WO2022011634A1 - Method and apparatus for single beam paging in 5g - Google Patents

Method and apparatus for single beam paging in 5g Download PDF

Info

Publication number
WO2022011634A1
WO2022011634A1 PCT/CN2020/102317 CN2020102317W WO2022011634A1 WO 2022011634 A1 WO2022011634 A1 WO 2022011634A1 CN 2020102317 W CN2020102317 W CN 2020102317W WO 2022011634 A1 WO2022011634 A1 WO 2022011634A1
Authority
WO
WIPO (PCT)
Prior art keywords
paging
single beam
rrc
state
motion
Prior art date
Application number
PCT/CN2020/102317
Other languages
French (fr)
Inventor
Nan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/102317 priority Critical patent/WO2022011634A1/en
Priority to US17/369,515 priority patent/US11653329B2/en
Priority to PCT/US2021/040835 priority patent/WO2022015567A1/en
Publication of WO2022011634A1 publication Critical patent/WO2022011634A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/04User notification, e.g. alerting and paging, for incoming communication, change of service or the like multi-step notification using statistical or historical mobility data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to a method and apparatus for negotiating a single beam paging between a user equipment (UE) and the base station (BS) in 5G New Radio (NR) .
  • UE user equipment
  • BS base station
  • NR 5G New Radio
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • the apparatus of wireless communication may be a UE or a BS.
  • the UE may determine a motion state of the UE that indicates a lack of motion, and transmit a request to the BS to perform a single beam paging using the single beam used in a radio resource control (RRC) connected state based on determining that the motion state indicates the lack of motion.
  • RRC radio resource control
  • the single beam paging is for RRC inactive state or the RRC idle state of the UE.
  • the UE may detect the motion based on at least one of a sensor or sensors at the UE or an operation of the UE.
  • the determination of the lack of motion may be based on at least one of lack of current motion of the UE or a predicted movement of the UE based on an estimation that the UE will not move during at least a period of time.
  • the UE may determine the motion state of the UE while the UE is in the RRC connected state, and transmit the request before transitioning to the RRC inactive state or the RRC idle state.
  • the UE may enter the RRC inactive state or the RRC idle state and monitor for a page from the BS based on a single beam.
  • the BS may receive the request to perform the single beam paging, and page the UE using the single beam.
  • the UE in the RRC inactive state or the RRC idle state may determine a motion state of the UE and transmit a request to perform the beam sweeping paging to the BS based on detecting a motion of the UE.
  • the BS may page the UE using multiple beams based on detecting a motion of the UE.
  • the UE may monitor for the page from the BS using multiple beams.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a call-flow diagram of a method of the wireless communication.
  • FIG. 5 is a flowchart of a method of wireless communication.
  • FIG. 6 is a flowchart of a method of wireless communication.
  • FIG. 7 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102′ may have a coverage area 110′ that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102′ may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102′ may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102′, employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102′ may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150.
  • the small cell 102′, employing NR in an unlicensed frequency spectrum may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz -7.125 GHz) and FR2 (24.25 GHz -52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz -300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182′.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182".
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the UE 104 and/or base station 180 may be configured to negotiating a single beam paging in 5G NR (198) .
  • 5G NR 5G NR
  • the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression / decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.
  • Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354 RX receives a signal through its respective antenna 352.
  • Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
  • a paging message may be transmitted using beam sweeping and the UE can select an arbitrary transmission beam to receive paging message. That is, when the UE is in the RRC idle state or the RRC inactive state, the BS may transmit the paging message including paging identifier (e.g., temporary identifier, a 5G short temporary mobile subscriber identity (5G-S-TMSI) , or an inactive radio network temporary identifier (I-RNTI) ) when the BS receives new data to be transmitted to the UE.
  • the UE may monitor for the paging message from the BS to receive the paging message. Since the UE in the RRC idle state or the RRC inactive state and the BS had not established a beamformed signal, the BS may transmit the paging message to the UE through the beam sweeping, by transmitting the paging message using multiple beams.
  • paging identifier e.g., temporary identifier, a 5G short temporary mobile subscriber identity (5
  • the beam sweeping paging may increase mobility and reliability of the UE. However, the beam sweeping paging may also increase the cost of communication by wasting the beam bandwidth and the radio resources. Particularly, the beam sweeping paging may be less suitable for a massive machine-type-communication (mMTC) .
  • the mMTC includes an extensive number of high space density UEs in service, and therefore, the beam sweeping paging may not be suitable to transmit paging message due to lack of beam bandwidth to support all of the UEs in service.
  • a single beam paging will increase radio resources by N times, where N is the beam number. That is, transmitting the paging message using a single beam paging may increase the beam bandwidth, and the BS may support N UEs with N number of beams, compared to the BS supporting 1 UE with N beams with beam sweeping paging. For example, if the next-generation radio access network (NG-RAN) is using 6 transmission beams, the single beam paging may increase the paging radio resources by 6 times. The application of the single beam paging may be more beneficial for the mMTC scenario.
  • NG-RAN next-generation radio access network
  • the UE may negotiate the single beam paging with the BS based on the determination that the UE is still or has no plan to move. That is, the UE in the RRC connected state may, before entering the RRC inactive state or the RRC idle state, determine a motion state of the UE and request the BS to perform a single beam paging using the single beam based on determining that the motion state indicates lack of motion.
  • FIG. 4 is a call-flow diagram 400 of a method of the wireless communication.
  • the UE 402 may be in the RRC connected state with the BS 404.
  • the UE 402 and the BS 404 may communicate using the beam formed signals to compensate for the path loss and short range.
  • the UE 402 may determine the motion state of the UE 402 to forecast whether the UE 402 will move or not. That is, the UE 402 in the RRC connected state may determine a motion state of the UE 402 that indicates a lack of motion. The determination of the lack of motion may be based on at least one of a lack of current motion of the UE 402 or a predicted movement an estimation that the UE 402 will not move for a period of time. For example, the determination of the lack of motion of the UE 402 may be associated with a period of time, e.g., a prediction, an estimation, or a determination that the UE 402 will or is likely to move within a particular period of time.
  • a period of time e.g., a prediction, an estimation, or a determination that the UE 402 will or is likely to move within a particular period of time.
  • the UE 402 may keep still and have no plan to move. That is, since the UEs 402 in the mMTC environment are largely stationary or temporarily located at certain location, the UEs 402 in the mMTC environment may determine that the motion state of the UE 402 indicates the lack of motion.
  • the motion state of the UE 402 may be determined based on a sensor at the UE 402 or an operation of the UE 402. That is, the UE 402 may be equipped with at least one sensor that may detect the current motion of the UE 402 or the predict movement of the UE based on the estimating that the UE 402 will not move for a period of time.
  • the at least one sensor may include a global positioning system (GPS) , a triangulation system using radio signals (e.g., wireless communication (3G/4G LTE/5G NR) signal, WiFi signal, or a Bluetooth signal) , an accelerometer, an altimeter, etc.
