WO2021248404A1 - Method and apparatus of multi-cycle wireless radar sensing - Google Patents

Method and apparatus of multi-cycle wireless radar sensing Download PDF

Info

Publication number
WO2021248404A1
WO2021248404A1 PCT/CN2020/095569 CN2020095569W WO2021248404A1 WO 2021248404 A1 WO2021248404 A1 WO 2021248404A1 CN 2020095569 W CN2020095569 W CN 2020095569W WO 2021248404 A1 WO2021248404 A1 WO 2021248404A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
periodicity
message
base station
period
Prior art date
Application number
PCT/CN2020/095569
Other languages
French (fr)
Inventor
Jing Dai
Yuwei REN
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/095569 priority Critical patent/WO2021248404A1/en
Publication of WO2021248404A1 publication Critical patent/WO2021248404A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to a user equipment (UE) and base station for a multi-cycle wireless radar sensing in 5G.
  • UE user equipment
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • the apparatus may be a UE and/or a base station.
  • the base station may transmit a wireless sensing instruction to the UE to set a sensing period and a first sensing periodicity for the UE to perform a wireless radar sensing during the sensing period.
  • the UE may perform the wireless radar sensing during the sensing period at the first sensing periodicity based on the instruction received from the base station.
  • the UE and the base station may be configured to not perform a cellular communication during the sensing period.
  • the UE may determine to enable a second sensing periodicity, the second sensing periodicity being smaller than the first sensing periodicity.
  • the UE may transmit a short-periodicity sensing request (SSR) message to the base station.
  • the base station may transmit an acknowledgement (ACK) message to the UE based on the SSR message.
  • the UE may receive the ACK message from the base station and perform the wireless radar sensing during the sensing period at the second sensing periodicity.
  • the first sensing periodicity is an integer multiples of the second sensing periodicity.
  • the UE may transmit an assistance message to the base station, the assistance message indicating at least one of the sensing period, a radio frequency (RF) retuning gap, a sensing periodicity or a bandwidth, a waveform, or a power of a radar signal.
  • RF radio frequency
  • the UE and the base station may dynamically disable the second sensing periodicity.
  • the base station may determine to disable the second sensing periodicity and transmit a cancel indication to the UE instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity.
  • the UE may receive the cancel indication from the base station and revert to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  • the UE may also determine to disable the second sensing periodicity and transmit a short-periodicity sensing terminate (SST) message to the base station requesting to disable the second sensing periodicity.
  • the base station may receive the SST message from the UE and transmit the ACK message in response to the SST message received from the UE.
  • the UE may receive the ACK message from the base station and revert to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  • SST short-periodicity sensing terminate
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a call flow diagram of the wireless communication.
  • FIG. 5 is a non-standard timing diagram that is unique to this application.
  • FIG. 6 is a flowchart of a method of wireless communication.
  • FIG. 7 is a flowchart of a method of wireless communication.
  • FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • FIG. 9 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum.
  • EHF Extremely high frequency
  • EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • Frequency range bands include frequency range 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency range 2 (FR2) , which includes frequency bands above 24.250 GHz.
  • mmW /near mmW radio frequency (RF) band e.g., 3 GHz –300 GHz
  • Base stations /UEs may operate within one or more frequency range bands.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182′′ .
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 and the base station 180 may be configured to manage a multi-cycle wireless radar sensing in 5G (198) .
  • 5G NR the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe.
  • the 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
  • the UE may provide environment imaging through various implementations, such as radar, lidar, camera imaging, etc.
  • the UE employing radar for the environment imaging may use a mmWave signal for the radar signal.
  • the mmWave signal refers to a radio signal with an extremely high frequency.
  • the mmWave signal may provide high bandwidth and large aperture to extract accurate range /velocity /angle information for the environment imaging.
  • the mmWave radar may also have a compact form factor, which makes such radar more suitable for the mobile devices.
  • the radar may also use sub-6GHz bands on a mobile device as well.
  • Short range radar is becoming popular in recent applications for handheld devices.
  • smart phones or smart watches may use a dedicated radar sensor to perform environment imaging to determine gesture classifications.
  • in-car-based control may be implemented using a short range radar device.
  • the radar devices may include one or more modules.
  • a waveform module may include sensing chips to send the radar signals with pre-defined waveform, e.g. a frequency-modulated continuous-wave (FMCW) or a pulse.
  • a radar signal processing (RSP) module may correlate reflected (Rx) signals with transmitted (Tx) signals to get the range, velocity or Doppler /angle information of a detected action, e.g., a hand gesture.
  • Rx reflected
  • Tx transmitted
  • a machine learning module may perform classification, regression, and include an AI agent for determining certain actions.
  • the wireless short range radar may use the cellular communication frequency bands of the UE.
  • 5G network may operate in frequency range bands including the FR1 and the FR2 bands.
  • the 5G bands have larger bandwidth than earlier cellular systems, especially for the FR2 bands.
  • the cell phone or the smart watch capable of supporting a cellular communication e.g. 5G NR may already have antennas and RF-chains for the supported bands.
  • the on-device short range radar may share the RF modules with the UE’s cellular system transceiver.
  • the UE (cell phone /smart watch) may benefit from a lower cost since the short range radar may not need to include additional front-end modules.
  • the UE implementing the wireless short range radar using the cellular frequency bands may not communicate with a base station during the wireless sensing period of the radar.
  • the UE may dynamically change the wireless sensing time as required by an application running on the UE and/or user operations (e.g. use of a hand gesture to control the UE being used by the user) .
  • the base station may not be aware of the UE’s dynamic operation of the wireless radar sensing. As such, a transmission of a signal from the base station to the UE while the UE is performing radar sensing in the 5G band signal may fail. Accordingly, the base station may simply conclude that there are transmission failures in the cellular communication between the BS and the UE because the base station is unaware of the UE’s wireless radar sensing operation.
  • the base station and the UE may be configured to communicate with each other to negotiate a sensing period for performing the wireless radar sensing operation by the UE.
  • FIG. 4 is a call flow diagram 400 of the wireless communication between the UE 402 and the base station 404.
  • the base station 404 may determine to set a sensing period for the UE 402 to perform a wireless radar sensing at a first sensing periodicity.
  • the base station 404 may transmit the wireless sensing instruction 408 to the UE 402 instructing the UE 402 to set the sensing period for performing the wireless radar sensing by the UE 402 at the first sensing periodicity.
  • the determination to set the sensing period for the UE 402 to perform the wireless radar sensing at the first sensing periodicity may be transmitted in a radio resource control (RRC) message, in response to identifying that the UE 402 during establishment of a connection, e.g., an attachment procedure, with the base station 404 is equipped with the wireless radar sensing capabilities.
  • RRC radio resource control
  • the sensing period may be referred to as a cellular transmission interruption duration.
  • the UE 402 and the base station 404 may be configured to not perform a cellular communication during the sensing period, since the UE 402 may not be able to communicate with the base station 404 when the UE 402 performs the wireless radar sensing during the sensing period.
  • the UE 402 may utilize components that are shared between cellular communications with the base station and the radar sensing such that the UE cannot do both simultaneously.
  • the UE 402 may receive the wireless sensing instruction 408 from the base station 404 to provide for the wireless radar sensing during the sensing period at the first sensing periodicity based on the wireless sensing instruction 408 received from the base station 404.
  • the UE 402 may perform the wireless radar sensing at the first sensing periodicity.
  • the wireless radar sensing at the first sensing periodicity may be referred to as a low-resolution sensing.
  • the UE 402 may perform the wireless radar sensing at the first sensing periodicity to extract information for the environment imaging.
  • the first sensing periodicity may be set at a long sensing periodicity, e.g., when the wireless radar sensing performed by the UE 402 extracts information or detects actions that require a relatively low sensing resolution.
  • low sensing resolution may refer to less frequent sensing periods.
  • the UE 402 may detect a distance of an object, a person, a face or a hand in the vicinity of the UE 402 by performing the wireless radar sensing at the first sensing periodicity.
  • the UE 402 may also detect whether there is an operation by user’s hand gesture/movement.
  • the UE 402 may determine to enable a second sensing periodicity, which has a smaller period than the first sensing periodicity (that is, the sensing occurs more often) . For example, when the UE 402 detects an operation event through the low-resolution sensing, the UE 402 may determine to activate the second sensing periodicity for the wireless radar sensing.
  • the wireless radar sensing at the second sensing periodicity may be referred to as a high-resolution and low-latency sensing.
