein receiving the at least one of the SRI indication or the unified TCI indication comprises receiving both of the SRI indication and the unified TCI indication.
Aspect 10 is the method of any of aspects 1-9, wherein enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission comprises prioritizing one of the SRI indication or the unified TCI indication.
Aspect 11 is the method of any of aspects 1-10, wherein the SRI indication is associated with a first beam or a first PLRS and the unified TCI indication is associated with a second beam or a second PLRS.
Aspect 12 is the method of any of aspects 1-11, wherein the SRI indication and the unified TCI indication are both associated with a PLRS indication.
Aspect 13 is the method of any of aspects 1-12, wherein the SRI indication is associated with an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
Aspect 14 is the method of any of aspects 1-13, wherein the uplink channel is codebook-based, and wherein the first PLRS associated with the SRI indication is prioritized.
Aspect 15 is the method of any of aspects 1-14, wherein the uplink channel is non-codebook-based, and wherein the first beam associated with the SRI indication is prioritized.
Aspect 16 is the method of any of aspects 1-15, wherein a most recent SRS transmission associated with the SRI indication is not updated with the first beam, and further comprising ignoring the second beam.
Aspect 17 is the method of any of aspects 1-16, further comprising: activating a unified TCI state among a pool of TCI states based on the unified TCI indication and a MAC-CE associated with the unified TCI indication; and activating a PLRS based on the MAC-CE.
Aspect 18 is the method of any of aspects 1-17, wherein the unified TCI state is associated with a periodic DL source RS as a QCL type D RS, and wherein the PLRS is the periodic DL source RS.
Aspect 19 is the method of any of aspects 1-18, wherein the unified TCI state is associated with an aperiodic DL source RS as a QCL type D RS, and wherein the PLRS is the aperiodic DL source RS.
Aspect 20 is the method of any of aspects 1-19, wherein the unified TCI state is associated with an UL source RS QCL with a periodic DL source RS, and wherein the PLRS is the periodic DL source RS.
Aspect 21 is the method of any of aspects 1-20, wherein the uplink channel is a PUSCH or a PUCCH.
Aspect 22 is the method of any of aspects 1-21, wherein the indication of the configuration is received via DCI, a MAC-CE, or RRC signaling.
Aspect 23 is the method of any of aspects 1-22, wherein the indication of the UE capability is a report of the UE capability.
Aspect 24 is method of wireless communication at a base station, comprising: receiving, from a UE, an indication of a UE capability including support of at least one of a SRI indication or a unified transmission TCI indication for a beam or a PLRS for an uplink channel transmission; determining, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and transmitting, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
Aspect 25 is the method of aspect 24, wherein the indication of the UE capability indicates support of the SRI indication and non-support of the unified TCI indication.
Aspect 26 is the method of any of aspects 24-25, wherein the indication of the UE capability indicates non-support of the SRI indication and support of the unified TCI indication.
Aspect 27 is the method of any of aspects 24-26, wherein the indication of the UE capability indicates support of the SRI indication and support of the unified TCI indication.
Aspect 28 is the method of any of aspects 24-27, further comprising: receiving, from the UE, the uplink channel via the beam or the PLRS.
Aspect 29 is the method of any of aspects 24-28, further comprising: transmitting, to the UE, at least one of the SRI indication or the unified TCI indication.
Aspect 30 is the method of any of aspects 24-29, wherein the at least one of the SRI indication or the unified TCI indication is transmitted via DCI or a MAC-CE.
Aspect 31 is the method of any of aspects 24-30, wherein transmitting, to the UE, the at least one of the SRI indication or the unified TCI indication comprises transmitting both of the SRI indication and the unified TCI indication.
Aspect 32 is the method of any of aspects 24-31, wherein the SRI indication is associated with a first beam or a first PLRS and the unified TCI indication is associated with a second beam or a second PLRS.
Aspect 33 is the method of any of aspects 24-32, wherein the SRI indication and the unified TCI indication are both associated with a PLRS indication.
Aspect 34 is the method of any of aspects 24-33, wherein the SRI indication is associated with an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
Aspect 35 is the method of any of aspects 24-34, wherein the uplink channel is a PUSCH or a PUCCH.
Aspect 36 is the method of any of aspects 24-35, wherein the indication of the configuration is transmitted via DCI, a MAC-CE, or RRC signaling.
Aspect 37 is the method of any of aspects 24-36, wherein the indication of the UE capability is a report of the UE capability.
Aspect 37 is an apparatus for wireless communication including at least one processor coupled to a memory and configured to implement a method as in any of aspects 1 to 23.
Aspect 38 is an apparatus for wireless communication including at least one processor coupled to a memory and configured to implement a method as in any of aspects 24 to 37.
Aspect 39 is an apparatus for wireless communication including means for implementing a method as in any of aspects 1 to 23.
Aspect 40 is an apparatus for wireless communication including means for implementing a method as in any of aspects 24 to 37.
Aspect 41 is a computer-readable medium storing computer executable code, where the code when executed by a processor causes the processor to implement a method as in any of aspects 1 to 23.
Aspect 42 is a computer-readable medium storing computer executable code, where the code when executed by a processor causes the processor to implement a method as in any of aspects 24 to 37.