  • the operation of the UE 402 may include operating or scheduling the UE 402 to change its position, operating the UE 402 to change position according to a preloaded program code or an autonomous driving, etc.
  • the embodiments are not limited thereto, and any form of detecting or estimating the motion of the UE 402 may be implemented to determine the motion state of the UE 402.
  • the UE 402 may submit a request to the BS 404 and the core network (e.g., a fifth generation core (5GC) and the NG-RAN) to perform the single beam paging before the RRC connection is released to enter the RRC idle state or the RRC connection is inactivated to enter the RRC inactive. That is, the UE 402 may, based on determining that the motion state of the UE 402 indicates the lack of motion, the UE 402 may transmit, to the BS 404 and the core network, the request to perform the single beam paging.
  • the core network e.g., a fifth generation core (5GC) and the NG-RAN
  • the UE 402 may, before entering the RRC idle state by a release of the RRC connection or entering the RRC inactive state by an inactivation of the RRC connection, request the BS 404 to perform a single beam paging based on determining that the motion state indicates lack of motion.
  • the request to perform the single beam paging may be transmitted to the BS 404 through any form of viable communication.
  • the request to perform the single beam may be transmitted to the BS 404 through an RRC message, an uplink channel (PUCCH or PUSCH) , or a physical wireless or wired signal.
  • the request to perform the single beam may even be transmitted to the BS 404 through a dedicated wireless signal or a hardwired communication.
  • the embodiments are not limited thereto, and any form of communication may be implemented to transmit the request to perform the single beam to the BS 404.
  • the BS 404 and the core network (5GC/NG-RAN) may accept the UE 402’s request of the single beam paging, and the BS 404 and the core network (5GC/NG-RAN) may transmit the paging message to the UE 402 using single beam that is used by the UE 402 in the RRC connected state. That is, the BS 404 and the core network may receive the UE 402’s request to perform the single beam paging for the RRC inactive state or the RRC idle state of the UE 402 using the single beam used in the RRC connected state of the UE 402.
  • the UE 402 may enter the RRC inactive state of the RRC idle state. That is, the UE 402 in the RRC connected state may enter the RRC idle state by the release of the RRC connection or enter the RRC inactive state by the inactivating of the RRC connection.
  • the UE 402 may monitor for the page transmitted from the BS 404 based on the single beam paging. That is, the UE 402 may monitor the single beam used in the RRC connected stated of the UE 402 to receive the paging message from the BS 404.
  • the BS 404 may page the UE 402 using the single beam in response to receiving the request to perform the single beam paging. That is, the BS 404 may receive the new data for the UE 402 from the core network, and the BS 404 may transmit the paging message to the UE 402 using the single beam to transmit the data for the UE 402 received from the core network.
  • the UE 402 may detect that the UE 402 starts to move (using the UE 402 build-in sensor) during the RRC idle state or the RRC inactive state. That is, the UE 402 may determine the motion state of the UE 402 to forecast whether the UE 402 will move or not.
  • the UE 402 in the RRC inactive state or the RRC idle state may determine a motion state of the UE 402 that indicates a motion. That is, the UE 402 may determine the motion state of the UE 402 that indicates a motion based on at least one of current motion of the UE 402 or a predicted movement of the UE 402 based on an estimation that the UE 402 will move in a period of time, as proffered regarding 408.
  • the UE 402 may send a new request to the BS 404 or the core network (5GC/NG-RAN) to stop the single beam paging. That is, upon determining that the motion state of the UE 402 indicates a motion, the UE 402 may transmit a request to the BS 404 to stop the single beam paging and request the beam sweeping paging. Accordingly, the UE 402 may request the BS 404 to transmit the paging message using multiple beams.
  • the core network 5GC/NG-RAN
  • the UE 402 may monitor for the page transmitted from the BS 404 based on the beam sweeping paging. That is, the UE 402 may monitor the multiple beams to receive the paging message from the BS 404 upon determining that the motion state of the UE 402 indicates a motion.
  • the BS 404 may page the UE 402 using the multiple beams in response to receiving the request to perform the beam sweeping paging. That is, the BS 404 may receive the new data for the UE 402 from the core network, and the BS 404 may transmit the paging message to the UE 402 using the multiple beams to transmit the data for the UE 402 received from the core network. Accordingly, the UE 402 in motion may request the BS 404 to transmit the paging message using the beam sweep paging for improved reliability.
  • FIG. 5 is a flowchart 500 of a method of wireless communication.
  • the method may be performed by a UE (e.g., the UE 104/402; the apparatus 702) .
  • Optional aspects are illustrated with a dashed line.
  • the method may include aspects described in connection with the communication flow of FIG. 4, for example.
  • the UE may determine a motion state of the UE (408) .
  • 502 may be performed by a motion detection component 740.
  • the motion state may be determined using any of the aspects described in connection with FIG. 4.
  • the motion state may be based on predicted movement of the UE, and the lack of motion may be based on an estimation that the UE will not move during at least a period of time.
  • the motion state may be based on current motion of the UE.
  • the motion may be detected based on at least one of a sensor at the UE or an operation of the UE.
  • the UE may transmit a request to BS to perform a single beam paging using the single beam used in the RRC connected state based on the motion state indicating the lack of motion (410) .
  • 504 may be performed by a paging management component 742.
  • the single beam paging may be for the RRC inactive state or the RRC idle state of the UE.
  • the motion state may be determined while the UE is in an RRC connected state, and the UE transmits the request before transitioning to the RRC inactive state or the RRC idle state.
  • the single beam paging may be based on the single beam used in an RRC connected state.
  • the request to perform the single beam paging may be transmitted using any of the aspects described in connection with FIG. 4.
  • the request for the BS to perform the single beam paging may be transmitted through at least one of an RRC message, an uplink channel, or a physical wireless or wired signal.
  • the UE may enter the RRC inactive state or the RRC idle state (412) .
  • 506 may be performed by an RRC management component 744.
  • the UE may monitor for page based on the single beam paging (420) .
  • 508 may be performed by the paging management component 742.
  • the UE may determine the motion state of the UE (430) .
  • 510 may be performed by the motion detection component 740.
  • the UE may transmit a request to BS to perform a beam sweeping paging using multiple beams (432) .
  • 512 may be performed by the paging management component 742.
  • the request to perform the beam sweeping paging may be transmitted using any of the aspects described in connection with FIG. 4.
  • the request for the BS to stop the single beam paging and perform the beam sweeping paging may be transmitted through at least one of an RRC message, an uplink channel after entering an RRC connected state, or a physical wireless or wired signal.
  • the UE may monitor for the page based on the multiple beams (434) .
  • 514 may be performed by the paging management component 742.
  • FIG. 6 is a flowchart 600 of a method of wireless communication.
  • the method may be performed by a base station (e.g., the base station 102/180/404; the apparatus 802) .
  • a base station e.g., the base station 102/180/404; the apparatus 802 .
  • Optional aspects are illustrated with a dashed line.
  • the method may include aspects described in connection with the communication flow of FIG. 4, for example.
  • the base station may receive a request to perform a single beam paging based on a motion state of the UE that indicates a lack of motion, the single beam paging to be transmitted using a single beam used with the UE in an RRC connected state (410) .
  • 602 may be performed by a paging management component 840.
  • the BS may receive the request from the UE while the UE is in the RRC connected state.
  • the request to perform the single beam paging may be received using any of the aspects described in connection with FIG. 4.
  • the base station may page the UE using the single beam (422) .
  • 604 may be performed the paging management component 840.
