WO2021243597A1 - Radio frequency sensing coexistence with wireless communication - Google Patents

Radio frequency sensing coexistence with wireless communication Download PDF

Info

Publication number
WO2021243597A1
WO2021243597A1 PCT/CN2020/094113 CN2020094113W WO2021243597A1 WO 2021243597 A1 WO2021243597 A1 WO 2021243597A1 CN 2020094113 W CN2020094113 W CN 2020094113W WO 2021243597 A1 WO2021243597 A1 WO 2021243597A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
sensing
wireless device
wireless communication
transmitted
Prior art date
Application number
PCT/CN2020/094113
Other languages
French (fr)
Inventor
Yuwei REN
Yin Huang
Hao Xu
Jiuyuan LU
Chirag Sureshbhai Patel
Andrian Beletchi
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/094113 priority Critical patent/WO2021243597A1/en
Publication of WO2021243597A1 publication Critical patent/WO2021243597A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to a radio frequency sensing at a wireless device.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • Radio frequency (RF) sensing uses a wireless signal, such as a radar signal, to image an environment, detect gestures, sense control actions, detect an action, or monitor a surrounding.
  • a wireless signal such as a radar signal
  • Aspects presented herein enable coexistence between RF sensing and wireless communication between wireless communication devices. Aspects enable a single wireless device to perform RF sensing and wireless communication.
  • a method, a computer-readable medium, and an apparatus are provided at a first wireless device.
  • the method may be performed by a user equipment (UE) , a base station, an access point, etc.
  • the apparatus transmits an RF sensing waveform in a frequency band during a first time duration and transmits or receives wireless communication with a second wireless device in the frequency band during a second time duration.
  • the frequency band may comprise a millimeter wave (mmW) band.
  • the wireless communication may comprise NR communication.
  • the first wireless device may receive a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4A illustrates an example RF sensing waveform.
  • FIGs. 4B and 4C illustrate example of RF sensing.
  • FIG. 5 illustrates example frequency bands for wireless communication.
  • FIG. 6 illustrates examples waveforms for RF sensing.
  • FIGs. 7A and 7B illustrate example resources for RF sensing signals in connection with wireless communication signals.
  • FIGs. 8A, 8B, and 8C illustrate example resources for RF sensing signals.
  • FIG. 9 illustrates example aspects of an RF sensing waveform and a wireless communication signal.
  • FIG. 10 illustrates example aspects of an RF sensing waveform and a wireless communication signal.
  • FIG. 11 illustrates example aspects of an RF sensing waveform and a wireless communication signal.
  • FIG. 12 is a flowchart of a method of wireless communication.
  • FIG. 13 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the wireless communication system and access network 100 may include one or more UEs 104 in communication with a base station 102 or 180.
  • the system may include UEs 104 in communication with other UEs 104.
  • the wireless communication system and access network 100 may include an integrated access and backhaul (IAB) network that includes multiple cells in communication with each other to provide an access network and a backhaul network to a core network such as core network 190 or Evolved Packet Core (EPC) 160.
  • the IAB network may include one or more IAB nodes 103.
  • the IAB nodes may exchange communication with other IAB nodes 103, with a base station 102 or 180, and/or with UEs 104.
  • a wireless device such as UE 104 /base station 102 or 180, IAB node 103, or access node 150 may include an RF sensing and wireless communication component 198 configured to transmit an RF sensing waveform in a frequency band during a first time duration and transmit or receive wireless communication with a second wireless device in the frequency band during a second time duration.
  • RF sensing and wireless communication component 198 configured to transmit an RF sensing waveform in a frequency band during a first time duration and transmit or receive wireless communication with a second wireless device in the frequency band during a second time duration.
  • Aspects presented herein enable coexistence between RF sensing and wireless communication between wireless communication devices. Aspects enable a single wireless device to perform RF sensing and wireless communication. Although some examples of the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, Wi-Fi and other wireless technologies.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum.
  • EHF Extremely high frequency
  • EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • Frequency range bands include frequency range 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency range 2 (FR2) , which includes frequency bands above 24.250 GHz.
  • mmW /near mmW radio frequency (RF) band e.g., 3 GHz –300 GHz
  • Base stations /UEs may operate within one or more frequency range bands.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packe
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe.
  • the 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While subframes 3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15kHz, where ⁇ is the numerology 0 to 4.
  • is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal may be within symbol 4 of particular subframes of a frame.
  • the SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • MIB master information block
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 316 or 368, the RX processor 356 or 370, and the controller/processor 359 or 375 may be configured to perform aspects in connection with the RF sensing and wireless communication component 198 of FIG. 1.
  • Sensed data may be captured by various types of sensors, including accelerometers, gyroscopes, etc.
  • An RF sensor may detect an RF signal.
  • the RF signal may be transmitted and reflections of the signal may be received by a sensor.
  • the RF signal may be reflected or blocked by surroundings or an environment including objects, structures, vehicles, people, etc.
  • RF sensing may use the reflected RF signal to detect activity, such as movement of a person, a part of a body, or object tracking.
  • RF sensing may use the reflected RF signal to detect a gesture, such as a movement of a user’s hand or other body part, a facial expression, etc.
  • the received signal may be used to determine a position, movement direction, speed, vital signs, activity, gesture, among others.
  • RF sensing may be performed with a radar signal to image an environment based on the range, Doppler, or angle information for the RF signal received by the RF sensor.
  • a higher frequency with a larger bandwidth may provide an improved range granularity for RF sensing, which may enable applications for a mobile device.
  • a handheld radar device may be used.
  • a dedicated radar sensor Soli
  • a series radar short range device may be used for in-car-based control.
  • a sensing chip may send the signal (s) , e.g., radar signals, with pre-defined waveform.
  • the signals include an FMCW signal, a pulse signal, among others.
  • FIG. 4A illustrates an example frequency-modulated continuous-wave (FMCW) signals 400 that may be used for RF sensing.
  • FIG. 4A illustrates the change in frequency of the signals over time.
  • FIG. 4A also illustrates that at a given time, there is a difference between the frequencies of the two signals that corresponds to ⁇ f. Similarly, the two signals reach a particular frequency at times that differ by ⁇ t.
  • FMCW frequency-modulated continuous-wave
  • FIG. 4B illustrates aspects of RF sensing.
  • the RF sensor 404 receives the RF signal, e.g., the signal reflected by object 402.
  • the received (e.g., reflected) signals are correlated with the transmitted signals to determine a range, Doppler, and/or angle information about the object.
  • a Fast Fourier Transform (FFT) 408 may be performed on the received signal 406.
  • the processed signal may be classified, as illustrated at 410, to map the received signal to a defined actions 412.
  • FFT Fast Fourier Transform
  • RF sensing may be used to monitor for a hand gesture, a facial expression, etc. that may be used to trigger an action at a device.
  • Wireless communication may be exchanged using higher frequencies, and larger bandwidths that support high data throughput.
  • the mmW spectrum in the 30-300 GHz frequency may be used in 5G NR and 802.11ad networks.
  • FIG. 5 illustrates an example 500 of frequency bands that may be used for wireless communication and that may also be used for RF sensing, as described herein.
  • a bandwidth of 2GHz may enable data rates of multigigabits per second.
  • the slot length becomes shorter as the subcarrier spacing gets wider, e.g., a 240 KHZ subcarrier in 28 GHz has a 250us per slot. The shorter slot may reduce the latency of the communication.