  • the first sensing periodicity may be an integer multiple of the second sensing periodicity. Enabling the second sensing periodicity with a smaller period than the first sensing periodicity may enable the UE 402 to perform the wireless radar sensing more often. Therefore, enabling the second sensing periodicity may increase the sensing resolution of the UE 402. Accordingly, the UE 402 may determine to enable the second sensing periodicity to extract information or detect actions that require a higher resolution than that provided by the first sensing periodicity. For example, the UE 402 may determine to enable the second sensing periodicity to detect the specific actions of the object, the person, the face or the hand in the vicinity of the UE 402. The UE 402 may also detect the pattern of the hand gesture /movement.
  • the UE 402 may transmit a short-periodicity sensing request (SSR) message 414 to the base station 404.
  • the SSR message 414 may indicate the second sensing periodicity.
  • the SSR message may be transmitted dynamically through a physical uplink control channel (PUCCH) or a media access control (MAC) control element (CE) (MAC-CE) , or semi-statically through a radio resource control (RRC) message.
  • PUCCH physical uplink control channel
  • MAC-CE media access control element
  • RRC radio resource control
  • the base station 404 may receive the SSR message 414, and upon successful reception of the SSR message 414, may transmit an acknowledgement (ACK) message 416 to the UE 402.
  • ACK acknowledgement
  • the base station 404 receiving the SSR message 414 may be configured to not perform a cellular communication with the UE 402 during the sensing period within the second sensing periodicity.
  • the UE 402 may receive the ACK message from the base station 404.
  • the UE 402 may perform the wireless radar sensing at the second sensing periodicity.
  • the period of the second sensing periodicity may be set such that the period of the second sensing periodicity is shorter that the period of the first sensing periodicity, and the wireless radar sensing performed by the UE 402 at the second sensing periodicity may extract information or detect actions that requires a higher resolution.
  • the UE 402 may transmit an assistance message 422 to the base station 404 for a wireless sensing configuration.
  • the assistance message 422 may include the radar sensing parameters supported by the UE 402.
  • the assistance message 422 may include the sensing period, an RF retuning gap length, the sensing periodicity, or a bandwidth, a waveform, or a power of a radar signal.
  • the UE 402 and the base station 404 may dynamically terminate sensing at the second sensing periodicity. Accordingly, when the high sensing resolution is no longer required, disabling the second sensing periodicity may reduce the power consumption, increase the power efficiency, and also preserve the network resource by reducing the number of the interruption in the cellular communication.
  • the base station determines to terminate sensing at the second sensing periodicity.
  • the base station 404 then may transmit a cancel indication 432 to the UE 402 instructing the UE 402 to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity.
  • the UE 402 may revert to performing the wireless radar sensing during the sensing period at the first sensing periodicity in response to receiving the cancel indication 432 from the base station 404.
  • the UE 402 may also terminate or disable the second sensing periodicity.
  • the UE 402 may determine to terminate the second sensing periodicity.
  • the UE 402 may transmit a short-periodicity sensing terminate (SST) message 442 to the base station 404 requesting the second sensing periodicity be disabled.
  • the SST message 442 may be transmitted dynamically through the PUCCH or the MAC CE, or semi-statically through the RRC message.
  • the base station 404 may receive the SST message 442 from the UE 402 and transmit the ACK message 444 in response to the SST message 442 received from the UE 402.
  • the UE 402 may receive the ACK message 444 from the base station 404.
  • the UE 402 may revert to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  • FIG. 5 depicts timing diagrams utilized by certain aspects.
  • a first timing diagram 510 illustrates the wireless radar sensing during the sensing period 512 at a first sensing periodicity.
  • the first timing diagram 510 shows that the sensing period 512 starts at an offset from the start of each of the first sensing periodicities.
  • the offset may be set by the base station (e.g., the base station 404) .
  • the base station may set the offset differently for different UEs based on various factors, such as the resource of the 5G network. For example, the base station may arrange different offsets to different UEs to improve the resource efficiency of the base station.
  • a second timing diagram 520 illustrates the wireless radar sensing during the sensing period 522 at a second sensing periodicity.
  • the first sensing periodicity may be an integer multiple of the second sensing periodicity.
  • the first and second timing diagrams 510 and 520 illustrates that the first sensing periodicity is a multiple of three of the second sensing periodicity.
  • the second timing diagram 520 shows that the sensing period 522 starts at an offset from the start of each of the second sensing periodicities.
  • the offset of the second timing diagram 520 may be set by the base station.
  • the base station may set the offset of the first and the second timing diagram 510 and 520 the same.
  • the UE may scan more frequently when employing the shorter sensing periodicity of 520 vs the longer first sensing periodicity of timing diagram 510.
  • the UE (e.g., the UE 402) may be semi-statically instructed to perform the wireless radar sensing at the first sensing periodicity, and the third timing diagram 530 illustrates the dynamic enabling and disabling of the second sensing periodicity.
  • the UE may be initially configured to perform the wireless radar during the sensing period 532 at the first sensing periodicity.
  • the UE may request the second sensing periodicity by transmitting the SSR message 533 to the base station.
  • the SSR message 533 may be transmitted through the PUCCH or the MAC-CE when the wireless radar sensing is dynamically configured, or through the RRC message when the wireless radar sensing is semi-statically configured.
  • the SSR message may contain the information on which periodicity the UE is requesting.
  • the base station may transmit the ACK message 534 confirming the reception of the SSR message 533.
  • the UE may receive the ACK message 534 from the base station, and perform the wireless radar sensing during the sensing period 536 at the second sensing periodicity.
  • the UE may inform base station that the second sensing periodicity is to be terminated or disabled by sending a SST message 537 to the base station.
  • the SST message 537 may contain information on the fallback periodicity requested by the UE.
  • the SST message 537 may be transmitted dynamically through the PUCCH or the MAC-CE, or semi-statically via a RRC message.
  • the base station may transmit the ACK message 538 confirming the reception of the SST message 537.
  • the UE may receive the ACK message 538 from the base station, and disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity. Accordingly, the UE may perform the wireless radar sensing during the sensing period 539 at the first sensing periodicity.
  • FIG. 5 illustrates two periodicities (the first sensing periodicity and the second sensing periodicity) .
  • the embodiments of the current disclosure are not necessarily limited thereto, and the number of periodicities may be equal to or greater than two.
  • the timing diagrams 540 and 550 illustrates two examples for sensing period and RF retuning gap according to certain aspects.
  • the timing diagram may include a first RF retuning gap before the wireless sensing and a second RF retuning gap after the wireless sensing, because the sensing signal generally has much higher bandwidth than the active DL /UL BWP, and the UE may need the RF retuning gap to retune the RF chain when the RF chain is used for both cellular communication and radar sensing. Accordingly, The UE and the base station may not perform the wireless radar nor the cellular communication during the RF retuning gap.
  • the RF retuning gaps 542 may be configured outside the sensing period. In other words, the RF retuning gaps 542 are configured before and after the sensing period. Therefore, the UE and the base station may be configured to not perform the cellular communication during the RF retuning gaps 542 as illustrated in the time diagram 540.
  • the RF retuning gaps 552 may be configured within the sensing period.
  • the RF retuning gaps 552 are configured to occur within the sensing period, at the start of and at the end of the sensing period.
  • the sensing period may also include a sensing duration 554, during which the UE may perform the wireless radar sensing. Therefore, the UE may be configured to not perform the wireless radar sensing during the RF retuning gaps 552, and perform the wireless sensing during the sensing duration 554 configured between the RF retuning gaps 552 within the sensing period.
  • FIG. 6 is a flowchart 600 of a method of wireless communication. The method may be performed by a UE (e.g., the UE 104; the apparatus 802) .
  • a UE e.g., the UE 104; the apparatus 802 .
  • the UE may receive the wireless sensing instruction (408) from the base station.
  • 602 may be performed by a radar sensing message managing component 844.
  • the radar sensing message managing component 844 may decode the wireless sensing instruction (408) to obtain parameters including a sensing period or a offset.
  • the UE may perform the wireless radar sensing at the first sensing periodicity (410) .
  • 604 may be performed by a wireless radar sensing component 840.
  • the wireless radar sensing component 840 may perform the wireless radar sensing based on the parameters obtained by the radar sensing message managing component 844.
  • the UE may determine to enable the second sensing periodicity (412) .
  • 606 may be performed by a sensing periodicity managing component 842.
  • the sensing periodicity managing component 842 may determine to enable the second sensing periodicity based on determining that a higher sensing resolution is required.
  • the UE may transmit the SSR message (414) to the base station to request the second sensing periodicity.
  • 608 may be performed by the radar sensing message managing component 844.
  • the UE may receive the ACK response (416) from the base station.
  • 6010 may be performed by the radar sensing message managing component 844.
  • the UE may perform the wireless radar sensing at the second sensing periodicity (420) .
  • 612 may be performed by the wireless radar sensing component 840.
  • the wireless radar sensing component 840 may set the sensing periodicity to the second sensing periodicity. That is the UE may is configured to scan at the second periodicity.
  • the UE may transmit the assistance message (422) to the base station.
  • 614 may be performed by the radar sensing message managing component 844.
  • the UE may receive the cancel indication (432) from the base station.
  • 616 may be performed by the radar sensing message managing component 844.