  • the single beam paging may be for an RRC inactive state or an RRC idle state of the UE.
  • the base station may receive a request to stop the single beam paging and perform a beam sweeping paging using multiple beams (432) .
  • 606 may be performed by the paging management component 840.
  • the request to perform the beam sweeping paging may be received using any of the aspects described in connection with FIG. 4.
  • the base station may page the UE using the multiple beams in response to receiving the request to stop the single beam paging and perform the beam sweeping paging (436) .
  • 608 may be performed by the paging management component 840.
  • FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 702.
  • the apparatus 702 is a UE and includes a cellular baseband processor 704 (also referred to as a modem) coupled to a cellular RF transceiver 722 and one or more subscriber identity modules (SIM) cards 720, an application processor 706 coupled to a secure digital (SD) card 708 and a screen 710, a Bluetooth module 712, a wireless local area network (WLAN) module 714, a Global Positioning System (GPS) module 716, and a power supply 718.
  • the cellular baseband processor 704 communicates through the cellular RF transceiver 722 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 704 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 704, causes the cellular baseband processor 704 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 704 when executing software.
  • the cellular baseband processor 704 further includes a reception component 730, a communication manager 732, and a transmission component 734.
  • the communication manager 732 includes the one or more illustrated components.
  • the components within the communication manager 732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 704.
  • the cellular baseband processor 704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 702 may be a modem chip and include just the baseband processor 704, and in another configuration, the apparatus 702 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 702.
  • the communication manager 732 includes a motion detection component 740 that is configured to determine a motion state of the UE, and determine the motion state of the UE, e.g., as described in connection with 502 and 510.
  • the communication manager 732 further includes a paging management component 742 that is configured to transmit a request to BS to perform a single beam paging using the single beam used in the RRC connected state based on the motion state indicating the lack of motion, monitor for page based on the single beam paging, the UE may transmit a request to BS to perform a beam sweeping paging using multiple beams, and monitor for the page based on the multiple beams, e.g., as described in connection with 504, 508, 512, and 514.
  • the communication manager 732 further includes an RRC management component 744 that is configured to enter the RRC inactive state or the RRC idle state, e.g., as described in connection with 506.
  • the components 740, 742, and 744 may be configured to communicate with each other.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 5. As such, each block in the aforementioned flowcharts of FIGs. 4 and 5 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 702 includes means for determining the motion state of the UE that indicates the lack of motion, means for transmitting a request to the BS to perform the single beam paging based on determining that the motion state indicates the lack of motion, means for entering the RRC inactive state or the RRC idle state, means for monitoring for the page from the BS based on the single beam, means for determining the motion state of the UE in the RRC inactive state or the RRC idle state, means for transmitting the request to the BS to perform the beam sweeping paging based on detecting the motion of the UE, and means for monitoring for the page from the BS using multiple beams.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 702 configured to perform the functions recited by the aforementioned means.
  • the apparatus 702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802.
  • the apparatus 802 is a BS and includes a baseband unit 804.
  • the baseband unit 804 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 804 may include a computer-readable medium /memory.
  • the baseband unit 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 804, causes the baseband unit 804 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 804 when executing software.
  • the baseband unit 804 further includes a reception component 830, a communication manager 832, and a transmission component 834.
  • the communication manager 832 includes the one or more illustrated components.
  • the components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 804.
  • the baseband unit 804 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 832 includes a paging management component 840 that is configured to receive a request to perform a single beam paging using a single beam used in the RRC connected mode, page the UE using the single beam, receive a request to perform a beam sweeping paging using multiple beams, and page the UE using the multiple beams, e.g., as described in connection with 602, 604, 606, and 608.
  • a paging management component 840 that is configured to receive a request to perform a single beam paging using a single beam used in the RRC connected mode, page the UE using the single beam, receive a request to perform a beam sweeping paging using multiple beams, and page the UE using the multiple beams, e.g., as described in connection with 602, 604, 606, and 608.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 6. As such, each block in the aforementioned flowcharts of FIGs. 4 and 6 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 802 includes means for receiving, from the UE, the request to perform the single beam paging based on the motion state of the UE that indicates the lack of motion, the single beam paging to be transmitted using the single beam used with the UE in the RRC connected state, means for paging the UE using the single beam in response to receiving the request from the UE, means for receiving, from the UE in the RRC inactive state or the RRC idle state, the request to stop the single beam paging and perform the beam sweeping paging with multiple beams, and means for paging the UE using the multiple beams in response to receiving the request to stop the single beam paging and perform the beam sweeping paging.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means.
  • the apparatus 802 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • the apparatus of wireless communication may be a UE or a BS.
  • the UE may determine a motion state of the UE that indicates a lack of motion, and transmit a request to the BS to perform a single beam paging using the single beam used in an RRC connected state based on determining that the motion state indicates the lack of motion.
  • the single beam paging is for RRC inactive state or the RRC idle state of the UE.
  • the UE may detect the motion based on at least one of a sensor at the UE or an operation of the UE.
  • the determination of the lack of motion may be based on at least one of current motion of the UE or a predicted movement of the UE based on an estimation that the UE will not move during at least a period of time.
  • the UE may determine the motion state of the UE while the UE is in the RRC connected state, and transmit the request before transitioning to the RRC inactive state or the RRC idle state.
  • the UE may enter the RRC inactive state or the RRC idle state and monitor for a page from the BS based on a single beam.
  • the BS may receive the request to perform the single beam paging, and page the UE using the single beam.
  • the UE in the RRC inactive state or the RRC idle state may determine a motion state of the UE and transmit a request to perform the beam sweeping paging to the BS based on detecting a motion of the UE.
  • the BS may page the UE using multiple beams based on detecting a motion of the UE.
  • the UE may monitor for the page from the BS using multiple beams.
  • the UE and the BS may improve the efficiency of the beam radio resources used in paging without reducing the mobility and the reliability of the UE, based on the motion state of the UE in the RRC inactive state or the RRC idle state.
  • the beam radio resources for paging may be increased by the number of the beams.
  • the provided method and the apparatus may benefit various wireless communications scenarios such as mMTC which suffers from limited beam radio resources for beam sweeping paging.
  • Regular UE such as smart phones may also benefit from the provided method and the apparatus since the UEs may be placed at a stationary position.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Abstract