  • the deployments with such frequency bands may also provide capability for RF sensing to support different applications, e.g., applications at a wireless device.
  • the range resolution may be given by c/2B, where c is the speed of light, and B is the utilized bandwidth. A larger B may lead to a higher resolution but may be associated with higher resource and computation costs.
  • the angle resolution may be roughly given by ⁇ /D, where ⁇ is the wavelength, and D is the array size.
  • the doppler resolution may be given by ⁇ /2T, where ⁇ is the wavelength, and T is the length selected to analyze the doppler effect.
  • FIG. 4C illustrates an example 450 in which a first wireless device 452 may exchange wireless communication with a second wireless device 454a or 454b. Additionally, the first wireless device 452 and/or the second wireless device 454a or 454b may transmit an RF signal and perform RF sensing.
  • Radar sensing may be configured with a chirp waveform, and the wireless communication (e.g., NR, WIFI, etc. ) may be based on an OFDM waveform.
  • FIG. 6 illustrates an example of a chirp waveform 600 and an example of an OFDM waveform 650.
  • the chirp waveform may be simple from the perspective of the hardware implementation and may provide simplified sensing processing of the received signals.
  • the OFDM waveform may involve more complicated hardware and signal processing yet may provide higher spectral efficiency for data transmission. Aspects presented herein enable a single device to provide data communication (e.g., high rate data communication) and high resolution sensing.
  • a mmW device such as a mmW mobile device, a mmW base station, or a mmW access point may provide high rate data communication and high resolution RF sensing.
  • RF sensing between an access point and a mobile device may enable determinations about a user’s motion and actions.
  • the combined RF sensing and transmission/reception of data provides various benefits.
  • the RF sensing may provide imaging information about the environment, e.g., a 3D map for virtual reality, that may be applied in connection with the exchange of VR data.
  • the RF sensing may provide high resolution location, e.g., for industrial IoT, e.g., in connection with the exchange of data in the industrial IoT communication system.
  • the RF sensing may assist the communication, e.g., by helping to enable more accurate beam tracking to select beams for exchanging the data communication.
  • the RF sensing may be used for machine learning based applications and may help to provide a more effective interface between a user and machine.
  • the wireless communication and the RF sensing may be performed together in a shared, or common, frequency band.
  • the communication may be based on NR in the mmW frequency band, and the RF sensing may be performed in the MMW frequency band.
  • the use of the shared frequency for RF sensing and data communication may provide better communication and additional dimension for the RF sensing application (e.g., the radar application) .
  • a single wireless device may transmit an RF sensing waveform in the mmW frequency band and may exchange data communication in the mmW frequency band.
  • the data communication in the frequency band may be based on TDD multiplexing.
  • the wireless device may be in an idle mode or a discontinuous reception (DRX) mode.
  • the wireless device may periodically monitor for communication from another device and may enter a sleep mode or a low power mode for a duration between the periodic monitoring/transmission.
  • the time between the periodic monitoring or transmissions may be referred to as an idle portion.
  • the device may transmit the RF sensing waveform during the idle portion, e.g., during the sleep duration.
  • FIG. 7A illustrates an example idle mode pattern having idle portions 702 and a periodic portions during which the wireless device monitors for a periodic broadcast message from another wireless device.
  • a UE in an idle mode may monitor for a periodic PBCH during the periodic resource 704.
  • the UE may transmit the RF sensing waveform during the periods between the resources for monitoring for the PBCH, e.g., transmitting the RF sensing waveform during the idle portions 702.
  • the RF sensing waveform may be transmitted using unoccupied resources in time or in frequency.
  • the RF sensing waveform may be transmitted as multiple pulses, as illustrated in FIG. 7A. Pulses is merely one, non-limiting example of the type of waveform that may be transmitted during the idle period 702.
  • the RF sensing waveform may be transmitted in an unoccupied bandwidth.
  • the wireless device may transmit the RF sensing waveform during a gap period, such as a gap duration provided for switching between uplink and downlink communication.
  • FIG. 7B illustrates an example 720 showing durations for downlink communication and uplink communication having a gap duration 706 provided between the uplink and downlink resources.
  • the device may transmit an RF sensing waveform during the gap portion 706.
  • FIG. 7B illustrates a pulse based pattern for the RF sensing waveform.
  • the RF sensing waveform may include a short-range pulse based waveform applied as a radar pattern. Other examples of an RF waveform may also be used during the gap portion 706.
  • the RF sensing waveform may be inserted into portions of a data interval.
  • the portions may be based on various durations or patterns.
  • the portions may be slot based.
  • FIG. 8A illustrates an example 800 showing a slot for the RF sensing waveform inserted into data slots.
  • the portions may be symbol based.
  • FIG. 8B illustrates a pattern of data symbols and RF sensing waveform symbols. The symbol or slot format may be changed. A specific portion of one or more slots or one or more symbols may be configured, indicated, or reserved for sensing and for the transmission of an RF sensing waveform.
  • the slot pattern or the symbol pattern may be configured for the wireless device.
  • the wireless device may be a UE, and a base station may configure an RF sensing portion for the UE, e.g., in symbols or slot.
  • the RF sensing portion may be based on an independent interval.
  • the time resources for the RF sensing interval may be multiplexed with a data payload, such as illustrated in the example 820 in FIG. 8C.
  • the interval may have any time duration.
  • the interval may be based on a configured pattern for periodic transmissions or for periodic reception.
  • FIG. 8C illustrates a preamble transmission and a data payload transmission followed by a sensing interval 826.
  • the following preamble and data payload may be based on a periodic pattern.
  • the data payload and preamble may be for transmission or may be for reception by the wireless device that uses the sensing interval 826 to perform RF sensing by transmitting an RF sensing waveform.
  • the sensing waveform may be based on a wideband signal.
  • the RF sensing waveform may have a different frequency range than the data communication transmitted or received by the wireless device.
  • FIG. 9 illustrates a first example in which the RF sensing waveform comprises an independent radar signal comprising a chirp, an FMCW (e.g., as shown at 900) , or a pulse (e.g., as shown at 910) that is transmitted on a wideband.
  • the data communication 902 may be transmitted on a narrower frequency range than the RF sensing waveform 904.
  • FIG. 10 illustrates an example 1000 in which the RF sensing waveform may include a preamble and an OFDM waveform in a wideband.
  • the RF sensing waveform may include the preamble and/or the OFDM waveform, for example.
  • the example in FIG. 10 may enable RF sensing with a wideband bandwidth.
  • the preamble and OFDM symbols may be based on a waveform for the wireless communication. For example, if the wireless communication is based on NR, the RF sensing waveform may be based on the NR preamble and OFDM waveform.
  • FIG. 10 illustrates that the RF sensing waveform may include multiple repetitions of the signal, such as multiple repetitions of an SRS sequence.
  • the multiple repetitions of the SRS sequence may be transmitted on a larger bandwidth than the SRS transmissions for the data communication.
  • the preamble and OFDM waveform for the RF sensing may be based on a different waveform than the waveform for the data communication.
  • the waveform for the RF sensing may be optimized for a sensing processing by the wireless device.
  • FIG. 11 illustrates an example 1100 in which the RF sensing waveform may include a preamble and an OFDM waveform over multiple carriers.
  • the RF sensing waveform may include the preamble and/or the OFDM waveform, for example.