  • the UE may determine to disable the second sensing periodicity (440) .
  • 618 may be performed by the sensing periodicity managing component 842.
  • the sensing periodicity managing component 842 may determine to disable the second sensing periodicity in response to determining that the high sensing resolution is no longer required.
  • the UE may transmit the SST message (442) to the base station.
  • 620 may be performed by the radar sensing message managing component 844.
  • the UE may receive the ACK response (444) from the base station.
  • 622 may be performed by the radar sensing message managing component 844.
  • the UE may revert to the first sensing periodicity (434/446) .
  • 624 may be performed by the wireless radar sensing component 840.
  • FIG. 7 is a flowchart 700 of a method of wireless communication.
  • the method may be performed by a base station (e.g., the base station 102/180/404; the apparatus 902.
  • the base station may set the sensing period at the first sensing periodicity for the UE (406) .
  • 702 may be performed by a sensing periodicity managing component 940.
  • the sensing periodicity managing component 940 may receive information of the UE’s capabilities and permit the first sensing periodicity as the initial configuration to the UE for the wireless radar sensing.
  • the base station may transmit the wireless sensing instruction (408) to the UE.
  • 704 may be performed by a radar sensing message managing component 942 and transmit the wireless sensing instruction to the UE.
  • the base station may receive the SSR message (414) from the UE.
  • 706 may be performed by the radar sensing message managing component 942.
  • the radar sensing message managing component 942 may receive the SSR message and configure the base station to not perform the cellular communication with the UE during the sensing period at the second sensing periodicity.
  • the base station may transmit the ACK response (416) to the UE.
  • 708 may be performed by the radar sensing message managing component 942.
  • the base station may receive the assistance message (422) from the UE.
  • 710 may be performed by the radar sensing message managing component 942.
  • the base station may use the parameters extracted from the assistance message in generating the wireless sensing instruction or transmitting cancel indication to the UE.
  • the base station may determine to disable the second sensing periodicity of the UE (430) .
  • 712 may be performed by the sensing periodicity managing component 940.
  • the base station may transmit the cancel indication (432) to the UE.
  • 714 may be performed by the radar sensing message managing component 942.
  • the base station may receive the SST message (442) from the UE.
  • 716 may be performed by the radar sensing message managing component 942.
  • the radar sensing message managing component 942 may receive the SST message and configure the base station to not perform the cellular communication with the UE during the sensing period at the first sensing periodicity.
  • the base station may transmit the ACK response (444) to the UE.
  • 718 may be performed by the radar sensing message managing component 942.
  • FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802.
  • the apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818.
  • the cellular baseband processor 804 communicates through the cellular RF transceiver 822 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 804 may include a computer-readable medium /memory.
  • the cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software.
  • the cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834.
  • the communication manager 832 includes the one or more illustrated components.
  • the components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 804.
  • the cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 802.
  • the communication manager 832 includes a wireless radar sensing component 840 that is configured to perform the wireless radar sensing at the first sensing periodicity or the second sensing periodicity, and revert to the first sensing periodicity from the second sensing periodicity, e.g., as described in connection with 604, 612, and 624.
  • the communication manager 832 further includes a sensing periodicity managing component 842 that is configured to determine to enable the second sensing periodicity, and determine to disable the second sensing periodicity, e.g., as described in connection with 606 and 618.
  • the communication manager 832 further includes a radar sensing message managing component 844 that is configured to receive the wireless sensing instruction from the base station, transmit the SSR message, the SST message, or the assistance message to the base station to request the second sensing periodicity, receive the ACK response or the cancel indication from the base station, e.g., as described in connection with 602, 608, 610, 614, 616, 620, and 622.
  • the components 840, 842, and 844 may be configured to communicate with each other.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 6. As such, each block in the aforementioned flowcharts of FIGs. 4 and 6 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 802 includes means for performing a wireless radar sensing during a sensing period at a first sensing periodicity, means for enabling a second sensing periodicity for the sensing period, means for performing the wireless radar sensing during the sensing period at the second sensing periodicity, means for enabling the first sensing periodicity for the sensing period based on the RRC message, means for transmitting the SST message to the base station, means for receiving the ACK message from the base station, means for reverting to performing the wireless radar sensing during the sensing period at the first sensing periodicity, means for transmitting an assistance message to the base station, means for receiving a cancel indication from the base station instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity, and means for reverting to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means.
  • the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902.
  • the apparatus 902 is a BS and includes a baseband unit 904.
  • the baseband unit 904 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 904 may include a computer-readable medium /memory.
  • the baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 904 when executing software.
  • the baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934.
  • the communication manager 932 includes the one or more illustrated components.
  • the components within the communication manager 932 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 904.
  • the baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 932 includes a sensing periodicity managing component 940 that is configured to set the sensing period at the first sensing periodicity for the UE and disable the second sensing periodicity for the UE, e.g., as described in connection with 702 and 712.
  • the communication manager 932 further includes a radar sensing message managing component 942 that is configured to transmit the wireless sensing instruction, the ACK response, and the cancel indication to the UE and receive the SSR message, the assistance message, and the SST message from the UE, e.g., as described in connection with 704, 706, 708, 710, 714, 716, and 718.
  • the components 940 and the 942 may be configured to communicate with each other.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 7. As such, each block in the aforementioned flowcharts of FIGs. 4 and 7 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 902 includes means for transmitting the instruction to the UE setting the sensing period for the UE, means for enabling UE with the second sensing periodicity, means for receiving the SST message from the UE, means for transmitting the ACK message in response to the SST message, means for determining to terminate the second sensing periodicity for the sensing period, and means for transmitting the cancel indication to the UE instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means.
  • the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • a UE and/or a base station may provide wireless radar sensing in 5G with multi-cycle configuration.
  • the base station may transmit a wireless sensing instruction to the UE to set a sensing period and a first sensing periodicity for the UE to perform a wireless radar sensing during the sensing period.
  • the UE may perform the wireless radar sensing during the sensing period at the first sensing periodicity.
  • the UE and the base station may be configured to not perform cellular communication during the sensing period. Accordingly, the UE and the base station may not suffer from unintended transmission failures from the wireless radar sensing by the UE.
  • the first sensing periodicity may be the long periodicity and the second sensing periodicity may be the short periodicity, which can be dynamic enabled and/or disabled.
  • the first sensing periodicity may be configured for the low-resolution sensing for sensing an operation (e.g. to detect whether there is an operation by user’s hand gesture/movement) .
  • the second sensing periodicity may be activated for the high-resolution and low-latency sensing (e.g. to detect the pattern of the hand gesture /movement) .
  • the UE may determine to enable a second sensing periodicity smaller than the first sensing periodicity.
  • the UE may transmit an SSR to the base station to request enabling the second sensing periodicity.
  • the UE may also transmit an SST to the base station to request disabling the second sensing periodicity.
  • the UE may dynamically transition between the first and the second sensing periodicities and manage the sensing resolution. Also, since the transition is dynamically requested to the base station, the base station and the UE may not suffer from transmission failure from switching the sensing periodicity by the UE.
  • the base station may also instruct the UE to disable the second sensing periodicity when necessary.
  • the UE and the base station may reduce the power consumption, increase the power efficiency, and also preserve the network resource by reducing the number of interruption in the cellular communication.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The apparatus of wireless communication is a UE and a base station in 5G. The base station may instruct the UE to set a sensing period at a first sensing periodicity and the UE may perform a wireless radar sensing during the sensing period at the first sensing periodicity. The base station and the UE may be configured to not perform a cellular communication during the sensing period. The UE may send a short-periodicity sensing request message to the base station and set the sensing period at a second sensing periodicity smaller than the first sensing periodicity. To disable the second sensing periodicity, the UE may transmit a short-periodicity sensing terminate message to the base station or the base station may transmit a cancel indication to the UE.