The apparatus of wireless communication may be a UE or a base station. The UE may determine a motion state of the UE that indicates a lack of motion, and transmit a request to the BS to perform a single beam paging based on determining that the motion state indicates the lack of motion. The UE may enter RRC inactive state or the RRC idle state and monitor for a page from the BS based on a single beam. The BS may receive the request to perform the single beam paging, and page the UE using the single beam. The UE in the RRC inactive state or the RRC idle state may transmit a request to perform the beam sweeping paging to the BS based on detecting a motion of the UE, and the BS may page the UE using multiple beams.

Description

METHOD AND APPARATUS FOR SINGLE BEAM PAGING IN 5G BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to a method and apparatus for negotiating a single beam paging between a user equipment (UE) and the base station (BS) in 5G New Radio (NR) .
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G NR. 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus of wireless communication may be a UE or a BS. The UE may determine a motion state of the UE that indicates a lack of motion, and transmit a request to the BS to perform a single beam paging using the single beam used in a radio resource control (RRC) connected state based on determining that the motion state indicates the lack of motion. The single beam paging is for RRC inactive state or the RRC idle state of the UE. The UE may detect the motion based on at least one of a sensor or sensors at the UE or an operation of the UE. The determination of the lack of motion may be based on at least one of lack of current motion of the UE or a predicted movement of the UE based on an estimation that the UE will not move during at least a period of time. The UE may determine the motion state of the UE while the UE is in the RRC connected state, and transmit the request before transitioning to the RRC inactive state or the RRC idle state. The UE may enter the RRC inactive state or the RRC idle state and monitor for a page from the BS based on a single beam. The BS may receive the request to perform the single beam paging, and page the UE using the single beam. Furthermore, the UE in the RRC inactive state or the RRC idle state may determine a motion state of the UE and transmit a request to perform the beam sweeping paging to the BS based on detecting a motion of the UE. The BS may page the UE using multiple beams based on detecting a motion of the UE. The UE may monitor for the page from the BS using multiple beams.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be  employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a call-flow diagram of a method of the wireless communication.
FIG. 5 is a flowchart of a method of wireless communication.
FIG. 6 is a flowchart of a method of wireless communication.
FIG. 7 is a diagram illustrating an example of a hardware implementation for an example apparatus.
FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some  instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned  types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102′ may have a coverage area 110′ that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous  network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102′ may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102′  may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102′, employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz -7.125 GHz) and FR2 (24.25 GHz -52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz -300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
base station 102, whether a small cell 102′ or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182′. The UE 104 may receive the beamformed signal from the  base station 180 in one or more receive directions 182". The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets  are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the UE 104 and/or base station 180 may be configured to negotiating a single beam paging in 5G NR (198) . Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are  dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of  240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE.The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a  system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression / decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX. Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354 RX receives a signal through its respective antenna 352. Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various  signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1. At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 198 of FIG. 1.
During the RRC idle state or the RRC inactive state, a paging message may be transmitted using beam sweeping and the UE can select an arbitrary transmission beam to receive paging message. That is, when the UE is in the RRC idle state or the RRC inactive state, the BS may transmit the paging message including paging identifier (e.g., temporary identifier, a 5G short temporary mobile subscriber identity (5G-S-TMSI) , or an inactive radio network temporary identifier (I-RNTI) ) when the BS receives new data to be transmitted to the UE. The UE may monitor for the paging message from the BS to receive the paging message. Since the UE in the RRC idle state or the RRC inactive state and the BS had not established a beamformed signal,  the BS may transmit the paging message to the UE through the beam sweeping, by transmitting the paging message using multiple beams.
The beam sweeping paging may increase mobility and reliability of the UE. However, the beam sweeping paging may also increase the cost of communication by wasting the beam bandwidth and the radio resources. Particularly, the beam sweeping paging may be less suitable for a massive machine-type-communication (mMTC) . The mMTC includes an extensive number of high space density UEs in service, and therefore, the beam sweeping paging may not be suitable to transmit paging message due to lack of beam bandwidth to support all of the UEs in service.
On the other hand, a single beam paging will increase radio resources by N times, where N is the beam number. That is, transmitting the paging message using a single beam paging may increase the beam bandwidth, and the BS may support N UEs with N number of beams, compared to the BS supporting 1 UE with N beams with beam sweeping paging. For example, if the next-generation radio access network (NG-RAN) is using 6 transmission beams, the single beam paging may increase the paging radio resources by 6 times. The application of the single beam paging may be more beneficial for the mMTC scenario.
To apply the single beam paging, the UE may negotiate the single beam paging with the BS based on the determination that the UE is still or has no plan to move. That is, the UE in the RRC connected state may, before entering the RRC inactive state or the RRC idle state, determine a motion state of the UE and request the BS to perform a single beam paging using the single beam based on determining that the motion state indicates lack of motion.
FIG. 4 is a call-flow diagram 400 of a method of the wireless communication.
At 406, the UE 402 may be in the RRC connected state with the BS 404. Through beamforming procedure, the UE 402 and the BS 404 may communicate using the beam formed signals to compensate for the path loss and short range.
At 408, the UE 402 may determine the motion state of the UE 402 to forecast whether the UE 402 will move or not. That is, the UE 402 in the RRC connected state may determine a motion state of the UE 402 that indicates a lack of motion. The determination of the lack of motion may be based on at least one of a lack of current motion of the UE 402 or a predicted movement an estimation that the UE 402 will not move for a period of time. For example, the determination of the lack of motion of the UE 402 may be associated with a period of time, e.g., a prediction, an estimation,  or a determination that the UE 402 will or is likely to move within a particular period of time. In the mMTC and many other communication scenarios the UE 402 may keep still and have no plan to move. That is, since the UEs 402 in the mMTC environment are largely stationary or temporarily located at certain location, the UEs 402 in the mMTC environment may determine that the motion state of the UE 402 indicates the lack of motion.
The motion state of the UE 402 may be determined based on a sensor at the UE 402 or an operation of the UE 402. That is, the UE 402 may be equipped with at least one sensor that may detect the current motion of the UE 402 or the predict movement of the UE based on the estimating that the UE 402 will not move for a period of time. For example, the at least one sensor may include a global positioning system (GPS) , a triangulation system using radio signals (e.g., wireless communication (3G/4G LTE/5G NR) signal, WiFi signal, or a Bluetooth signal) , an accelerometer, an altimeter, etc. For example, the operation of the UE 402 may include operating or scheduling the UE 402 to change its position, operating the UE 402 to change position according to a preloaded program code or an autonomous driving, etc. However, the embodiments are not limited thereto, and any form of detecting or estimating the motion of the UE 402 may be implemented to determine the motion state of the UE 402.