  • different RF sensing sequences may be allocated to different subcarriers across a wideband bandwidth.
  • the sequence may be based on a sequence configuration for the data communication. For example, if the wireless communication is based on NR, the sequence may be based on an NR sequence. In other examples, the sequence may be different than a sequence for the data communication.
  • FIG. 11 illustrates that a short preamble sequence may be transmitted in a repeated manner and shifting to different subcarriers for each of the repetitions. Thus, the RF sensing waveform may hop frequencies between repetitions.
  • aspects described herein may be applied for RF sensing waveforms and wireless communication may be applied in various frequency bands, such as a mmW frequency band, an unlicensed WLAN band, a THerz band, etc.
  • aspects may be applied for a UE performing uplink RF sensing. Aspects may be applied by a base station performing downlink RF sensing. Aspects may be applied by an access point performing downlink RF sensing. As well, aspects may be performed by a UE in sidelink communication, e.g., a UE performing sidelink RF sensing and transmitting sidelink data communication.
  • FIG. 12 is a flowchart 1200 of a method of wireless communication that is performed by a first wireless device.
  • the first wires device may be a UE, a base station, or an access point, such as an IAB node, a WiFi access point, etc. (e.g., the UE 104, 350, the base station 102, 180, 310, the IAB node 103, the access point 150; the apparatus 1302) .
  • Optional aspects are illustrated with a dashed line.
  • the method enables coexistence between RF sensing and wireless communication between wireless communication devices. Aspects enable a single wireless device to perform RF sensing and wireless communication.
  • the first wireless device transmits an RF sensing waveform in a frequency band in a first time duration.
  • the transmission may be performed by the transmission component 1334 of the apparatus 1302 in FIG. 13, for example.
  • the frequency band may be associated with NR communication, an unlicensed WLAN frequency band, or a THerz frequency band.
  • the first wireless device transmits or receives wireless communication with a second wireless device in the frequency band in a second time duration.
  • the RF sensing waveform transmission and the wireless communication may be performed by the wireless device at different times, e.g., may be multiplexed at different times.
  • the wireless communication may include the transmission or reception of data, for example.
  • the transmission or reception may be performed by any combination of the wireless communication component 1342, the reception component 1330, or the transmission component 1334 of the apparatus 1302 in FIG. 13, for example.
  • the frequency band may comprise a mmW band.
  • the wireless communication may comprise NR based communication.
  • the wireless communication transmitted or received with the second wireless device may include uplink and/or downlink communication.
  • the wireless communication transmitted or received with the second wireless device in the frequency band comprises sidelink communication.
  • the RF sensing waveform may comprises a wideband signal over a frequency range that includes and is wider than the frequency band.
  • the RF sensing waveform may include aspects described in connection with FIG. 9.
  • the RF sensing waveform may comprises a radar signal.
  • the RF sensing waveform may be based on a chirp, a pulse, or an FMCW.
  • the RF sensing waveform may comprise one or more of a preamble or an OFDM waveform over a wideband.
  • the RF sensing waveform may include aspects described in connection with FIG. 10, for example.
  • the preamble and/or the OFDM waveform for the RF sensing waveform may be based on a common preamble and/or common OFDM waveform that is common to the wireless communication that is transmitted or received with the second wireless device.
  • the RF sensing waveform may be based on a configuration for multiple repetitions of a sounding reference signal sequence over the wideband.
  • the preamble and/or the OFDM waveform for the RF sensing waveform may be different than for the wireless communication that is transmitted or received with the second wireless device, e.g., at 1204.
  • the RF sensing waveform may comprise at least one of a preamble or an OFDM waveform that is transmitted over multiple carriers.
  • the RF sensing waveform may include aspects described in connection with FIG. 11, for example.
  • the RF sensing waveform may be based on a frequency hopping pattern in which the at least one of the preamble or the OFDM waveform hops to different carriers across a wideband over time. For example, different sensing sequences may be allocated to different sub-carriers across a wideband.
  • the preamble and/or the OFDM waveform for the RF sensing waveform may be based on a common preamble and/or common OFDM waveform that is common to the wireless communication that is transmitted or received with the second wireless device, e.g., at 1204.
  • the preamble and/or the OFDM waveform for the RF sensing waveform may be different than for the wireless communication that is transmitted or received with the second wireless device, e.g., at 1204.
  • the first wireless device may be in an idle mode, and the RF sensing waveform may be transmitted during an idle portion or a sleep duration of the idle mode.
  • the first wireless device may monitor for a periodic broadcast message in the idle mode and may transmit the RF sensing waveform between the monitoring for the periodic broadcast message.
  • a UE in an idle mode may monitor for a periodic PBCH from the network.
  • the first wireless device may transmit the wireless communication to the second wireless device and receive the wireless communication from the second wireless device with a gap or guard duration between transmission and reception.
  • the RF sensing waveform may be transmitted in the gap or the guard duration between the transmission and the reception.
  • the gap or the guard duration may be provided for switching between the transmission and the reception.
  • the RF sensing waveform may comprise a short-range pulse based pattern.
  • the RF sensing waveform may be transmitted in a first time interval and the wireless communication may be transmitted or received in a second time interval, such as described in connection with any of FIGs. 8A-8C.
  • the first time interval may be based on one or more slots, such as described in connection with FIG. 8A.
  • the first time interval may be based on one or more symbols, such as described in connection with FIG. 8B.
  • the first time interval is configured for a time duration, such as described in connection with FIG. 8C.
  • the first wireless device may receive a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information.
  • the reception may be performed by the RF sensor 1320, the reception component 1330, or the reflected signal component 1344 of the apparatus 1302 in FIG. 13, for example.
  • the determination of the range, Doppler, or angle information may be performed by the determination component 1346 of the RF sensor manager 1335.
  • FIG. 13 is a diagram 1300 illustrating an example of a hardware implementation for an apparatus 1302.
  • the apparatus 1302 may be a UE in some examples.
  • the apparatus 1302 may be a base station.
  • the apparatus 1302 may be an access node.
  • the apparatus 1302 may be an IAB node.
  • the apparatus 1302 includes a cellular baseband processor 1304 (also referred to as a modem) coupled to a cellular RF transceiver 1322, an application processor 1306 coupled to a secure digital (SD) card 1308 and a screen 1310, a Bluetooth module 1312, a wireless local area network (WLAN) module 1314, a Global Positioning System (GPS) module 1316, a power supply 1318, and an RF sensor 1320. If the apparatus 1302 is a UE, the apparatus may include one or more subscriber identity modules (SIM) cards.
  • SIM subscriber identity modules
  • the cellular baseband processor 1304 communicates through the cellular RF transceiver 1322, e.g., with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 1304 may include a computer-readable medium /memory.
  • the cellular baseband processor 1304 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 1304, causes the cellular baseband processor 1304 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 1304 when executing software.
  • the cellular baseband processor 1304 further includes a reception component 1330, a communication manager 1332, and a transmission component 1334.
  • the communication manager 1332 includes the one or more illustrated components.
  • the components within the communication manager 1332 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 1304.
  • the cellular baseband processor 1304 may be a component of the base station 310 or the UE 350 and may include the memory 360 and/or at least one of the TX Processor 316 or 368, the RX Processor 356 or 370, and the controller/processor 359 or 375.