Description

METHOD AND APPARATUS OF MULTI-CYCLE WIRELESS RADAR SENSING Technical Field
The present disclosure relates generally to communication systems, and more particularly, to a user equipment (UE) and base station for a multi-cycle wireless radar sensing in 5G.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE and/or a base station. The base station may transmit a wireless sensing instruction to the UE to set a sensing period and a first sensing periodicity for the UE to perform a wireless radar sensing during the sensing period. The UE may perform the wireless radar sensing during the sensing period at the first sensing periodicity based on the instruction received from the base station. The UE and the base station may be configured to not perform a cellular communication during the sensing period. The UE may determine to enable a second sensing periodicity, the second sensing periodicity being smaller than the first sensing periodicity. To enable the second sensing periodicity, the UE may transmit a short-periodicity sensing request (SSR) message to the base station. The base station may transmit an acknowledgement (ACK) message to the UE based on the SSR message. The UE may receive the ACK message from the base station and perform the wireless radar sensing during the sensing period at the second sensing periodicity. The first sensing periodicity is an integer multiples of the second sensing periodicity. The UE may transmit an assistance message to the base station, the assistance message indicating at least one of the sensing period, a radio frequency (RF) retuning gap, a sensing periodicity or a bandwidth, a waveform, or a power of a radar signal.
The UE and the base station may dynamically disable the second sensing periodicity. The base station may determine to disable the second sensing periodicity and transmit a cancel indication to the UE instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity. The UE may receive the cancel indication from the base station and revert to performing the wireless radar sensing during the sensing period at the first sensing periodicity. The UE may also determine to disable the  second sensing periodicity and transmit a short-periodicity sensing terminate (SST) message to the base station requesting to disable the second sensing periodicity. The base station may receive the SST message from the UE and transmit the ACK message in response to the SST message received from the UE. The UE may receive the ACK message from the base station and revert to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a call flow diagram of the wireless communication.
FIG. 5 is a non-standard timing diagram that is unique to this application.
FIG. 6 is a flowchart of a method of wireless communication.
FIG. 7 is a flowchart of a method of wireless communication.
FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
FIG. 9 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented  in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2  interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for  example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Frequency range bands include frequency range 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency range 2 (FR2) , which includes frequency bands above 24.250 GHz. Communications using the mmW /near mmW radio frequency (RF) band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range. Base stations /UEs may operate within one or more frequency range bands. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182″ . The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication  with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 and the base station 180 may be configured to manage a multi-cycle wireless radar sensing in 5G (198) . Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe. FIG. 2C is a diagram 250 illustrating an  example of a second subframe within a 5G/NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe. The 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G/NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ,  there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell  identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access  control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via  a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the  transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1. At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
The UE may provide environment imaging through various implementations, such as radar, lidar, camera imaging, etc. The UE employing radar for the environment imaging may use a mmWave signal for the radar signal. The mmWave  signal refers to a radio signal with an extremely high frequency. The mmWave signal may provide high bandwidth and large aperture to extract accurate range /velocity /angle information for the environment imaging. The mmWave radar may also have a compact form factor, which makes such radar more suitable for the mobile devices. The radar may also use sub-6GHz bands on a mobile device as well.
Short range radar is becoming popular in recent applications for handheld devices. For example, smart phones or smart watches may use a dedicated radar sensor to perform environment imaging to determine gesture classifications. Also, in-car-based control may be implemented using a short range radar device.
The radar devices may include one or more modules. First, a waveform module may include sensing chips to send the radar signals with pre-defined waveform, e.g. a frequency-modulated continuous-wave (FMCW) or a pulse. A radar signal processing (RSP) module may correlate reflected (Rx) signals with transmitted (Tx) signals to get the range, velocity or Doppler /angle information of a detected action, e.g., a hand gesture.. A machine learning module may perform classification, regression, and include an AI agent for determining certain actions.
Accordingly, the wireless short range radar may use the cellular communication frequency bands of the UE. As proffered, 5G network may operate in frequency range bands including the FR1 and the FR2 bands. The 5G bands have larger bandwidth than earlier cellular systems, especially for the FR2 bands. The cell phone or the smart watch capable of supporting a cellular communication e.g. 5G NR, may already have antennas and RF-chains for the supported bands. Accordingly, the on-device short range radar may share the RF modules with the UE’s cellular system transceiver. the UE (cell phone /smart watch) may benefit from a lower cost since the short range radar may not need to include additional front-end modules.
The UE implementing the wireless short range radar using the cellular frequency bands may not communicate with a base station during the wireless sensing period of the radar. The UE may dynamically change the wireless sensing time as required by an application running on the UE and/or user operations (e.g. use of a hand gesture to control the UE being used by the user) . However, the base station may not be aware of the UE’s dynamic operation of the wireless radar sensing. As such, a transmission of a signal from the base station to the UE while the UE is performing radar sensing in the 5G band signal may fail. Accordingly, the base  station may simply conclude that there are transmission failures in the cellular communication between the BS and the UE because the base station is unaware of the UE’s wireless radar sensing operation. In order to reduce cellular transmission failures, the base station and the UE may be configured to communicate with each other to negotiate a sensing period for performing the wireless radar sensing operation by the UE.
FIG. 4 is a call flow diagram 400 of the wireless communication between the UE 402 and the base station 404. At 406, the base station 404 may determine to set a sensing period for the UE 402 to perform a wireless radar sensing at a first sensing periodicity. The base station 404 may transmit the wireless sensing instruction 408 to the UE 402 instructing the UE 402 to set the sensing period for performing the wireless radar sensing by the UE 402 at the first sensing periodicity. For example, the determination to set the sensing period for the UE 402 to perform the wireless radar sensing at the first sensing periodicity may be transmitted in a radio resource control (RRC) message, in response to identifying that the UE 402 during establishment of a connection, e.g., an attachment procedure, with the base station 404 is equipped with the wireless radar sensing capabilities.
The sensing period may be referred to as a cellular transmission interruption duration. In other words, the UE 402 and the base station 404 may be configured to not perform a cellular communication during the sensing period, since the UE 402 may not be able to communicate with the base station 404 when the UE 402 performs the wireless radar sensing during the sensing period. For example the UE 402 may utilize components that are shared between cellular communications with the base station and the radar sensing such that the UE cannot do both simultaneously.
The UE 402 may receive the wireless sensing instruction 408 from the base station 404 to provide for the wireless radar sensing during the sensing period at the first sensing periodicity based on the wireless sensing instruction 408 received from the base station 404.
At 410, the UE 402 may perform the wireless radar sensing at the first sensing periodicity. The wireless radar sensing at the first sensing periodicity may be referred to as a low-resolution sensing. The UE 402 may perform the wireless radar sensing at the first sensing periodicity to extract information for the environment imaging. The first sensing periodicity may be set at a long sensing periodicity, e.g.,  when the wireless radar sensing performed by the UE 402 extracts information or detects actions that require a relatively low sensing resolution. Here, low sensing resolution may refer to less frequent sensing periods. For example, the UE 402 may detect a distance of an object, a person, a face or a hand in the vicinity of the UE 402 by performing the wireless radar sensing at the first sensing periodicity. The UE 402 may also detect whether there is an operation by user’s hand gesture/movement.
At 412, the UE 402 may determine to enable a second sensing periodicity, which has a smaller period than the first sensing periodicity (that is, the sensing occurs more often) . For example, when the UE 402 detects an operation event through the low-resolution sensing, the UE 402 may determine to activate the second sensing periodicity for the wireless radar sensing. The wireless radar sensing at the second sensing periodicity may be referred to as a high-resolution and low-latency sensing.
According to aspects of the disclosure, the first sensing periodicity may be an integer multiple of the second sensing periodicity. Enabling the second sensing periodicity with a smaller period than the first sensing periodicity may enable the UE 402 to perform the wireless radar sensing more often. Therefore, enabling the second sensing periodicity may increase the sensing resolution of the UE 402. Accordingly, the UE 402 may determine to enable the second sensing periodicity to extract information or detect actions that require a higher resolution than that provided by the first sensing periodicity. For example, the UE 402 may determine to enable the second sensing periodicity to detect the specific actions of the object, the person, the face or the hand in the vicinity of the UE 402. The UE 402 may also detect the pattern of the hand gesture /movement.