At 410, based on the determination that the UE 402 plans to keep still, the UE 402 may submit a request to the BS 404 and the core network (e.g., a fifth generation core (5GC) and the NG-RAN) to perform the single beam paging before the RRC connection is released to enter the RRC idle state or the RRC connection is inactivated to enter the RRC inactive. That is, the UE 402 may, based on determining that the motion state of the UE 402 indicates the lack of motion, the UE 402 may transmit, to the BS 404 and the core network, the request to perform the single beam paging. The UE 402 may, before entering the RRC idle state by a release of the RRC connection or entering the RRC inactive state by an inactivation of the RRC connection, request the BS 404 to perform a single beam paging based on determining that the motion state indicates lack of motion.
The request to perform the single beam paging may be transmitted to the BS 404 through any form of viable communication. For example, the request to perform the single beam may be transmitted to the BS 404 through an RRC message, an uplink channel (PUCCH or PUSCH) , or a physical wireless or wired signal. For example,  the request to perform the single beam may even be transmitted to the BS 404 through a dedicated wireless signal or a hardwired communication. However, the embodiments are not limited thereto, and any form of communication may be implemented to transmit the request to perform the single beam to the BS 404.
The BS 404 and the core network (5GC/NG-RAN) may accept the UE 402’s request of the single beam paging, and the BS 404 and the core network (5GC/NG-RAN) may transmit the paging message to the UE 402 using single beam that is used by the UE 402 in the RRC connected state. That is, the BS 404 and the core network may receive the UE 402’s request to perform the single beam paging for the RRC inactive state or the RRC idle state of the UE 402 using the single beam used in the RRC connected state of the UE 402.
At 412, the UE 402 may enter the RRC inactive state of the RRC idle state. That is, the UE 402 in the RRC connected state may enter the RRC idle state by the release of the RRC connection or enter the RRC inactive state by the inactivating of the RRC connection.
At 420, the UE 402 may monitor for the page transmitted from the BS 404 based on the single beam paging. That is, the UE 402 may monitor the single beam used in the RRC connected stated of the UE 402 to receive the paging message from the BS 404.
At 422, the BS 404 may page the UE 402 using the single beam in response to receiving the request to perform the single beam paging. That is, the BS 404 may receive the new data for the UE 402 from the core network, and the BS 404 may transmit the paging message to the UE 402 using the single beam to transmit the data for the UE 402 received from the core network.
At 430, the UE 402 may detect that the UE 402 starts to move (using the UE 402 build-in sensor) during the RRC idle state or the RRC inactive state. That is, the UE 402 may determine the motion state of the UE 402 to forecast whether the UE 402 will move or not. The UE 402 in the RRC inactive state or the RRC idle state may determine a motion state of the UE 402 that indicates a motion. That is, the UE 402 may determine the motion state of the UE 402 that indicates a motion based on at least one of current motion of the UE 402 or a predicted movement of the UE 402 based on an estimation that the UE 402 will move in a period of time, as proffered regarding 408.
At 432, The UE 402 may send a new request to the BS 404 or the core network (5GC/NG-RAN) to stop the single beam paging. That is, upon determining that the  motion state of the UE 402 indicates a motion, the UE 402 may transmit a request to the BS 404 to stop the single beam paging and request the beam sweeping paging. Accordingly, the UE 402 may request the BS 404 to transmit the paging message using multiple beams.
At 434, the UE 402 may monitor for the page transmitted from the BS 404 based on the beam sweeping paging. That is, the UE 402 may monitor the multiple beams to receive the paging message from the BS 404 upon determining that the motion state of the UE 402 indicates a motion.
At 436, the BS 404 may page the UE 402 using the multiple beams in response to receiving the request to perform the beam sweeping paging. That is, the BS 404 may receive the new data for the UE 402 from the core network, and the BS 404 may transmit the paging message to the UE 402 using the multiple beams to transmit the data for the UE 402 received from the core network. Accordingly, the UE 402 in motion may request the BS 404 to transmit the paging message using the beam sweep paging for improved reliability.
FIG. 5 is a flowchart 500 of a method of wireless communication. The method may be performed by a UE (e.g., the UE 104/402; the apparatus 702) . Optional aspects are illustrated with a dashed line. The method may include aspects described in connection with the communication flow of FIG. 4, for example.
At 502, the UE may determine a motion state of the UE (408) . For example, 502 may be performed by a motion detection component 740. The motion state may be determined using any of the aspects described in connection with FIG. 4. For example, the motion state may be based on predicted movement of the UE, and the lack of motion may be based on an estimation that the UE will not move during at least a period of time. Alternatively or additionally, the motion state may be based on current motion of the UE. The motion may be detected based on at least one of a sensor at the UE or an operation of the UE.
At 504, the UE may transmit a request to BS to perform a single beam paging using the single beam used in the RRC connected state based on the motion state indicating the lack of motion (410) . For example, 504 may be performed by a paging management component 742. The single beam paging may be for the RRC inactive state or the RRC idle state of the UE. The motion state may be determined while the UE is in an RRC connected state, and the UE transmits the request before transitioning to the RRC inactive state or the RRC idle state. The single beam paging may be based  on the single beam used in an RRC connected state. The request to perform the single beam paging may be transmitted using any of the aspects described in connection with FIG. 4. The request for the BS to perform the single beam paging may be transmitted through at least one of an RRC message, an uplink channel, or a physical wireless or wired signal.
At 506, the UE may enter the RRC inactive state or the RRC idle state (412) . For example, 506 may be performed by an RRC management component 744.
At 508, the UE may monitor for page based on the single beam paging (420) . For example, 508 may be performed by the paging management component 742.
At 510, the UE may determine the motion state of the UE (430) . For example, 510 may be performed by the motion detection component 740.
At 512, upon determining that the motion state of the UE indicates a motion, the UE may transmit a request to BS to perform a beam sweeping paging using multiple beams (432) . For example, 512 may be performed by the paging management component 742. The request to perform the beam sweeping paging may be transmitted using any of the aspects described in connection with FIG. 4. The request for the BS to stop the single beam paging and perform the beam sweeping paging may be transmitted through at least one of an RRC message, an uplink channel after entering an RRC connected state, or a physical wireless or wired signal.
At 514, the UE may monitor for the page based on the multiple beams (434) . For example, 514 may be performed by the paging management component 742.
FIG. 6 is a flowchart 600 of a method of wireless communication. The method may be performed by a base station (e.g., the base station 102/180/404; the apparatus 802) . Optional aspects are illustrated with a dashed line. The method may include aspects described in connection with the communication flow of FIG. 4, for example.
At 602, the base station may receive a request to perform a single beam paging based on a motion state of the UE that indicates a lack of motion, the single beam paging to be transmitted using a single beam used with the UE in an RRC connected state (410) . For example, 602 may be performed by a paging management component 840. The BS may receive the request from the UE while the UE is in the RRC connected state. The request to perform the single beam paging may be received using any of the aspects described in connection with FIG. 4.