Claims (49)

  1. A method of wireless communication at a user equipment (UE) , comprising:
    determining a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for utilizing a beam or a pathloss reference signal (PLRS) for an uplink channel transmission;
    transmitting, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and
    receiving, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  2. The method of claim 1, wherein the indication of the UE capability indicates support of the SRI indication and non-support of the unified TCI indication.
  3. The method of claim 1, wherein the indication of the UE capability indicates non-support of the SRI indication and support of the unified TCI indication.
  4. The method of claim 1, wherein the indication of the UE capability indicates support of the SRI indication and support of the unified TCI indication.
  5. The method of claim 4, further comprising:
    enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  6. The method of claim 4, further comprising:
    transmitting, to the base station based on at least one of the SRI indication or the unified TCI indication, the uplink channel via the beam or the PLRS.
  7. The method of claim 4, further comprising:
    receiving, from the base station, at least one of the SRI indication or the unified TCI indication.
  8. The method of claim 7, wherein the at least one of the SRI indication or the unified TCI indication is received via downlink control information (DCI) or a medium access control (MAC) control element (CE) (MAC-CE) .
  9. The method of claim 7, wherein receiving the at least one of the SRI indication or the unified TCI indication comprises receiving both of the SRI indication and the unified TCI indication.
  10. The method of claim 9, wherein enabling, based on the indication of the configuration, at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission comprises prioritizing one of the SRI indication or the unified TCI indication.
  11. The method of claim 9, wherein the SRI indication is associated with a first beam or a first PLRS and the unified TCI indication is associated with a second beam or a second PLRS.
  12. The method of claim 11, wherein the SRI indication and the unified TCI indication are both associated with a PLRS indication.
  13. The method of claim 11, wherein the SRI indication is associated with an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
  14. The method of claim 13, wherein the uplink channel is codebook-based, and wherein the first PLRS associated with the SRI indication is prioritized.
  15. The method of claim 13, wherein the uplink channel is non-codebook-based, and wherein the first beam associated with the SRI indication is prioritized.
  16. The method of claim 15, wherein a most recent SRS transmission associated with the SRI indication is not updated with the first beam, and further comprising ignoring the second beam.
  17. The method of claim 9, further comprising:
    activating a unified TCI state among a pool of TCI states based on the unified TCI indication and a medium access control (MAC) control element (CE) (MAC-CE) associated with the unified TCI indication; and
    activating a PLRS based on the MAC-CE.
  18. The method of claim 17, wherein the unified TCI state is associated with a periodic downlink (DL) source reference signal (RS) as a quasi-co-located (QCL) type D RS, and wherein the PLRS is the periodic DL source RS.
  19. The method of claim 17, wherein the unified TCI state is associated with an aperiodic downlink (DL) source reference signal (RS) as a quasi-co-located (QCL) type D RS, and wherein the PLRS is the aperiodic DL source RS.
  20. The method of claim 17, wherein the unified TCI state is associated with an uplink (UL) source reference signal (RS) quasi-co-located (QCL) with a periodic DL source RS, and wherein the PLRS is the periodic DL source RS.
  21. The method of claim 1, wherein the uplink channel is a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH) .
  22. The method of claim 1, wherein the indication of the configuration is received via downlink control information (DCI) , a medium access control (MAC) control element (CE) (MAC-CE) , or radio resource control (RRC) signaling.
  23. The method of claim 1, wherein the indication of the UE capability is a report of the UE capability.
  24. A method of wireless communication at a base station, comprising:
    receiving, from a user equipment (UE) , an indication of a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for a beam or a pathloss reference signal (PLRS) for an uplink channel transmission;
    determining, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and
    transmitting, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
  25. The method of claim 24, wherein the indication of the UE capability indicates support of the SRI indication and non-support of the unified TCI indication.
  26. The method of claim 24, wherein the indication of the UE capability indicates non-support of the SRI indication and support of the unified TCI indication.
  27. The method of claim 24, wherein the indication of the UE capability indicates support of the SRI indication and support of the unified TCI indication.
  28. The method of claim 27, further comprising:
    receiving, from the UE, the uplink channel via the beam or the PLRS.
  29. The method of claim 27, further comprising:
    transmitting, to the UE, at least one of the SRI indication or the unified TCI indication.