The UE 402 may transmit a short-periodicity sensing request (SSR) message 414 to the base station 404. The SSR message 414 may indicate the second sensing periodicity. The SSR message may be transmitted dynamically through a physical uplink control channel (PUCCH) or a media access control (MAC) control element (CE) (MAC-CE) , or semi-statically through a radio resource control (RRC) message.
The base station 404 may receive the SSR message 414, and upon successful reception of the SSR message 414, may transmit an acknowledgement (ACK) message 416 to the UE 402. The base station 404 receiving the SSR message 414 may be configured to not perform a cellular communication with the UE 402 during the sensing period within the second sensing periodicity.
The UE 402 may receive the ACK message from the base station 404. At 420, the UE 402 may perform the wireless radar sensing at the second sensing periodicity. The period of the second sensing periodicity may be set such that the period of the second sensing periodicity is shorter that the period of the first sensing periodicity, and the wireless radar sensing performed by the UE 402 at the second sensing periodicity may extract information or detect actions that requires a higher resolution.
The UE 402 may transmit an assistance message 422 to the base station 404 for a wireless sensing configuration. The assistance message 422 may include the radar sensing parameters supported by the UE 402. For example, the assistance message 422 may include the sensing period, an RF retuning gap length, the sensing periodicity, or a bandwidth, a waveform, or a power of a radar signal.
The UE 402 and the base station 404 may dynamically terminate sensing at the second sensing periodicity. Accordingly, when the high sensing resolution is no longer required, disabling the second sensing periodicity may reduce the power consumption, increase the power efficiency, and also preserve the network resource by reducing the number of the interruption in the cellular communication.
At 430, the base station determines to terminate sensing at the second sensing periodicity. The base station 404 then may transmit a cancel indication 432 to the UE 402 instructing the UE 402 to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity. At 434, the UE 402 may revert to performing the wireless radar sensing during the sensing period at the first sensing periodicity in response to receiving the cancel indication 432 from the base station 404.
The UE 402 may also terminate or disable the second sensing periodicity. At 440, the UE 402 may determine to terminate the second sensing periodicity. The UE 402 may transmit a short-periodicity sensing terminate (SST) message 442 to the base station 404 requesting the second sensing periodicity be disabled. The SST message 442 may be transmitted dynamically through the PUCCH or the MAC CE, or semi-statically through the RRC message. The base station 404 may receive the SST message 442 from the UE 402 and transmit the ACK message 444 in response to the SST message 442 received from the UE 402. The UE 402 may receive the ACK message 444 from the base station 404. At 446, the UE 402 may revert to  performing the wireless radar sensing during the sensing period at the first sensing periodicity.
FIG. 5 depicts timing diagrams utilized by certain aspects. First, a first timing diagram 510 illustrates the wireless radar sensing during the sensing period 512 at a first sensing periodicity. The first timing diagram 510 shows that the sensing period 512 starts at an offset from the start of each of the first sensing periodicities. The offset may be set by the base station (e.g., the base station 404) . The base station may set the offset differently for different UEs based on various factors, such as the resource of the 5G network. For example, the base station may arrange different offsets to different UEs to improve the resource efficiency of the base station.
A second timing diagram 520 illustrates the wireless radar sensing during the sensing period 522 at a second sensing periodicity. As proffered, the first sensing periodicity may be an integer multiple of the second sensing periodicity. For example, the first and second timing diagrams 510 and 520 illustrates that the first sensing periodicity is a multiple of three of the second sensing periodicity. Similar to the first timing diagram 510, the second timing diagram 520 shows that the sensing period 522 starts at an offset from the start of each of the second sensing periodicities. The offset of the second timing diagram 520 may be set by the base station. For example, the base station may set the offset of the first and the second timing diagram 510 and 520 the same. As illustrated by timing diagrams 510 and 520, the UE may scan more frequently when employing the shorter sensing periodicity of 520 vs the longer first sensing periodicity of timing diagram 510.
The UE (e.g., the UE 402) may be semi-statically instructed to perform the wireless radar sensing at the first sensing periodicity, and the third timing diagram 530 illustrates the dynamic enabling and disabling of the second sensing periodicity.
Referring to the third timing diagram 530, the UE may be initially configured to perform the wireless radar during the sensing period 532 at the first sensing periodicity. The UE may request the second sensing periodicity by transmitting the SSR message 533 to the base station. The SSR message 533 may be transmitted through the PUCCH or the MAC-CE when the wireless radar sensing is dynamically configured, or through the RRC message when the wireless radar sensing is semi-statically configured. The SSR message may contain the information on which periodicity the UE is requesting.
The base station may transmit the ACK message 534 confirming the reception of the SSR message 533. The UE may receive the ACK message 534 from the base station, and perform the wireless radar sensing during the sensing period 536 at the second sensing periodicity.
The UE may inform base station that the second sensing periodicity is to be terminated or disabled by sending a SST message 537 to the base station. The SST message 537 may contain information on the fallback periodicity requested by the UE. The SST message 537 may be transmitted dynamically through the PUCCH or the MAC-CE, or semi-statically via a RRC message.
The base station may transmit the ACK message 538 confirming the reception of the SST message 537. The UE may receive the ACK message 538 from the base station, and disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity. Accordingly, the UE may perform the wireless radar sensing during the sensing period 539 at the first sensing periodicity.
Here, FIG. 5 illustrates two periodicities (the first sensing periodicity and the second sensing periodicity) . However, the embodiments of the current disclosure are not necessarily limited thereto, and the number of periodicities may be equal to or greater than two.
The timing diagrams 540 and 550 illustrates two examples for sensing period and RF retuning gap according to certain aspects. The timing diagram may include a first RF retuning gap before the wireless sensing and a second RF retuning gap after the wireless sensing, because the sensing signal generally has much higher bandwidth than the active DL /UL BWP, and the UE may need the RF retuning gap to retune the RF chain when the RF chain is used for both cellular communication and radar sensing. Accordingly, The UE and the base station may not perform the wireless radar nor the cellular communication during the RF retuning gap.
Referring to the time diagram 540, the RF retuning gaps 542 may be configured outside the sensing period. In other words, the RF retuning gaps 542 are configured before and after the sensing period. Therefore, the UE and the base station may be configured to not perform the cellular communication during the RF retuning gaps 542 as illustrated in the time diagram 540.
Referring to the time diagram 550, the RF retuning gaps 552 may be configured within the sensing period. In other words, the RF retuning gaps 552 are configured  to occur within the sensing period, at the start of and at the end of the sensing period. The sensing period may also include a sensing duration 554, during which the UE may perform the wireless radar sensing. Therefore, the UE may be configured to not perform the wireless radar sensing during the RF retuning gaps 552, and perform the wireless sensing during the sensing duration 554 configured between the RF retuning gaps 552 within the sensing period.
Referring to the time diagrams 550 and 560, the
FIG. 6 is a flowchart 600 of a method of wireless communication. The method may be performed by a UE (e.g., the UE 104; the apparatus 802) .
At 602, the UE may receive the wireless sensing instruction (408) from the base station. For example, 602 may be performed by a radar sensing message managing component 844. The radar sensing message managing component 844 may decode the wireless sensing instruction (408) to obtain parameters including a sensing period or a offset.
At 604, the UE may perform the wireless radar sensing at the first sensing periodicity (410) . For example, 604 may be performed by a wireless radar sensing component 840. The wireless radar sensing component 840 may perform the wireless radar sensing based on the parameters obtained by the radar sensing message managing component 844.
At 606, the UE may determine to enable the second sensing periodicity (412) . For example, 606 may be performed by a sensing periodicity managing component 842. For example, the sensing periodicity managing component 842 may determine to enable the second sensing periodicity based on determining that a higher sensing resolution is required.
At 608, the UE may transmit the SSR message (414) to the base station to request the second sensing periodicity. For example, 608 may be performed by the radar sensing message managing component 844.
At 610, the UE may receive the ACK response (416) from the base station. For example, 6010 may be performed by the radar sensing message managing component 844.
At 612, the UE may perform the wireless radar sensing at the second sensing periodicity (420) . For example, 612 may be performed by the wireless radar sensing component 840. For example, the wireless radar sensing component 840 may set the  sensing periodicity to the second sensing periodicity. That is the UE may is configured to scan at the second periodicity.
At 614, the UE may transmit the assistance message (422) to the base station. For example, 614 may be performed by the radar sensing message managing component 844.
At 616, the UE may receive the cancel indication (432) from the base station. For example, 616 may be performed by the radar sensing message managing component 844.
At 618, the UE may determine to disable the second sensing periodicity (440) . For example, 618 may be performed by the sensing periodicity managing component 842. For example, the sensing periodicity managing component 842 may determine to disable the second sensing periodicity in response to determining that the high sensing resolution is no longer required.
At 620, the UE may transmit the SST message (442) to the base station. For example, 620 may be performed by the radar sensing message managing component 844.
At 622, the UE may receive the ACK response (444) from the base station. For example, 622 may be performed by the radar sensing message managing component 844.
Finally, at 624, the UE may revert to the first sensing periodicity (434/446) . For example, 624 may be performed by the wireless radar sensing component 840.