At 604, the base station may page the UE using the single beam (422) . For example, 604 may be performed the paging management component 840. The single beam paging may be for an RRC inactive state or an RRC idle state of the UE.
At 606, the base station may receive a request to stop the single beam paging and perform a beam sweeping paging using multiple beams (432) . For example, 606 may be performed by the paging management component 840. The request to perform the beam sweeping paging may be received using any of the aspects described in connection with FIG. 4.
At 608, the base station may page the UE using the multiple beams in response to receiving the request to stop the single beam paging and perform the beam sweeping paging (436) . For example, 608 may be performed by the paging management component 840.
FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 702. The apparatus 702 is a UE and includes a cellular baseband processor 704 (also referred to as a modem) coupled to a cellular RF transceiver 722 and one or more subscriber identity modules (SIM) cards 720, an application processor 706 coupled to a secure digital (SD) card 708 and a screen 710, a Bluetooth module 712, a wireless local area network (WLAN) module 714, a Global Positioning System (GPS) module 716, and a power supply 718. The cellular baseband processor 704 communicates through the cellular RF transceiver 722 with the UE 104 and/or BS 102/180. The cellular baseband processor 704 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 704, causes the cellular baseband processor 704 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 704 when executing software. The cellular baseband processor 704 further includes a reception component 730, a communication manager 732, and a transmission component 734. The communication manager 732 includes the one or more illustrated components. The components within the communication manager 732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 704. The cellular baseband processor 704 may be a component of  the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 702 may be a modem chip and include just the baseband processor 704, and in another configuration, the apparatus 702 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 702.
The communication manager 732 includes a motion detection component 740 that is configured to determine a motion state of the UE, and determine the motion state of the UE, e.g., as described in connection with 502 and 510. The communication manager 732 further includes a paging management component 742 that is configured to transmit a request to BS to perform a single beam paging using the single beam used in the RRC connected state based on the motion state indicating the lack of motion, monitor for page based on the single beam paging, the UE may transmit a request to BS to perform a beam sweeping paging using multiple beams, and monitor for the page based on the multiple beams, e.g., as described in connection with 504, 508, 512, and 514. The communication manager 732 further includes an RRC management component 744 that is configured to enter the RRC inactive state or the RRC idle state, e.g., as described in connection with 506. The  components  740, 742, and 744 may be configured to communicate with each other.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 5. As such, each block in the aforementioned flowcharts of FIGs. 4 and 5 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 702, and in particular the cellular baseband processor 704, includes means for determining the motion state of the UE that indicates the lack of motion, means for transmitting a request to the BS to perform the single beam paging based on determining that the motion state indicates the lack of motion, means for entering the RRC inactive state or the RRC idle state, means for monitoring for the page from the BS based on the single beam, means for determining the motion state of the UE in the RRC inactive state or the RRC idle state, means for transmitting the request to the BS to perform the beam sweeping paging based on  detecting the motion of the UE, and means for monitoring for the page from the BS using multiple beams. The aforementioned means may be one or more of the aforementioned components of the apparatus 702 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802. The apparatus 802 is a BS and includes a baseband unit 804. The baseband unit 804 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 804 may include a computer-readable medium /memory. The baseband unit 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 804, causes the baseband unit 804 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 804 when executing software. The baseband unit 804 further includes a reception component 830, a communication manager 832, and a transmission component 834. The communication manager 832 includes the one or more illustrated components. The components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 804. The baseband unit 804 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 832 includes a paging management component 840 that is configured to receive a request to perform a single beam paging using a single beam used in the RRC connected mode, page the UE using the single beam, receive a request to perform a beam sweeping paging using multiple beams, and page the UE using the multiple beams, e.g., as described in connection with 602, 604, 606, and 608.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 6. As such, each block in the aforementioned flowcharts of FIGs. 4 and 6 may be performed by a component  and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 802, and in particular the baseband unit 804, includes means for receiving, from the UE, the request to perform the single beam paging based on the motion state of the UE that indicates the lack of motion, the single beam paging to be transmitted using the single beam used with the UE in the RRC connected state, means for paging the UE using the single beam in response to receiving the request from the UE, means for receiving, from the UE in the RRC inactive state or the RRC idle state, the request to stop the single beam paging and perform the beam sweeping paging with multiple beams, and means for paging the UE using the multiple beams in response to receiving the request to stop the single beam paging and perform the beam sweeping paging. The aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 802 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
Referring again to FIGs. 1, 4, 5, 6, 7, and 8, the apparatus of wireless communication may be a UE or a BS. The UE may determine a motion state of the UE that indicates a lack of motion, and transmit a request to the BS to perform a single beam paging using the single beam used in an RRC connected state based on determining that the motion state indicates the lack of motion. The single beam paging is for RRC inactive state or the RRC idle state of the UE. The UE may detect the motion based on at least one of a sensor at the UE or an operation of the UE. The determination of the lack of motion may be based on at least one of current motion of the UE or a predicted movement of the UE based on an estimation that the UE will not move during at least a period of time. The UE may determine the motion state of the UE while the UE is in the RRC connected state, and transmit the request before transitioning to the RRC inactive state or the RRC idle state. The UE may enter the RRC inactive state or the  RRC idle state and monitor for a page from the BS based on a single beam. The BS may receive the request to perform the single beam paging, and page the UE using the single beam. Furthermore, the UE in the RRC inactive state or the RRC idle state may determine a motion state of the UE and transmit a request to perform the beam sweeping paging to the BS based on detecting a motion of the UE. The BS may page the UE using multiple beams based on detecting a motion of the UE. The UE may monitor for the page from the BS using multiple beams.
Accordingly, the UE and the BS may improve the efficiency of the beam radio resources used in paging without reducing the mobility and the reliability of the UE, based on the motion state of the UE in the RRC inactive state or the RRC idle state. Particularly, the beam radio resources for paging may be increased by the number of the beams. The provided method and the apparatus may benefit various wireless communications scenarios such as mMTC which suffers from limited beam radio resources for beam sweeping paging. Regular UE such as smart phones may also benefit from the provided method and the apparatus since the UEs may be placed at a stationary position.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the  occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
The following examples are illustrative only and may be combined with aspects of other embodiments or teachings described herein, without limitation.
Figure PCTCN2020102317-appb-000001
Figure PCTCN2020102317-appb-000002
Figure PCTCN2020102317-appb-000003