  30. The method of claim 29, wherein the at least one of the SRI indication or the unified TCI indication is transmitted via downlink control information (DCI) or a medium access control (MAC) control element (CE) (MAC-CE) .
  31. The method of claim 29, wherein transmitting, to the UE, the at least one of the SRI indication or the unified TCI indication comprises transmitting both of the SRI indication and the unified TCI indication.
  32. The method of claim 31, wherein the SRI indication is associated with a first beam or a first PLRS and the unified TCI indication is associated with a second beam or a second PLRS.
  33. The method of claim 32, wherein the SRI indication and the unified TCI indication are both associated with a PLRS indication.
  34. The method of claim 32, wherein the SRI indication is associated with an SRS resource set with one or more previous transmissions associated with a beam different from the second beam associated with the unified TCI indication.
  35. The method of claim 24, wherein the uplink channel is a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH) .
  36. The method of claim 24, wherein the indication of the configuration is transmitted via downlink control information (DCI) , a medium access control (MAC) control element (CE) (MAC-CE) , or radio resource control (RRC) signaling.
  37. The method of claim 24, wherein the indication of the UE capability is a report of the UE capability.
  38. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    determine a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for utilizing a beam or a pathloss reference signal (PLRS) for an uplink channel transmission;
    transmit, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and
    receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  39. The apparatus for wireless communication of claim 38, wherein the at least one processor is configured to perform the method of any of claims 2-23.
  40. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for determining a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for utilizing a beam or a pathloss reference signal (PLRS) for an uplink channel transmission;
    means for transmitting, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and
    means for receiving, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  41. The apparatus for wireless communication of claim 40, further comprising means to perform the method of any of claims 2-23.
  42. A computer-readable medium storing computer executable code at a user equipment (UE) , the code when executed by a processor causes the processor to:
    determine a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for utilizing a beam or a pathloss reference signal (PLRS) for an uplink channel transmission;
    transmit, to a base station, an indication of the UE capability including support of at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and
    receive, from the base station, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for the beam or the PLRS for the uplink channel transmission.
  43. The computer-readable medium of claim 42, wherein the code when executed by the processor causes the processor to perform the method of any of claims 2-23.
  44. An apparatus for wireless communication at a base station, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive, from a user equipment (UE) , an indication of a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for a beam or a pathloss reference signal (PLRS) for an uplink channel transmission;
    determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and
    transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
  45. The apparatus for wireless communication of claim 44, wherein the at least one processor is configured to perform the method of any of claims 25-37.
  46. An apparatus for wireless communication at a base station, comprising:
    means for receiving, from a user equipment (UE) , an indication of a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for a beam or a pathloss reference signal (PLRS) for an uplink channel transmission;
    means for determining, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and
    means for transmitting, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
  47. The apparatus for wireless communication of claim 46, further comprising means to perform the method of any of claims 25-37.
  48. A computer-readable medium storing computer executable code at a base station, the code when executed by a processor causes the processor to:
    receive, from a user equipment (UE) , an indication of a UE capability including support of at least one of a sounding reference signal (SRS) resource indicator (SRI) indication or a unified transmission configuration indication (TCI) indication for a beam or a pathloss reference signal (PLRS) for an uplink channel transmission;
    determine, based on the indication of UE capability, to enable at least one of the SRI indication or the unified TCI indication for utilizing a beam or PLRS for an uplink channel transmission; and
    transmit, to the UE, an indication of a configuration for at least one of the SRI indication or the unified TCI indication for a beam or PLRS for an uplink channel transmission.
  49. The computer-readable medium of claim 48, wherein the code when executed by the processor causes the processor to perform the method of any of claims 25-37.
PCT/CN2021/081423 2021-03-18 2021-03-18 Pathloss rs and beam determination in unified tci framework WO2022193204A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081423 WO2022193204A1 (en) 2021-03-18 2021-03-18 Pathloss rs and beam determination in unified tci framework