FIG. 7 is a flowchart 700 of a method of wireless communication. The method may be performed by a base station (e.g., the base station 102/180/404; the apparatus 902. At 702, the base station may set the sensing period at the first sensing periodicity for the UE (406) . For example, 702 may be performed by a sensing periodicity managing component 940. For example, the sensing periodicity managing component 940 may receive information of the UE’s capabilities and permit the first sensing periodicity as the initial configuration to the UE for the wireless radar sensing.
At 704, the base station may transmit the wireless sensing instruction (408) to the UE. For example, 704 may be performed by a radar sensing message managing component 942 and transmit the wireless sensing instruction to the UE.
At 706, the base station may receive the SSR message (414) from the UE. For example, 706 may be performed by the radar sensing message managing component  942. For example, the radar sensing message managing component 942. For example, the radar sensing message managing component 942 may receive the SSR message and configure the base station to not perform the cellular communication with the UE during the sensing period at the second sensing periodicity.
At 708, the base station may transmit the ACK response (416) to the UE. For example, 708 may be performed by the radar sensing message managing component 942.
At 710, the base station may receive the assistance message (422) from the UE. For example, 710 may be performed by the radar sensing message managing component 942. The base station may use the parameters extracted from the assistance message in generating the wireless sensing instruction or transmitting cancel indication to the UE.
At 712, the base station may determine to disable the second sensing periodicity of the UE (430) . For example, 712 may be performed by the sensing periodicity managing component 940.
At 714, the base station may transmit the cancel indication (432) to the UE. For example, 714 may be performed by the radar sensing message managing component 942.
At 716, the base station may receive the SST message (442) from the UE. For example, 716 may be performed by the radar sensing message managing component 942. For example, the radar sensing message managing component 942 may receive the SST message and configure the base station to not perform the cellular communication with the UE during the sensing period at the first sensing periodicity.
Finally, at 718, the base station may transmit the ACK response (444) to the UE. For example, 718 may be performed by the radar sensing message managing component 942.
FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802. The apparatus 802 is a UE and includes a cellular baseband processor 804 (also referred to as a modem) coupled to a cellular RF transceiver 822 and one or more subscriber identity modules (SIM) cards 820, an application processor 806 coupled to a secure digital (SD) card 808 and a screen 810, a Bluetooth module 812, a wireless local area network (WLAN) module 814, a Global Positioning System (GPS) module 816, and a power supply 818. The cellular baseband processor 804 communicates through the cellular RF transceiver 822 with  the UE 104 and/or BS 102/180. The cellular baseband processor 804 may include a computer-readable medium /memory. The cellular baseband processor 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 804, causes the cellular baseband processor 804 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 804 when executing software. The cellular baseband processor 804 further includes a reception component 830, a communication manager 832, and a transmission component 834. The communication manager 832 includes the one or more illustrated components. The components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 804. The cellular baseband processor 804 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 802 may be a modem chip and include just the baseband processor 804, and in another configuration, the apparatus 802 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 802.
The communication manager 832 includes a wireless radar sensing component 840 that is configured to perform the wireless radar sensing at the first sensing periodicity or the second sensing periodicity, and revert to the first sensing periodicity from the second sensing periodicity, e.g., as described in connection with 604, 612, and 624. The communication manager 832 further includes a sensing periodicity managing component 842 that is configured to determine to enable the second sensing periodicity, and determine to disable the second sensing periodicity, e.g., as described in connection with 606 and 618. The communication manager 832 further includes a radar sensing message managing component 844 that is configured to receive the wireless sensing instruction from the base station, transmit the SSR message, the SST message, or the assistance message to the base station to request the second sensing periodicity, receive the ACK response or the cancel indication from the base station, e.g., as described in connection with 602, 608, 610, 614, 616, 620, and 622. The  components  840, 842, and 844 may be configured to communicate with each other.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 6. As such, each block in the aforementioned flowcharts of FIGs. 4 and 6 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 802, and in particular the cellular baseband processor 804, includes means for performing a wireless radar sensing during a sensing period at a first sensing periodicity, means for enabling a second sensing periodicity for the sensing period, means for performing the wireless radar sensing during the sensing period at the second sensing periodicity, means for enabling the first sensing periodicity for the sensing period based on the RRC message, means for transmitting the SST message to the base station, means for receiving the ACK message from the base station, means for reverting to performing the wireless radar sensing during the sensing period at the first sensing periodicity, means for transmitting an assistance message to the base station, means for receiving a cancel indication from the base station instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity, and means for reverting to performing the wireless radar sensing during the sensing period at the first sensing periodicity. The aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 802 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 9 is a diagram 900 illustrating an example of a hardware implementation for an apparatus 902. The apparatus 902 is a BS and includes a baseband unit 904. The baseband unit 904 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 904 may include a computer-readable medium /memory. The baseband unit 904 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when  executed by the baseband unit 904, causes the baseband unit 904 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 904 when executing software. The baseband unit 904 further includes a reception component 930, a communication manager 932, and a transmission component 934. The communication manager 932 includes the one or more illustrated components. The components within the communication manager 932 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 904. The baseband unit 904 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 932 includes a sensing periodicity managing component 940 that is configured to set the sensing period at the first sensing periodicity for the UE and disable the second sensing periodicity for the UE, e.g., as described in connection with 702 and 712. The communication manager 932 further includes a radar sensing message managing component 942 that is configured to transmit the wireless sensing instruction, the ACK response, and the cancel indication to the UE and receive the SSR message, the assistance message, and the SST message from the UE, e.g., as described in connection with 704, 706, 708, 710, 714, 716, and 718. The components 940 and the 942 may be configured to communicate with each other.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 7. As such, each block in the aforementioned flowcharts of FIGs. 4 and 7 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 902, and in particular the baseband unit 904, includes means for transmitting the instruction to the UE setting the sensing period for the UE, means for enabling UE with the second sensing periodicity, means for receiving the SST message from the UE, means for transmitting the ACK message in response to the SST message, means for determining to terminate the second  sensing periodicity for the sensing period, and means for transmitting the cancel indication to the UE instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar. The aforementioned means may be one or more of the aforementioned components of the apparatus 902 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 902 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
Referring again to FIGS. 4, 5, 6, 7, 8, and 9, a UE and/or a base station may provide wireless radar sensing in 5G with multi-cycle configuration. First, the base station may transmit a wireless sensing instruction to the UE to set a sensing period and a first sensing periodicity for the UE to perform a wireless radar sensing during the sensing period. The UE may perform the wireless radar sensing during the sensing period at the first sensing periodicity. The UE and the base station may be configured to not perform cellular communication during the sensing period. Accordingly, the UE and the base station may not suffer from unintended transmission failures from the wireless radar sensing by the UE.
The first sensing periodicity may be the long periodicity and the second sensing periodicity may be the short periodicity, which can be dynamic enabled and/or disabled. The first sensing periodicity may be configured for the low-resolution sensing for sensing an operation (e.g. to detect whether there is an operation by user’s hand gesture/movement) . In response to detecting the operation event, then the second sensing periodicity may be activated for the high-resolution and low-latency sensing (e.g. to detect the pattern of the hand gesture /movement) .
Accordingly, the UE may determine to enable a second sensing periodicity smaller than the first sensing periodicity. The UE may transmit an SSR to the base station to request enabling the second sensing periodicity. The UE may also transmit an SST to the base station to request disabling the second sensing periodicity. Accordingly, the UE may dynamically transition between the first and the second sensing periodicities and manage the sensing resolution. Also, since the transition is dynamically requested to the base station, the base station and the UE may not suffer from transmission failure from switching the sensing periodicity by  the UE. The base station may also instruct the UE to disable the second sensing periodicity when necessary.
Furthermore, by disabling the second sensing periodicity when the high sensing resolution is no longer required, the UE and the base station may reduce the power consumption, increase the power efficiency, and also preserve the network resource by reducing the number of interruption in the cellular communication.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.  Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
The following examples are illustrative only and may be combined with aspects of other embodiments or teachings described herein, without limitation.
Figure PCTCN2020095569-appb-000001
Figure PCTCN2020095569-appb-000002
Figure PCTCN2020095569-appb-000003
Figure PCTCN2020095569-appb-000004
Figure PCTCN2020095569-appb-000005
Figure PCTCN2020095569-appb-000006
Figure PCTCN2020095569-appb-000007