  • the apparatus 1302 may be a modem chip and include just the baseband processor 1304, and in another configuration, the apparatus 1302 may be the entire UE (e.g., see 350 of FIG. 3) , the entire base station (e.g., see 310 of FIG. 3) , the entire access node, or the entire IAB node and may include the additional modules of the apparatus 1302.
  • the communication manager 1332 includes a wireless communication component 1342 that is configured to exchange wireless communication with a second wireless device (e.g., with a UE 104, a base station 102 or 180, an IAB node, among other wireless devices) , e.g., as described in connection with 1204 in FIG. 12.
  • the apparatus 1302 includes an RF sensing manager 1335 that includes an RF waveform component 1340 configured to transmit an RF sensing waveform in a frequency band, e.g., a same frequency band as used to exchange communication by the wireless communication component 1342, e.g., as described in connection with 1202 in FIG. 12.
  • the RF sensing manager 1335 may further include a reflected signal component 1344 configured to receive a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information, e.g., as described in connection with 1206 in FIG. 12.
  • the RF sensing manager 1335 may further include a determination component 1346 configured to determine one or more of range, Doppler, or angle information.
  • the apparatus 1302 may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 12. As such, each block in the aforementioned flowchart of FIG. 12 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 1302 includes means for transmitting a RF sensing waveform in a frequency band and means for transmitting or receiving wireless communication with a second wireless device in the frequency band.
  • the apparatus 1302 may further include means for receiving a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 1302 configured to perform the functions recited by the aforementioned means.
  • the apparatus 1302 may include the TX Processor 316 or 368, the RX Processor 356 or 370, and the controller/processor 359 or 375.
  • the aforementioned means may be the TX Processor 316 or 368, the RX Processor 356 or 370, and the controller/processor 359 or 375 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.
  • Example 1 is a method of wireless communication at a first wireless device, comprising: transmitting an RF sensing waveform in a frequency band during a first time duration; and transmitting or receiving wireless communication with a second wireless device in the frequency band during a second time duration.
  • Example 2 the method of Example 1 further includes that the frequency band comprises a mmW band.
  • Example 3 the method of Example 1 or Example 2 further includes that the wireless communication comprises NR communication.
  • Example 4 the method of any of Examples 1-3 further includes receiving a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information.
  • Example 5 the method of any of Examples 1-4 further includes that the first wireless device is in an idle mode, and wherein the RF sensing waveform is transmitted during an idle portion or a sleep duration of the idle mode.
  • Example 6 the method of any of Examples 1-5 further includes that the first wireless device monitors for a periodic broadcast message in the idle mode, and wherein the RF sensing waveform is transmitted between the monitoring for the periodic broadcast message.
  • Example 7 the method of any of Examples 1-6 further includes that the first wireless device transmits the wireless communication to the second wireless device and receives the wireless communication from the second wireless device with a gap or guard duration between transmission and reception, and wherein the RF sensing waveform is transmitted in the gap or the guard duration between the transmission and the reception.
  • Example 8 the method of any of Examples 1-7 further includes that the gap or the guard duration is provided for switching between the transmission and the reception.
  • Example 9 the method of any of Examples 1-8 further includes that the RF sensing waveform is transmitted in a first time interval and the wireless communication is transmitted or received in a second time interval.
  • Example 10 the method of any of Examples 1-9 further includes that the first time interval is based on one or more slots.
  • Example 11 the method of any of Examples 1-10 further includes that the first time interval is based on one or more symbols.
  • Example 12 the method of any of Examples 1-11 further includes that the first time interval is configured for a time duration.
  • Example 13 the method of any of Examples 1-12 further includes that the RF sensing waveform comprises a wideband signal over a frequency range that includes and is wider than the frequency band.
  • Example 14 the method of any of Examples 1-13 further includes that the RF sensing waveform comprises a radar signal.
  • Example 15 the method of any of Examples 1-14 further includes that the RF sensing waveform is based on a chirp, a pulse, or a FMCW.
  • Example 16 the method of any of Examples 1-15 further includes that the RF sensing waveform comprises one or more of a preamble or an OFDM waveform over a wideband.
  • Example 17 the method of any of Examples 1-16 further includes that the preamble and the OFDM waveform for the RF sensing waveform are based on a common preamble and common OFDM waveform that is common to the wireless communication that is transmitted or received with the second wireless device.
  • Example 18 the method of any of Examples 1-17 further includes that the RF sensing waveform is based on a configuration for multiple repetitions of a sounding reference signal sequence over the wideband.
  • Example 19 the method of any of Examples 1-18 further includes that the preamble and the OFDM waveform for the RF sensing waveform are different than for the wireless communication that is transmitted or received with the second wireless device.
  • Example 20 the method of any of Examples 1-19 further includes that the RF sensing waveform comprises at least one of a preamble and an OFDM waveform that is transmitted over multiple carriers.
  • Example 21 the method of any of Examples 1-20 further includes that the RF sensing waveform is based on a frequency hopping pattern in which the at least one of the preamble or the OFDM waveform hops to different carriers across a wideband over time.
  • Example 22 the method of any of Examples 1-21 further includes that different sensing sequences are allocated to different sub-carriers across a wideband.
  • Example 23 the method of any of Examples 1-22 further includes that the preamble and the OFDM waveform for the RF sensing waveform are based on a common preamble and common OFDM waveform that is common to the wireless communication that is transmitted or received with the second wireless device.
  • Example 24 the method of any of Examples 1-23 further includes that the preamble and the OFDM waveform for the RF sensing waveform are different than for the wireless communication that is transmitted or received with the second wireless device.
  • Example 25 the method of any of Examples 1-24 further includes that the frequency band is associated with NR communication, an unlicensed WLAN frequency band, or a THerz frequency band.
  • Example 26 the method of any of Examples 1-25 further includes that the first wireless device comprises a UE, a base station, or an access point.
  • Example 27 the method of any of Examples 1-26 further includes that the wireless communication transmitted or received with the second wireless device in the frequency band comprises sidelink communication.
  • Example 28 is a device including one or more processors and one or more memories in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the device to implement a method as in any of Examples 1-27.
  • Example 29 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of Examples 1-27.
  • Example 30 is a non-transitory computer readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of Examples 1-27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method, apparatus, and computer readable medium for wireless communication at a first wireless device in which the first wireless device transmits a radio frequency (RF) sensing waveform in a frequency band during a first time duration and transmits or receives wireless communication with a second wireless device in the frequency band during a second time duration.

Description

RADIO FREQUENCY SENSING COEXISTENCE WITH WIRELESS COMMUNICATION BACKGROUND
Technical Field
The present disclosure relates generally to communication systems, and more particularly, to a radio frequency sensing at a wireless device.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Radio frequency (RF) sensing uses a wireless signal, such as a radar signal, to image an environment, detect gestures, sense control actions, detect an action, or monitor a surrounding. Aspects presented herein enable coexistence between RF sensing and wireless communication between wireless communication devices. Aspects enable a single wireless device to perform RF sensing and wireless communication.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided at a first wireless device. The method may be performed by a user equipment (UE) , a base station, an access point, etc. The apparatus transmits an RF sensing waveform in a frequency band during a first time duration and transmits or receives wireless communication with a second wireless device in the frequency band during a second time duration.
In some aspects, the frequency band may comprise a millimeter wave (mmW) band. In some aspects, the wireless communication may comprise NR communication. In some aspects, the first wireless device may receive a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4A illustrates an example RF sensing waveform.
FIGs. 4B and 4C illustrate example of RF sensing.