Claims (50)

  1. A method of wireless communication of a user equipment (UE) , comprising:
    determining that a motion state of the UE indicates a lack of motion;
    transmitting a request to a base station (BS) to perform a single beam paging using a single beam based on determining that the motion state indicates the lack of motion;
    entering a radio resource control (RRC) inactive state or an RRC idle state; and
    monitoring for a page from the BS based on the single beam.
  2. The method of claim 1, wherein the motion state is based on predicted movement of the UE, and wherein the lack of motion is based on an estimation that the UE will not move during at least a period of time.
  3. The method of claim 1, wherein the motion state is based on current motion of the UE.
  4. The method of claim 1, wherein the single beam paging is for the RRC inactive state or the RRC idle state of the UE.
  5. The method of claim 4, wherein the motion state is determined while the UE is in a radio resource control (RRC) connected state, and the UE transmits the request before transitioning to the RRC inactive state or the RRC idle state.
  6. The method of claim 1, wherein the single beam paging is based on the single beam used in an RRC connected state.
  7. The method of claim 1, wherein the UE is configured to detect the motion based on at least one of a sensor at the UE or an operation of the UE.
  8. The method of claim 1, wherein the request for the BS to perform the single beam paging is transmitted through at least one of an RRC message, an uplink channel, or a physical wireless or wired signal.
  9. The method of claim 1, further comprising:
    determining the motion state of the UE in the RRC inactive state or the RRC idle state; and
    transmitting a request to the BS to perform a beam sweeping paging based on detecting a motion of the UE.
  10. The method of claim 9, further comprising:
    monitoring for the page from the BS using multiple beams.
  11. The method of claim 9, wherein the request for the BS to stop the single beam paging and perform the beam sweeping paging is transmitted through at least one of an RRC message, an uplink channel after entering an RRC connected state, or a physical wireless or wired signal.
  12. An apparatus for wireless communication of a user equipment (UE) , comprising:
    means for determining that a motion state of the UE indicates a lack of motion;
    means for transmitting a request to a base station (BS) to perform a single beam paging using a single beam based on determining that the motion state indicates the lack of motion;
    means for entering a radio resource control (RRC) inactive state or an RRC idle state; and
    means for monitoring for a page from the BS based on the single beam.
  13. The apparatus of claim 12, wherein the motion state is based on predicted movement of the UE, and wherein the lack of motion is based on an estimation that the UE will not move during at least a period of time.
  14. The apparatus of claim 12, wherein the motion state is based on current motion of the UE.
  15. The apparatus of claim 12, wherein the single beam paging is for the RRC inactive state or the RRC idle state of the UE.
  16. The apparatus of claim 15, wherein the motion state is determined while the UE is in a radio resource control (RRC) connected state, and the UE transmits the request before transitioning to the RRC inactive state or the RRC idle state.
  17. The apparatus of claim 12, wherein the single beam paging is based on the single beam used in an RRC connected state.
  18. The apparatus of claim 12, wherein the UE is configured to detect the motion based on at least one of a sensor at the UE or an operation of the UE.
  19. The apparatus of claim 12, wherein the request for the BS to perform the single beam paging is transmitted through at least one of an RRC message, an uplink channel, or a physical wireless or wired signal.
  20. The apparatus of claim 12, further comprising:
    means for determining the motion state of the UE in the RRC inactive state or the RRC idle state; and
    means for transmitting a request to the BS to perform a beam sweeping paging based on detecting a motion of the UE.
  21. The apparatus of claim 20, further comprising:
    means for monitoring for the page from the BS using multiple beams.
  22. The apparatus of claim 20, wherein the request for the BS to stop the single beam paging and perform the beam sweeping paging is transmitted through at least one of an RRC message, an uplink channel after entering an RRC connected state, or a physical wireless or wired signal.
  23. An apparatus for wireless communication of a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    determine that a motion state of the UE indicates a lack of motion;
    transmit a request to a base station (BS) to perform a single beam paging using a single beam based on determining that the motion state indicates the lack of motion;
    enter a radio resource control (RRC) inactive state or an RRC idle state; and
    monitor for a page from the BS based on the single beam.
  24. The apparatus of claim 23, wherein the motion state is based on predicted movement of the UE, and wherein the lack of motion is based on an estimation that the UE will not move during at least a period of time.
  25. The apparatus of claim 23, wherein the motion state is based on current motion of the UE.
  26. The apparatus of claim 23, wherein the single beam paging is for the RRC inactive state or the RRC idle state of the UE.
  27. The apparatus of claim 26, wherein the motion state is determined while the UE is in a radio resource control (RRC) connected state, and the UE transmits the request before transitioning to the RRC inactive state or the RRC idle state.
  28. The apparatus of claim 23, wherein the single beam paging is based on the single beam used in an RRC connected state.
  29. The apparatus of claim 23, wherein the UE is configured to detect the motion based on at least one of a sensor at the UE or an operation of the UE.
  30. The apparatus of claim 23, wherein the request for the BS to perform the single beam paging is transmitted through at least one of an RRC message, an uplink channel, or a physical wireless or wired signal.
  31. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 23, wherein the at least one processor is further configured to:
    determine the motion state of the UE in the RRC inactive state or the RRC idle state; and transmit a request to the BS to perform a beam sweeping paging based on detecting a motion of the UE.
  32. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 31, wherein the at least one processor is further configured to: monitor for the page from the BS using multiple beams.
  33. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 31, wherein the request for the BS to stop the single beam paging and perform the beam sweeping paging is transmitted through at least one of an RRC message, an uplink channel after entering an RRC connected state, or a physical "wireless or wired signal.
  34. [Corrected under Rule 26, 16.07.2020]
    A computer-readable medium storing computer executable code, the code when executed by a processor of a user equipment (UE) cause the processor to: determine that a motion state of the UE indicates a lack of motion; transmit a request to a base station (BS) to perform a single beam paging using a single beam based on determining that the motion state indicates the lack of motion; enter a radio resource control (RRC) inactive state or an RRC idle state; and monitor for a page from the BS based on the single beam.
  35. [Corrected under Rule 26, 16.07.2020]
    A method of wireless communication of a base station (BS), comprising: receiving, from a user equipment (UE), a request to perform a single beam paging based on a motion state of the UE that indicates a lack of motion, the single beam paging to be transmitted using a single beam used with the UE in a radio resource control (RRC) connected state; and paging the UE using the single beam in response to receiving the request from the UE.
  36. [Corrected under Rule 26, 16.07.2020]
    The method of claim 35, wherein the single beam paging is for an RRC inactive state or an RRC idle state of the UE.
  37. [Corrected under Rule 26, 16.07.2020]
    The method of claim 35, wherein the BS receives the request from the UE while the UE is in the RRC connected state.
  38. [Corrected under Rule 26, 16.07.2020]
    The method of claim 37, wherein the BS is configured to page the UE using the single beam while the UE is in an RRC inactive state or an RRC idle state.
  39. [Corrected under Rule 26, 16.07.2020]
    The method of claim 35, further comprising: receiving, from the UE in an RRC inactive state or an RRC idle state, a request to stop the single beam paging and perform a beam sweeping paging with multiple beams; and paging the UE using the multiple beams in response to receiving the request to
    stop the single beam paging and perform the beam sweeping paging.
  40. [Corrected under Rule 26, 16.07.2020]
    An apparatus for wireless communication of a base station (BS), comprising: means for receiving, from a user equipment (UE), a request to perform a single beam paging based on a motion state of the UE that indicates a lack of motion, the single beam paging to be transmitted using a single beam used with the UE in a radio resource control (RRC) connected state; and means for paging the UE using the single beam in response to receiving the request from the UE.
  41. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 40, wherein the single beam paging is for an RRC inactive state or an RRC idle state of the UE.
  42. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 40, wherein the BS receives the request from the UE while the UE is in the RRC connected state.
  43. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 42, wherein the BS is configured to page the UE using the single beam while the UE is in an RRC inactive state or an RRC idle state.
  44. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 40, further comprising: means for receiving, from the UE in an RRC inactive state or an RRC idle state, a request to stop the single beam paging and perform a beam sweeping paging with multiple beams; and means for paging the UE using the multiple beams in response to receiving the request to stop the single beam paging and perform the beam sweeping paging.
  45. [Corrected under Rule 26, 16.07.2020]
    An apparatus for wireless communication of a base station (BS), comprising; a memory; and at least one processor coupled to the memory and configured to: receive, from a user equipment (UE), a request to perform a single beam paging based on a motion state of the UE that indicates a lack of motion, the single beam paging to be transmitted using a single beam used with the UE in a radio resource control (RRC) connected state; and
    page the UE using the single beam in response to receiving the request from the UE.
  46. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 45, wherein the single beam paging is for an RRC inactive state or an RRC idle state of the UE,
  47. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 45, wherein the BS receives the request from the UE while the UE is in the RRC connected state.
  48. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 47, wherein the BS is configured to page the UE using the single beam while the UE is in an RRC inactive state or an RRC idle state.
  49. [Corrected under Rule 26, 16.07.2020]
    The apparatus of claim 45, wherein the at least one processor is further configured to: receive, from the UE in an RRC inactive state or an RRC idle state, a request to stop the single beam paging and perform a beam sweeping paging with multiple beams; and page the UE using the multiple beams in response to receiving the request to stop the single beam paging and perform the beam sweeping paging.
  50. [Corrected under Rule 26, 16.07.2020]
    A computer-readable medium storing computer executable code, the code when executed by a processor of a base station (BS) cause the processor to:receive, from a user equipment (UE), a request to perform a single beam paging based on a motion state of the UE that indicates a lack of motion, the single beam paging to be transmitted using a single beam used with the UE in a radio resource control (RRC) connected state; and page the UE using the single beam in response to receiving the request from the UE.
PCT/CN2020/102317 2020-07-16 2020-07-16 Method and apparatus for single beam paging in 5g WO2022011634A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/102317 WO2022011634A1 (en) 2020-07-16 2020-07-16 Method and apparatus for single beam paging in 5g
US17/369,515 US11653329B2 (en) 2020-07-16 2021-07-07 Beam-specific page monitoring
PCT/US2021/040835 WO2022015567A1 (en) 2020-07-16 2021-07-08 Beam-specific page monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102317 WO2022011634A1 (en) 2020-07-16 2020-07-16 Method and apparatus for single beam paging in 5g