Claims (56)

  1. A method of wireless communication of a user equipment (UE) , comprising:
    performing a wireless radar sensing during a sensing period at a first sensing periodicity based on an instruction received from a base station;
    enabling a second sensing periodicity for the sensing period, the second sensing periodicity being smaller than the first sensing periodicity; and
    performing the wireless radar sensing during the sensing period at the second sensing periodicity,
    wherein the UE is configured to not perform a cellular communication with the base station during the sensing period.
  2. The method of claim 1, wherein the enabling the second sensing periodicity comprises:
    transmitting a short-periodicity sensing request (SSR) message to the base station, the SSR message indicating the second sensing periodicity; and
    receiving an acknowledgement (ACK) message.
  3. The method of claim 2, wherein the UE transmits the SSR message through at least one of a physical uplink control channel (PUCCH) , a media access control (MAC) control element (CE) (MAC-CE) , or a radio resource control (RRC) message.
  4. The method of claim 1, further comprising:
    semi-statically enabling the first sensing periodicity for the sensing period based on a radio resource control (RRC) message.
  5. The method of claim 1, wherein the first sensing periodicity is an integer multiple of the second sensing periodicity.
  6. The method of claim 1, further comprising:
    transmitting a short-periodicity sensing terminate (SST) message to the base station requesting the second sensing periodicity be disabled;
    receiving an acknowledgement (ACK) message from the base station; and
    reverting to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  7. The method of claim 6, wherein the UE transmits the SST message through at least one of a physical uplink control channel (PUCCH) , a media access control (MAC) control element (CE) (MAC-CE) , or a radio resource control (RRC) message.
  8. The method of claim 6, wherein the SST message indicates the period of the first sensing periodicity requested by the UE.
  9. The method of claim 1, further comprising:
    transmitting an assistance message to the base station, the assistance message indicating at least one of the sensing period, a radio frequency (RF) retuning gap, a sensing periodicity or a bandwidth, a waveform, or a power of a radar signal.
  10. The method of claim 9, wherein the UE is configured to not perform the wireless radar sensing during a first RF retuning gap occurring at the start of the sensing period and a second RF retuning gap occurring at the end of the sensing period.
  11. The method of claim 9, wherein the UE is configured to not perform the cellular communication during the RF retuning gaps before and after the sensing period.
  12. The method of claim 1, further comprising:
    receiving a cancel indication from the base station instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity through at least one a physical downlink control channel or a media access control (MAC) control element (CE) (MAC-CE) ; and
    reverting to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  13. An apparatus for wireless communication of a user equipment (UE) , comprising:
    means for performing a wireless radar sensing during a sensing period at a first sensing periodicity based on an instruction received from a base station;
    means for enabling a second sensing periodicity for the sensing period, the second sensing periodicity being smaller than the first sensing periodicity; and
    means for performing the wireless radar sensing during the sensing period at the second sensing periodicity,
    wherein the UE is configured to not perform a cellular communication with the base station during the sensing period.
  14. The apparatus of claim 13, wherein the means for enabling the second sensing periodicity is configured to:
    transmit a short-periodicity sensing request (SSR) message to the base station, the SSR message indicating the second sensing periodicity; and
    receive an acknowledgement (ACK) message.
  15. The apparatus of claim 14, wherein the UE transmits the SSR message through at least one of a physical uplink control channel (PUCCH) , a media access control (MAC) control element (CE) (MAC-CE) , or a radio resource control (RRC) message.
  16. The apparatus of claim 13, further comprising:
    means for semi-statically enabling the first sensing periodicity for the sensing period based on a radio resource control (RRC) message.
  17. The apparatus of claim 13, wherein the first sensing periodicity is an integer multiples of the second sensing periodicity.
  18. The apparatus of claim 13, further comprising:
    means for transmitting a short-periodicity sensing terminate (SST) message to the base station requesting the second sensing periodicity be disabled;
    means for receiving an acknowledgement (ACK) message from the base station; and
    means for reverting to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  19. The apparatus of claim 18, wherein the UE transmits the SST message through at least one of a physical uplink control channel (PUCCH) , a media access control (MAC) control element (CE) (MAC-CE) , or a radio resource control (RRC) message.
  20. The apparatus of claim 18, wherein the SST message indicates the period of the first sensing periodicity requested by the UE.
  21. The apparatus of claim 13, further comprising:
    means for transmitting an assistance message to the base station, the assistance message indicating at least one of the sensing period, a radio frequency (RF) retuning gap, a sensing periodicity or a bandwidth, a waveform, or a power of a radar signal.
  22. The apparatus of claim 21, wherein the UE is configured to not perform the wireless radar sensing during a first RF retuning gap occurring at the start of the sensing period and a second RF retuning gap occurring at the end of the sensing period.
  23. The apparatus of claim 21, wherein the UE is configured to not perform the cellular communication during the RF retuning gaps before and after the sensing period.
  24. The apparatus of claim 13, further comprising:
    means for receiving a cancel indication from the base station instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity through at least one a physical downlink control channel or a media access control (MAC) control element (CE) (MAC-CE) ; and
    means for reverting to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  25. An apparatus for wireless communication of a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    perform a wireless radar sensing during a sensing period at a first sensing periodicity based on an instruction received from a base station;
    enable a second sensing periodicity for the sensing period, the second sensing periodicity being smaller than the first sensing periodicity; and
    perform the wireless radar sensing during the sensing period at the second sensing periodicity,
    wherein the UE is configured to not perform a cellular communication with the base station during the sensing period.
  26. The apparatus of claim 25, wherein the at least one processor is further configured to:
    transmit a short-periodicity sensing request (SSR) message to the base station, the SSR message indicating the second sensing periodicity; and
    receive an acknowledgement (ACK) message.
  27. The apparatus of claim 26, wherein the UE transmits the SSR message through at least one of a physical uplink control channel (PUCCH) , a media access control (MAC) control element (CE) (MAC-CE) , or a radio resource control (RRC) message.
  28. The apparatus of claim 25, wherein the at least one processor is further configured to:
    semi-statically enable the first sensing periodicity for the sensing period based on a radio resource control (RRC) message.
  29. The apparatus of claim 25, wherein the first sensing periodicity is an integer multiples of the second sensing periodicity.
  30. The apparatus of claim 25, wherein the at least one processor is further configured to:
    transmit a short-periodicity sensing terminate (SST) message to the base station requesting the second sensing periodicity be disabled;
    receive an acknowledgement (ACK) message from the base station; and
    revert to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  31. The apparatus of claim 30, wherein the UE transmits the SST message through at least one of a physical uplink control channel (PUCCH) , a media access control (MAC) control element (CE) (MAC-CE) , or a radio resource control (RRC) message.
  32. The apparatus of claim 30, wherein the SST message indicates the period of the first sensing periodicity requested by the UE.
  33. The apparatus of claim 25, wherein the at least one processor is further configured to:
    transmit an assistance message to the base station, the assistance message indicating at least one of the sensing period, a radio frequency (RF) retuning gap, a sensing periodicity or a bandwidth, a waveform, or a power of a radar signal.
  34. The apparatus of claim 33, wherein the UE is configured to not perform the wireless radar sensing during a first RF retuning gap occurring at the start of the sensing period and a second RF retuning gap occurring at the end of the sensing period.
  35. The apparatus of claim 33, wherein the UE is configured to not perform the cellular communication during the RF retuning gaps before and after the sensing period.
  36. The apparatus of claim 25, wherein the at least one processor is further configured to:
    receive a cancel indication from the base station instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity through at least one a physical downlink control channel or a media access control (MAC) control element (CE) (MAC-CE) ; and
    revert to performing the wireless radar sensing during the sensing period at the first sensing periodicity.
  37. A computer-readable medium storing computer executable code, the code when executed by a processor of a user equipment (UE) cause the processor to:
    perform a wireless radar sensing during a sensing period at a first sensing periodicity based on an instruction received from a base station;
    enable a second sensing periodicity for the sensing period, the second sensing periodicity being smaller than the first sensing periodicity; and
    perform the wireless radar sensing during the sensing period at the second sensing periodicity,
    wherein the UE is configured to not perform a cellular communication with the base station during the sensing period.
  38. A method of wireless communication of a base station, comprising:
    transmitting an instruction to a user equipment (UE) setting a sensing period for the UE to perform a wireless radar sensing at a first sensing periodicity; and
    enabling the UE with a second sensing periodicity for the sensing period, the second sensing periodicity being smaller than the first sensing periodicity, the second sensing periodicity being smaller than the first sensing periodicity,
    wherein the base station is configured to not perform a cellular communication with a user equipment (UE) during the sensing period.
  39. The method of claim 38, wherein the enabling the UE with the second sensing periodicity for the sensing period comprises:
    receiving a short-periodicity sensing request (SSR) message from the UE, the SSR message indicating the second sensing periodicity; and
    transmitting an acknowledgement (ACK) message in response to the SSR message.
  40. The method of claim 38, wherein the instruction setting the sensing at the first sensing periodicity is transmitted through a radio resource control (RRC) message.
  41. The method of claim 38, further comprising:
    receiving a short-periodicity sensing terminate (SST) message from the UE indicating a request to disable the second sensing periodicity; and
    transmitting an acknowledgement (ACK) message in response to the SST message.
  42. The method of claim 41, further comprising:
    determining to terminate the second sensing periodicity for the sensing period; and
    transmitting a cancel indication to the UE instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity.
  43. The method of claim 42, further comprising:
    receiving an assistance message from the UE, the assistance message indicating at least one of the sensing period, a time threshold, a radio frequency (RF) retuning gap, a sensing periodicity or a bandwidth, a waveform, or a power of a radar signal.
  44. An apparatus for wireless communication of a base station, comprising:
    means for transmitting an instruction to a user equipment (UE) setting a sensing period for the UE to perform a wireless radar sensing at a first sensing periodicity; and
    means for enabling the UE with a second sensing periodicity for the sensing period, the second sensing periodicity being smaller than the first sensing periodicity, the second sensing periodicity being smaller than the first sensing periodicity,
    wherein the base station is configured to not perform a cellular communication with a user equipment (UE) during the sensing period.
  45. The apparatus of claim 44, wherein the means for enabling the UE with the second sensing periodicity for the sensing period is configured to:
    receive a short-periodicity sensing request (SSR) message from the UE, the SSR message indicating the second sensing periodicity; and
    transmit an acknowledgement (ACK) message in response to the SSR message.
  46. The apparatus of claim 44, wherein the instruction setting the sensing at the first sensing periodicity is transmitted through a radio resource control (RRC) message.
  47. The apparatus of claim 44, further comprising:
    means for receiving a short-periodicity sensing terminate (SST) message from the UE indicating a request to disable the second sensing periodicity; and
    means for transmitting an acknowledgement (ACK) message in response to the SST message.
  48. The apparatus of claim 47, further comprising:
    means for determining to terminate the second sensing periodicity for the sensing period; and
    means for transmitting a cancel indication to the UE instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity.
  49. The apparatus of claim 48, further comprising:
    means for receiving an assistance message from the UE, the assistance message indicating at least one of the sensing period, a time threshold, a radio frequency (RF) retuning gap, a sensing periodicity or a bandwidth, a waveform, or a power of a radar signal.
  50. An apparatus for wireless communication of a base station, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    transmit an instruction to a user equipment (UE) setting a sensing period for the UE to perform a wireless radar sensing at a first sensing periodicity; and
    enable the UE with a second sensing periodicity for the sensing period, the second sensing periodicity being smaller than the first sensing periodicity, the second sensing periodicity being smaller than the first sensing periodicity,
    wherein the base station is configured to not perform a cellular communication with a user equipment (UE) during the sensing period.
  51. The apparatus of claim 50, wherein the at least one processor is further configured to:
    receive a short-periodicity sensing request (SSR) message from the UE, the SSR message indicating the second sensing periodicity; and
    transmit an acknowledgement (ACK) message in response to the SSR message.
  52. The apparatus of claim 50, wherein the instruction setting the sensing at the first sensing periodicity is transmitted through a radio resource control (RRC) message.
  53. The apparatus of claim 50, wherein the at least one processor is further configured to:
    receive a short-periodicity sensing terminate (SST) message from the UE indicating a request to disable the second sensing periodicity; and
    transmit an acknowledgement (ACK) message in response to the SST message.
  54. The apparatus of claim 53, wherein the at least one processor is further configured to:
    determine to terminate the second sensing periodicity for the sensing period; and
    transmit a cancel indication to the UE instructing the UE to disable the second sensing periodicity and revert to performing the wireless radar sensing at the first sensing periodicity.
  55. The apparatus of claim 54, wherein the at least one processor is further configured to:
    receive an assistance message from the UE, the assistance message indicating at least one of the sensing period, a time threshold, a radio frequency (RF) retuning gap, a sensing periodicity or a bandwidth, a waveform, or a power of a radar signal.
  56. A computer-readable medium storing computer executable code, the code when executed by a processor of a base station cause the processor to:
    transmit an instruction to a user equipment (UE) setting a sensing period for the UE to perform a wireless radar sensing at a first sensing periodicity; and
    enable the UE with a second sensing periodicity for the sensing period, the second sensing periodicity being smaller than the first sensing periodicity, the second sensing periodicity being smaller than the first sensing periodicity,
    wherein the base station is configured to not perform a cellular communication with a user equipment (UE) during the sensing period.
PCT/CN2020/095569 2020-06-11 2020-06-11 Method and apparatus of multi-cycle wireless radar sensing WO2021248404A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095569 WO2021248404A1 (en) 2020-06-11 2020-06-11 Method and apparatus of multi-cycle wireless radar sensing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095569 WO2021248404A1 (en) 2020-06-11 2020-06-11 Method and apparatus of multi-cycle wireless radar sensing