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081423 WO2022193204A1 (en) 2021-03-18 2021-03-18 Pathloss rs and beam determination in unified tci framework

Publications (1)

Publication Number Publication Date
WO2022193204A1 true WO2022193204A1 (en) 2022-09-22

Family

ID=83321592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081423 WO2022193204A1 (en) 2021-03-18 2021-03-18 Pathloss rs and beam determination in unified tci framework

Country Status (1)

Country Link
WO (1) WO2022193204A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349867A1 (en) * 2018-05-11 2019-11-14 Lenovo (Singapore) Pte. Ltd. Method and apparatus for transmitting an uplink transmission based on a pathloss estimate
CN111954249A (en) * 2020-08-11 2020-11-17 中兴通讯股份有限公司 Path loss determination method, node and storage medium
WO2020253825A1 (en) * 2019-06-21 2020-12-24 中国移动通信有限公司研究院 Uplink transmission indication method and apparatus, and communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349867A1 (en) * 2018-05-11 2019-11-14 Lenovo (Singapore) Pte. Ltd. Method and apparatus for transmitting an uplink transmission based on a pathloss estimate
WO2020253825A1 (en) * 2019-06-21 2020-12-24 中国移动通信有限公司研究院 Uplink transmission indication method and apparatus, and communication device
CN111954249A (en) * 2020-08-11 2020-11-17 中兴通讯股份有限公司 Path loss determination method, node and storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining issues on multi-beam enhancements", 3GPP DRAFT; R1-1912058, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051819932 *
OPPO: "Enhancements on Multi-Beam Operation", 3GPP DRAFT; R1-2100118, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970240 *

Similar Documents

Publication Publication Date Title
US11452089B2 (en) Signaling to activate uplink trigger states
US11805451B2 (en) Fast SCell activation
US11558101B2 (en) Methods and apparatus to facilitate symbol extension and windowing for beam switching
US11425721B2 (en) Methods and apparatus to facilitate duplex mode per uplink control channel resource
US11570764B2 (en) FD mode dependent UCI multiplexing
WO2022015538A1 (en) Apparatus and method for beam-specific parameters
US11616558B2 (en) Procedural delays and scheduling restriction based on component carrier groups
WO2022193204A1 (en) Pathloss rs and beam determination in unified tci framework
US12016006B2 (en) Beam report triggers autonomous beam hopping
US11778646B2 (en) Full duplex TCI indication under unified TCI framework
US11937228B2 (en) Fast BWP switch based on UE feedback
US11825486B2 (en) Semi-persistent configuration of SPS/CG parameter
US12034668B2 (en) Signaling for uplink beam activation
US11632796B2 (en) Uplink cancelation-assisted listen-before-talk for full-duplex base station
WO2022051936A1 (en) Methods and apparatus for activation of joint dl/ul tci states
US20240224192A1 (en) Power control parameter in unified tci
US20230035960A1 (en) Multi-configuration pucch transmission linked to l1-report or other csi feedback
WO2023024065A1 (en) Multi-pusch repetitions with joint channel estimation
US20240154730A1 (en) Sps pucch harq ack/nack configuration
WO2022051942A1 (en) Enablement relation rule for beam indication schemes
WO2023272709A1 (en) Power control parameter in unified tci
WO2023077506A1 (en) Power headroom report for multi-pusch repetitions
WO2022165738A1 (en) Unified transmission configuration indication for nondedicated channels
WO2022213239A1 (en) Dummy indications in dci with unified tci indication
US20230077982A1 (en) Faster ue beam refinement in multi-cell scenario

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930797

Country of ref document: EP

Kind code of ref document: A1