Publications (1)

Publication Number Publication Date
WO2022011634A1 true WO2022011634A1 (en) 2022-01-20

Family

ID=79555927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102317 WO2022011634A1 (en) 2020-07-16 2020-07-16 Method and apparatus for single beam paging in 5g

Country Status (1)

Country Link
WO (1) WO2022011634A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182784A1 (en) * 2016-08-04 2019-06-13 Ntt Docomo, Inc. User terminal and radio communication method
CN110072285A (en) * 2018-01-22 2019-07-30 维沃移动通信有限公司 Configuration method, terminal and the base station of frequency domain resource
WO2019190252A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving paging message in next generation mobile communication system
US20200022106A1 (en) * 2017-03-24 2020-01-16 Samsung Electronics Co., Ltd. Method and device for performing paging in mobile communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182784A1 (en) * 2016-08-04 2019-06-13 Ntt Docomo, Inc. User terminal and radio communication method
US20200022106A1 (en) * 2017-03-24 2020-01-16 Samsung Electronics Co., Ltd. Method and device for performing paging in mobile communication system
CN110072285A (en) * 2018-01-22 2019-07-30 维沃移动通信有限公司 Configuration method, terminal and the base station of frequency domain resource
WO2019190252A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving paging message in next generation mobile communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONY: "Considerations on DL reference signals for NR positioning", 3GPP DRAFT; R1-1906852 POS DL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728303 *

Similar Documents

Publication Publication Date Title
US11758547B2 (en) Default PDSCH beam selection
US11452089B2 (en) Signaling to activate uplink trigger states
US11477683B2 (en) Event triggered uplink beam report
US20230180141A1 (en) Cell identifier for pucch/pusch pathloss reference or beam reference signal
US11751186B2 (en) Single layer uplink non-codebook based precoding optimization
US11678223B2 (en) Transmission power control command accumulation for NR-dual connectivity
US11791971B2 (en) Component carrier group based bandwidth part switching
EP4062682B1 (en) Ue capability reporting for configured and activated pathloss reference signals
US20210112434A1 (en) Preconfigured gaps for measurements based on configured bwps
US11616558B2 (en) Procedural delays and scheduling restriction based on component carrier groups
US11589355B2 (en) UE null space report
WO2022077206A1 (en) Protocol stacks and bearer modeling for rsu assisted uu connectivity
US20230276510A1 (en) Assisted connectivity
US20230276353A1 (en) Fast slicing switching via scg suspension or activation
WO2022021154A1 (en) Methods and apparatus for data transmission in rach procedures
US20230239123A1 (en) Associating transmission reception point with control resource set
WO2022011634A1 (en) Method and apparatus for single beam paging in 5g
US11757503B2 (en) UE panel specific beam application time
US11457460B2 (en) Inter-cell interference coordination in mmWave networks
US11588607B2 (en) User equipment-assisted information for full-duplex user equipment
WO2022061698A1 (en) Recover from downlink data transfer failure
WO2022056667A1 (en) Optimization for stand alone cell selection
US20240015717A1 (en) Enablement relation rule for beam indication schemes
WO2022051923A1 (en) Activation of joint dl/ul tci state for single dci and multiple trps
WO2021253267A1 (en) Method to handle out of local area data network service area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945352

Country of ref document: EP

Kind code of ref document: A1