FIG. 5 illustrates example frequency bands for wireless communication.
FIG. 6 illustrates examples waveforms for RF sensing.
FIGs. 7A and 7B illustrate example resources for RF sensing signals in connection with wireless communication signals.
FIGs. 8A, 8B, and 8C illustrate example resources for RF sensing signals.
FIG. 9 illustrates example aspects of an RF sensing waveform and a wireless communication signal.
FIG. 10 illustrates example aspects of an RF sensing waveform and a wireless communication signal.
FIG. 11 illustrates example aspects of an RF sensing waveform and a wireless communication signal.
FIG. 12 is a flowchart of a method of wireless communication.
FIG. 13 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without  these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory  (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells. The wireless communication system and access network 100 may include one or more UEs 104 in communication with a base station 102 or 180. The system may include UEs 104 in communication with other UEs 104. The wireless communication system and access network 100 may include an integrated access and backhaul (IAB) network that includes multiple cells in communication with each other to provide an access network and a backhaul network to a core network such as core network 190 or Evolved Packet Core (EPC) 160. The IAB network may include one or more IAB nodes 103. The IAB nodes may exchange communication with other IAB nodes 103, with a base station 102 or 180, and/or with UEs 104.
As presented herein, a wireless device, such as UE 104 /base station 102 or 180, IAB node 103, or access node 150 may include an RF sensing and wireless communication component 198 configured to transmit an RF sensing waveform in a frequency band during a first time duration and transmit or receive wireless communication with a second wireless device in the frequency band during a second time duration. Aspects presented herein enable coexistence between RF sensing and wireless communication between wireless communication devices. Aspects enable a single wireless device to perform RF sensing and wireless communication. Although some examples of the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, Wi-Fi and other wireless technologies.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base  stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near  mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Frequency range bands include frequency range 1 (FR1) , which includes frequency bands below 7.225 GHz, and frequency range 2 (FR2) , which includes frequency bands above 24.250 GHz. Communications using the mmW /near mmW radio frequency (RF) band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range. Base stations /UEs may operate within one or more frequency range bands. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.  Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a  global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe. The 5G/NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G/NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations  depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) ,  demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal  comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided  to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the  TX processor  316 or 368, the  RX processor  356 or 370, and the controller/ processor  359 or 375 may be configured to perform aspects in connection with the RF sensing and wireless communication component 198 of FIG. 1.
Sensed data may be captured by various types of sensors, including accelerometers, gyroscopes, etc. An RF sensor may detect an RF signal. The RF signal may be transmitted and reflections of the signal may be received by a sensor. The RF signal may be reflected or blocked by surroundings or an environment including objects, structures, vehicles, people, etc. RF sensing may use the reflected RF signal to detect activity, such as movement of a person, a part of a body, or object tracking. In some examples, RF sensing may use the reflected RF signal to detect a gesture, such as a movement of a user’s hand or other body part, a facial expression, etc. The received signal may be used to determine a position, movement direction, speed, vital signs, activity, gesture, among others.
RF sensing may be performed with a radar signal to image an environment based on the range, Doppler, or angle information for the RF signal received by the RF sensor. A higher frequency with a larger bandwidth may provide an improved range granularity for RF sensing, which may enable applications for a mobile  device. In some RF sensing applications, a handheld radar device may be used. In one example, a dedicated radar sensor (Soli) may be used to make a gesture classification based on RF sensing. As another example, a series radar short range device may be used for in-car-based control.
A sensing chip may send the signal (s) , e.g., radar signals, with pre-defined waveform. Examples of the signals include an FMCW signal, a pulse signal, among others. FIG. 4A illustrates an example frequency-modulated continuous-wave (FMCW) signals 400 that may be used for RF sensing. FIG. 4A illustrates the change in frequency of the signals over time. FIG. 4A also illustrates that at a given time, there is a difference between the frequencies of the two signals that corresponds to Δf. Similarly, the two signals reach a particular frequency at times that differ by Δt.
FIG. 4B illustrates aspects of RF sensing. The RF sensor 404 receives the RF signal, e.g., the signal reflected by object 402. The received (e.g., reflected) signals are correlated with the transmitted signals to determine a range, Doppler, and/or angle information about the object. For example, a Fast Fourier Transform (FFT) 408 may be performed on the received signal 406. The processed signal may be classified, as illustrated at 410, to map the received signal to a defined actions 412. Thus, RF sensing may be used to monitor for a hand gesture, a facial expression, etc. that may be used to trigger an action at a device.
Wireless communication may be exchanged using higher frequencies, and larger bandwidths that support high data throughput. As an example, the mmW spectrum in the 30-300 GHz frequency may be used in 5G NR and 802.11ad networks. FIG. 5 illustrates an example 500 of frequency bands that may be used for wireless communication and that may also be used for RF sensing, as described herein. A bandwidth of 2GHz may enable data rates of multigigabits per second. The slot length becomes shorter as the subcarrier spacing gets wider, e.g., a 240 KHZ subcarrier in 28 GHz has a 250us per slot. The shorter slot may reduce the latency of the communication.
The deployments with such frequency bands may also provide capability for RF sensing to support different applications, e.g., applications at a wireless device. As an example, the range resolution may be given by c/2B, where c is the speed of light, and B is the utilized bandwidth. A larger B may lead to a higher resolution but  may be associated with higher resource and computation costs. As another example, the angle resolution may be roughly given by λ/D, where λ is the wavelength, and D is the array size. The doppler resolution may be given by λ/2T, where λ is the wavelength, and T is the length selected to analyze the doppler effect.
Aspects presented herein provide for RF sensing in combination with data transmission by a single wireless device. FIG. 4C illustrates an example 450 in which a first wireless device 452 may exchange wireless communication with a  second wireless device  454a or 454b. Additionally, the first wireless device 452 and/or the  second wireless device  454a or 454b may transmit an RF signal and perform RF sensing.
Radar sensing may be configured with a chirp waveform, and the wireless communication (e.g., NR, WIFI, etc. ) may be based on an OFDM waveform. FIG. 6 illustrates an example of a chirp waveform 600 and an example of an OFDM waveform 650. The chirp waveform may be simple from the perspective of the hardware implementation and may provide simplified sensing processing of the received signals. The OFDM waveform may involve more complicated hardware and signal processing yet may provide higher spectral efficiency for data transmission. Aspects presented herein enable a single device to provide data communication (e.g., high rate data communication) and high resolution sensing. For example, a mmW device, such as a mmW mobile device, a mmW base station, or a mmW access point may provide high rate data communication and high resolution RF sensing. As illustrated in FIG. 4C, RF sensing between an access point and a mobile device may enable determinations about a user’s motion and actions. The combined RF sensing and transmission/reception of data provides various benefits. For example, the RF sensing may provide imaging information about the environment, e.g., a 3D map for virtual reality, that may be applied in connection with the exchange of VR data. The RF sensing may provide high resolution location, e.g., for industrial IoT, e.g., in connection with the exchange of data in the industrial IoT communication system. As another example, the RF sensing may assist the communication, e.g., by helping to enable more accurate beam tracking to select beams for exchanging the data communication. As another example, the RF sensing may be used for machine learning based applications and may help to provide a more effective interface between a user and machine.