Publications (1)

Publication Number Publication Date
WO2021248404A1 true WO2021248404A1 (en) 2021-12-16

Family

ID=78846717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095569 WO2021248404A1 (en) 2020-06-11 2020-06-11 Method and apparatus of multi-cycle wireless radar sensing

Country Status (1)

Country Link
WO (1) WO2021248404A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4239362A1 (en) * 2022-03-04 2023-09-06 Nokia Solutions and Networks Oy Resource allocation in joint communication and sensing
WO2024060077A1 (en) * 2022-09-21 2024-03-28 Lenovo (Beijing) Limited Method and apparatus for integrated sensing and communication
WO2024074186A1 (en) * 2022-10-03 2024-04-11 Telefonaktiebolaget Lm Ericsson (Publ) Radar sensing mode selection in a wireless communication device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317798A1 (en) * 2014-11-06 2017-11-02 Lg Electronics Inc. Method for transmitting data in unlicensed band-secondary carrier and device for same
CN108702795A (en) * 2016-03-02 2018-10-23 三星电子株式会社 The method and apparatus for being used for uplink channel access in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170317798A1 (en) * 2014-11-06 2017-11-02 Lg Electronics Inc. Method for transmitting data in unlicensed band-secondary carrier and device for same
CN108702795A (en) * 2016-03-02 2018-10-23 三星电子株式会社 The method and apparatus for being used for uplink channel access in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Partial sensing for P2V communication", 3GPP DRAFT; R1-1611923 INTEL - V2V PUE SENSING, vol. RAN WG1, 6 November 2016 (2016-11-06), Reno, USA, pages 1 - 5, XP051190735 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4239362A1 (en) * 2022-03-04 2023-09-06 Nokia Solutions and Networks Oy Resource allocation in joint communication and sensing
WO2024060077A1 (en) * 2022-09-21 2024-03-28 Lenovo (Beijing) Limited Method and apparatus for integrated sensing and communication
WO2024074186A1 (en) * 2022-10-03 2024-04-11 Telefonaktiebolaget Lm Ericsson (Publ) Radar sensing mode selection in a wireless communication device

Similar Documents

Publication Publication Date Title
US20190150042A1 (en) Switching from a priority-based reselection mechanism to a rank-based reselection mechanism
US20200413476A1 (en) Ue assisted fast transition between rrc states
US11758547B2 (en) Default PDSCH beam selection
US10973044B1 (en) Default spatial relation for SRS/PUCCH
US11477683B2 (en) Event triggered uplink beam report
WO2021248404A1 (en) Method and apparatus of multi-cycle wireless radar sensing
US20220159775A1 (en) User equipment specific discontinuous reception cycle
US20230180141A1 (en) Cell identifier for pucch/pusch pathloss reference or beam reference signal
WO2021243499A1 (en) Power control for wireless sensing
US11678223B2 (en) Transmission power control command accumulation for NR-dual connectivity
US20210112434A1 (en) Preconfigured gaps for measurements based on configured bwps
US20200359243A1 (en) Radio link monitoring reference signals for ues that do not support csi-rs based radio link monitoring
US11997514B2 (en) Determination of UE-specific PDCCH monitoring occasions
US20220110122A1 (en) Demodulation reference signal-assisted listen-before-talk for full-duplex wireless communications in unlicensed spectrum
US11616558B2 (en) Procedural delays and scheduling restriction based on component carrier groups
US11743112B2 (en) UE requested BFD/BFR reference signal
US11870589B2 (en) Method and apparatus with multi-configuration HARQ message
US11757503B2 (en) UE panel specific beam application time
WO2022011634A1 (en) Method and apparatus for single beam paging in 5g
US20240022369A1 (en) Uplink signal assisted preconfigured uplink resource
US20220322428A1 (en) Supporting ul lbt status report in nr-u
WO2022006750A1 (en) Positioning for secondary cell dormancy
WO2021253267A1 (en) Method to handle out of local area data network service area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940221

Country of ref document: EP

Kind code of ref document: A1