As presented herein the wireless communication and the RF sensing may be performed together in a shared, or common, frequency band. For example, the communication may be based on NR in the mmW frequency band, and the RF sensing may be performed in the MMW frequency band. The use of the shared frequency for RF sensing and data communication may provide better communication and additional dimension for the RF sensing application (e.g., the radar application) . For example, a single wireless device may transmit an RF sensing waveform in the mmW frequency band and may exchange data communication in the mmW frequency band.
Aspects presented herein provide ways to combine the RF sensing waveform with the data communication and how to transmit the RF sensing waveform. In some aspects, the data communication in the frequency band may be based on TDD multiplexing.
In some examples, the wireless device may be in an idle mode or a discontinuous reception (DRX) mode. In the mode, the wireless device may periodically monitor for communication from another device and may enter a sleep mode or a low power mode for a duration between the periodic monitoring/transmission. The time between the periodic monitoring or transmissions may be referred to as an idle portion. The device may transmit the RF sensing waveform during the idle portion, e.g., during the sleep duration. FIG. 7A illustrates an example idle mode pattern having idle portions 702 and a periodic portions during which the wireless device monitors for a periodic broadcast message from another wireless device. For example, a UE in an idle mode may monitor for a periodic PBCH during the periodic resource 704. As illustrated in the pattern 710, the UE may transmit the RF sensing waveform during the periods between the resources for monitoring for the PBCH, e.g., transmitting the RF sensing waveform during the idle portions 702. Thus, the RF sensing waveform may be transmitted using unoccupied resources in time or in frequency. The RF sensing waveform may be transmitted as multiple pulses, as illustrated in FIG. 7A. Pulses is merely one, non-limiting example of the type of waveform that may be transmitted during the idle period 702. For example, the RF sensing waveform may be transmitted in an unoccupied bandwidth.
In another example, the wireless device may transmit the RF sensing waveform during a gap period, such as a gap duration provided for switching between uplink and downlink communication. FIG. 7B illustrates an example 720 showing durations for downlink communication and uplink communication having a gap duration 706 provided between the uplink and downlink resources. As illustrated at 720, the device may transmit an RF sensing waveform during the gap portion 706. FIG. 7B illustrates a pulse based pattern for the RF sensing waveform. As illustrated, the RF sensing waveform may include a short-range pulse based waveform applied as a radar pattern. Other examples of an RF waveform may also be used during the gap portion 706.
In other examples, the RF sensing waveform may be inserted into portions of a data interval. The portions may be based on various durations or patterns. In some examples, the portions may be slot based. FIG. 8A illustrates an example 800 showing a slot for the RF sensing waveform inserted into data slots. In some examples, the portions may be symbol based. FIG. 8B illustrates a pattern of data symbols and RF sensing waveform symbols. The symbol or slot format may be changed. A specific portion of one or more slots or one or more symbols may be configured, indicated, or reserved for sensing and for the transmission of an RF sensing waveform. In some examples, the slot pattern or the symbol pattern may be configured for the wireless device. For example, the wireless device may be a UE, and a base station may configure an RF sensing portion for the UE, e.g., in symbols or slot. In another example, the RF sensing portion may be based on an independent interval. The time resources for the RF sensing interval may be multiplexed with a data payload, such as illustrated in the example 820 in FIG. 8C. The interval may have any time duration. In some examples, the interval may be based on a configured pattern for periodic transmissions or for periodic reception. For example, FIG. 8C illustrates a preamble transmission and a data payload transmission followed by a sensing interval 826. The following preamble and data payload may be based on a periodic pattern. The data payload and preamble may be for transmission or may be for reception by the wireless device that uses the sensing interval 826 to perform RF sensing by transmitting an RF sensing waveform.
In some examples, the sensing waveform may be based on a wideband signal. Thus, the RF sensing waveform may have a different frequency range than the data  communication transmitted or received by the wireless device. FIG. 9 illustrates a first example in which the RF sensing waveform comprises an independent radar signal comprising a chirp, an FMCW (e.g., as shown at 900) , or a pulse (e.g., as shown at 910) that is transmitted on a wideband. As illustrated in FIG. 9, the data communication 902 may be transmitted on a narrower frequency range than the RF sensing waveform 904.
FIG. 10 illustrates an example 1000 in which the RF sensing waveform may include a preamble and an OFDM waveform in a wideband. The RF sensing waveform may include the preamble and/or the OFDM waveform, for example. The example in FIG. 10 may enable RF sensing with a wideband bandwidth. The preamble and OFDM symbols may be based on a waveform for the wireless communication. For example, if the wireless communication is based on NR, the RF sensing waveform may be based on the NR preamble and OFDM waveform. FIG. 10 illustrates that the RF sensing waveform may include multiple repetitions of the signal, such as multiple repetitions of an SRS sequence. The multiple repetitions of the SRS sequence may be transmitted on a larger bandwidth than the SRS transmissions for the data communication. In other examples, the preamble and OFDM waveform for the RF sensing may be based on a different waveform than the waveform for the data communication. For example, the waveform for the RF sensing may be optimized for a sensing processing by the wireless device.
FIG. 11 illustrates an example 1100 in which the RF sensing waveform may include a preamble and an OFDM waveform over multiple carriers. The RF sensing waveform may include the preamble and/or the OFDM waveform, for example. As an example, different RF sensing sequences may be allocated to different subcarriers across a wideband bandwidth. In some examples, the sequence may be based on a sequence configuration for the data communication. For example, if the wireless communication is based on NR, the sequence may be based on an NR sequence. In other examples, the sequence may be different than a sequence for the data communication. FIG. 11 illustrates that a short preamble sequence may be transmitted in a repeated manner and shifting to different subcarriers for each of the repetitions. Thus, the RF sensing waveform may hop frequencies between repetitions.
Aspects described herein may be applied for RF sensing waveforms and wireless communication may be applied in various frequency bands, such as a mmW frequency band, an unlicensed WLAN band, a THerz band, etc.
Aspects may be applied for a UE performing uplink RF sensing. Aspects may be applied by a base station performing downlink RF sensing. Aspects may be applied by an access point performing downlink RF sensing. As well, aspects may be performed by a UE in sidelink communication, e.g., a UE performing sidelink RF sensing and transmitting sidelink data communication.
FIG. 12 is a flowchart 1200 of a method of wireless communication that is performed by a first wireless device. The first wires device may be a UE, a base station, or an access point, such as an IAB node, a WiFi access point, etc. (e.g., the  UE  104, 350, the  base station  102, 180, 310, the IAB node 103, the access point 150; the apparatus 1302) . Optional aspects are illustrated with a dashed line. The method enables coexistence between RF sensing and wireless communication between wireless communication devices. Aspects enable a single wireless device to perform RF sensing and wireless communication.
At 1202, the first wireless device transmits an RF sensing waveform in a frequency band in a first time duration. The transmission may be performed by the transmission component 1334 of the apparatus 1302 in FIG. 13, for example. The frequency band may be associated with NR communication, an unlicensed WLAN frequency band, or a THerz frequency band.
At 1204, the first wireless device transmits or receives wireless communication with a second wireless device in the frequency band in a second time duration. As illustrated in the examples, e.g., in FIGs. 7A, 7B, 8A-C, 9, 10, and 11, the RF sensing waveform transmission and the wireless communication may be performed by the wireless device at different times, e.g., may be multiplexed at different times. The wireless communication may include the transmission or reception of data, for example. The transmission or reception may be performed by any combination of the wireless communication component 1342, the reception component 1330, or the transmission component 1334 of the apparatus 1302 in FIG. 13, for example. In some examples, the frequency band may comprise a mmW band. In some examples, the wireless communication may comprise NR based communication. In some examples, the wireless communication transmitted or received with the second  wireless device may include uplink and/or downlink communication. In some examples, the wireless communication transmitted or received with the second wireless device in the frequency band comprises sidelink communication.
The RF sensing waveform may comprises a wideband signal over a frequency range that includes and is wider than the frequency band. For example, the RF sensing waveform may include aspects described in connection with FIG. 9. The RF sensing waveform may comprises a radar signal. The RF sensing waveform may be based on a chirp, a pulse, or an FMCW. The RF sensing waveform may comprise one or more of a preamble or an OFDM waveform over a wideband. The RF sensing waveform may include aspects described in connection with FIG. 10, for example. The preamble and/or the OFDM waveform for the RF sensing waveform may be based on a common preamble and/or common OFDM waveform that is common to the wireless communication that is transmitted or received with the second wireless device. The RF sensing waveform may be based on a configuration for multiple repetitions of a sounding reference signal sequence over the wideband. The preamble and/or the OFDM waveform for the RF sensing waveform may be different than for the wireless communication that is transmitted or received with the second wireless device, e.g., at 1204.
The RF sensing waveform may comprise at least one of a preamble or an OFDM waveform that is transmitted over multiple carriers. The RF sensing waveform may include aspects described in connection with FIG. 11, for example. For example, the RF sensing waveform may be based on a frequency hopping pattern in which the at least one of the preamble or the OFDM waveform hops to different carriers across a wideband over time. For example, different sensing sequences may be allocated to different sub-carriers across a wideband. The preamble and/or the OFDM waveform for the RF sensing waveform may be based on a common preamble and/or common OFDM waveform that is common to the wireless communication that is transmitted or received with the second wireless device, e.g., at 1204. The preamble and/or the OFDM waveform for the RF sensing waveform may be different than for the wireless communication that is transmitted or received with the second wireless device, e.g., at 1204.
As described in connection with FIG. 7A, the first wireless device may be in an idle mode, and the RF sensing waveform may be transmitted during an idle portion  or a sleep duration of the idle mode. For example, the first wireless device may monitor for a periodic broadcast message in the idle mode and may transmit the RF sensing waveform between the monitoring for the periodic broadcast message. For example, a UE in an idle mode may monitor for a periodic PBCH from the network. As described in connection with FIG. 7B, the first wireless device may transmit the wireless communication to the second wireless device and receive the wireless communication from the second wireless device with a gap or guard duration between transmission and reception. The RF sensing waveform may be transmitted in the gap or the guard duration between the transmission and the reception. The gap or the guard duration may be provided for switching between the transmission and the reception. The RF sensing waveform may comprise a short-range pulse based pattern.
The RF sensing waveform may be transmitted in a first time interval and the wireless communication may be transmitted or received in a second time interval, such as described in connection with any of FIGs. 8A-8C. For example, the first time interval may be based on one or more slots, such as described in connection with FIG. 8A. As another example, the first time interval may be based on one or more symbols, such as described in connection with FIG. 8B. As another example, the first time interval is configured for a time duration, such as described in connection with FIG. 8C.
As illustrated at 1206, the first wireless device may receive a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information. The reception may be performed by the RF sensor 1320, the reception component 1330, or the reflected signal component 1344 of the apparatus 1302 in FIG. 13, for example. The determination of the range, Doppler, or angle information may be performed by the determination component 1346 of the RF sensor manager 1335.
FIG. 13 is a diagram 1300 illustrating an example of a hardware implementation for an apparatus 1302. The apparatus 1302 may be a UE in some examples. In other examples, the apparatus 1302 may be a base station. In other examples, the apparatus 1302 may be an access node. In other examples, the apparatus 1302 may be an IAB node. The apparatus 1302 includes a cellular baseband processor 1304 (also referred to as a modem) coupled to a cellular RF transceiver 1322, an  application processor 1306 coupled to a secure digital (SD) card 1308 and a screen 1310, a Bluetooth module 1312, a wireless local area network (WLAN) module 1314, a Global Positioning System (GPS) module 1316, a power supply 1318, and an RF sensor 1320. If the apparatus 1302 is a UE, the apparatus may include one or more subscriber identity modules (SIM) cards. The cellular baseband processor 1304 communicates through the cellular RF transceiver 1322, e.g., with the UE 104 and/or BS 102/180. The cellular baseband processor 1304 may include a computer-readable medium /memory. The cellular baseband processor 1304 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 1304, causes the cellular baseband processor 1304 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 1304 when executing software. The cellular baseband processor 1304 further includes a reception component 1330, a communication manager 1332, and a transmission component 1334. The communication manager 1332 includes the one or more illustrated components. The components within the communication manager 1332 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 1304. The cellular baseband processor 1304 may be a component of the base station 310 or the UE 350 and may include the memory 360 and/or at least one of the  TX Processor  316 or 368, the  RX Processor  356 or 370, and the controller/ processor  359 or 375. In one configuration, the apparatus 1302 may be a modem chip and include just the baseband processor 1304, and in another configuration, the apparatus 1302 may be the entire UE (e.g., see 350 of FIG. 3) , the entire base station (e.g., see 310 of FIG. 3) , the entire access node, or the entire IAB node and may include the additional modules of the apparatus 1302.
The communication manager 1332 includes a wireless communication component 1342 that is configured to exchange wireless communication with a second wireless device (e.g., with a UE 104, a base station 102 or 180, an IAB node, among other wireless devices) , e.g., as described in connection with 1204 in FIG. 12. The apparatus 1302 includes an RF sensing manager 1335 that includes an RF waveform component 1340 configured to transmit an RF sensing waveform in a  frequency band, e.g., a same frequency band as used to exchange communication by the wireless communication component 1342, e.g., as described in connection with 1202 in FIG. 12. The RF sensing manager 1335 may further include a reflected signal component 1344 configured to receive a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information, e.g., as described in connection with 1206 in FIG. 12. The RF sensing manager 1335 may further include a determination component 1346 configured to determine one or more of range, Doppler, or angle information.
The apparatus 1302 may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of FIG. 12. As such, each block in the aforementioned flowchart of FIG. 12 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 1302, and in particular the cellular baseband processor 1304, includes means for transmitting a RF sensing waveform in a frequency band and means for transmitting or receiving wireless communication with a second wireless device in the frequency band. The apparatus 1302 may further include means for receiving a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information. The aforementioned means may be one or more of the aforementioned components of the apparatus 1302 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 1302 may include the  TX Processor  316 or 368, the  RX Processor  356 or 370, and the controller/ processor  359 or 375. As such, in one configuration, the aforementioned means may be the  TX Processor  316 or 368, the  RX Processor  356 or 370, and the controller/ processor  359 or 375 configured to perform the functions recited by the aforementioned means.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design  preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Terms such as “if, ” “when, ” and “while” should be interpreted to mean “under the condition that” rather than imply an immediate temporal relationship or reaction. That is, these phrases, e.g., “when, ” do not imply an immediate action in response to or during the occurrence of an action, but simply imply that if a condition is met then an action will occur, but without requiring a specific or immediate time constraint for the action to occur. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims.  Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
The following examples are illustrative only and may be combined with aspects of other embodiments or teachings described herein, without limitation.
Example 1 is a method of wireless communication at a first wireless device, comprising: transmitting an RF sensing waveform in a frequency band during a first time duration; and transmitting or receiving wireless communication with a second wireless device in the frequency band during a second time duration.
In Example 2, the method of Example 1 further includes that the frequency band comprises a mmW band.
In Example 3, the method of Example 1 or Example 2 further includes that the wireless communication comprises NR communication.
In Example 4, the method of any of Examples 1-3 further includes receiving a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information.
In Example 5, the method of any of Examples 1-4 further includes that the first wireless device is in an idle mode, and wherein the RF sensing waveform is transmitted during an idle portion or a sleep duration of the idle mode.
In Example 6, the method of any of Examples 1-5 further includes that the first wireless device monitors for a periodic broadcast message in the idle mode, and wherein the RF sensing waveform is transmitted between the monitoring for the periodic broadcast message.
In Example 7, the method of any of Examples 1-6 further includes that the first wireless device transmits the wireless communication to the second wireless device and receives the wireless communication from the second wireless device with a gap or guard duration between transmission and reception, and wherein the RF sensing waveform is transmitted in the gap or the guard duration between the transmission and the reception.
In Example 8, the method of any of Examples 1-7 further includes that the gap or the guard duration is provided for switching between the transmission and the reception.
In Example 9, the method of any of Examples 1-8 further includes that the RF sensing waveform is transmitted in a first time interval and the wireless communication is transmitted or received in a second time interval.
In Example 10, the method of any of Examples 1-9 further includes that the first time interval is based on one or more slots.
In Example 11, the method of any of Examples 1-10 further includes that the first time interval is based on one or more symbols.
In Example 12, the method of any of Examples 1-11 further includes that the first time interval is configured for a time duration.
In Example 13, the method of any of Examples 1-12 further includes that the RF sensing waveform comprises a wideband signal over a frequency range that includes and is wider than the frequency band.
In Example 14, the method of any of Examples 1-13 further includes that the RF sensing waveform comprises a radar signal.
In Example 15, the method of any of Examples 1-14 further includes that the RF sensing waveform is based on a chirp, a pulse, or a FMCW.
In Example 16, the method of any of Examples 1-15 further includes that the RF sensing waveform comprises one or more of a preamble or an OFDM waveform over a wideband.
In Example 17, the method of any of Examples 1-16 further includes that the preamble and the OFDM waveform for the RF sensing waveform are based on a common preamble and common OFDM waveform that is common to the wireless communication that is transmitted or received with the second wireless device.
In Example 18, the method of any of Examples 1-17 further includes that the RF sensing waveform is based on a configuration for multiple repetitions of a sounding reference signal sequence over the wideband.
In Example 19, the method of any of Examples 1-18 further includes that the preamble and the OFDM waveform for the RF sensing waveform are different than for the wireless communication that is transmitted or received with the second wireless device.
In Example 20, the method of any of Examples 1-19 further includes that the RF sensing waveform comprises at least one of a preamble and an OFDM waveform that is transmitted over multiple carriers.
In Example 21, the method of any of Examples 1-20 further includes that the RF sensing waveform is based on a frequency hopping pattern in which the at least one of the preamble or the OFDM waveform hops to different carriers across a wideband over time.
In Example 22, the method of any of Examples 1-21 further includes that different sensing sequences are allocated to different sub-carriers across a wideband.
In Example 23, the method of any of Examples 1-22 further includes that the preamble and the OFDM waveform for the RF sensing waveform are based on a common preamble and common OFDM waveform that is common to the wireless communication that is transmitted or received with the second wireless device.
In Example 24, the method of any of Examples 1-23 further includes that the preamble and the OFDM waveform for the RF sensing waveform are different than for the wireless communication that is transmitted or received with the second wireless device.
In Example 25, the method of any of Examples 1-24 further includes that the frequency band is associated with NR communication, an unlicensed WLAN frequency band, or a THerz frequency band.
In Example 26, the method of any of Examples 1-25 further includes that the first wireless device comprises a UE, a base station, or an access point.
In Example 27, the method of any of Examples 1-26 further includes that the wireless communication transmitted or received with the second wireless device in the frequency band comprises sidelink communication.
Example 28 is a device including one or more processors and one or more memories in electronic communication with the one or more processors storing instructions executable by the one or more processors to cause the device to implement a method as in any of Examples 1-27.
Example 29 is a system or apparatus including means for implementing a method or realizing an apparatus as in any of Examples 1-27.
Example 30 is a non-transitory computer readable medium storing instructions executable by one or more processors to cause the one or more processors to implement a method as in any of Examples 1-27.
Figure PCTCN2020094113-appb-000001
Figure PCTCN2020094113-appb-000002
Figure PCTCN2020094113-appb-000003
Figure PCTCN2020094113-appb-000004
Figure PCTCN2020094113-appb-000005
Figure PCTCN2020094113-appb-000006
Figure PCTCN2020094113-appb-000007
Figure PCTCN2020094113-appb-000008
Figure PCTCN2020094113-appb-000009
Figure PCTCN2020094113-appb-000010
Figure PCTCN2020094113-appb-000011
Figure PCTCN2020094113-appb-000012

Claims (31)

  1. A method of wireless communication at a first wireless device, comprising:
    transmitting a radio frequency (RF) sensing waveform in a frequency band during a first time duration; and
    transmitting or receiving wireless communication with a second wireless device in the frequency band during a second time duration.
  2. The method of claim 1, wherein the frequency band comprises a millimeter wave (mmW) band.
  3. The method of claim 1, wherein the wireless communication comprises new radio (NR) communication.
  4. The method of claim 1, further comprising:
    receiving a reflected signal from the RF sensing waveform to determine one or more of range, Doppler, or angle information.
  5. The method of claim 1, wherein the first wireless device is in an idle mode, and wherein the RF sensing waveform is transmitted during an idle portion or a sleep duration of the idle mode.
  6. The method of claim 5, wherein the first wireless device monitors for a periodic broadcast message in the idle mode, and wherein the RF sensing waveform is transmitted between the monitoring for the periodic broadcast message.
  7. The method of claim 1, wherein the first wireless device transmits the wireless communication to the second wireless device and receives the wireless communication from the second wireless device with a gap or guard duration between transmission and reception, and wherein the RF sensing waveform is transmitted in the gap or the guard duration between the transmission and the reception.
  8. The method of claim 7, wherein the gap or the guard duration is provided for switching between the transmission and the reception.
  9. The method of claim 1, wherein the RF sensing waveform is transmitted in a first time interval and the wireless communication is transmitted or received in a second time interval.
  10. The method of claim 9, wherein the first time interval is based on one or more slots.
  11. The method of claim 9, wherein the first time interval is based on one or more symbols.
  12. The method of claim 9, wherein the first time interval is configured for a time duration.
  13. The method of claim 1, wherein the RF sensing waveform comprises a wideband signal over a frequency range that includes and is wider than the frequency band.
  14. The method of claim 13, wherein the RF sensing waveform comprises a radar signal.
  15. The method of claim 13, wherein the RF sensing waveform is based on a chirp, a pulse, or a frequency-modulated continuous-wave (FMCW) .
  16. The method of claim 13, wherein the RF sensing waveform comprises one or more of a preamble or an orthogonal frequency-division multiplexing (OFDM) waveform over a wideband.
  17. The method of claim 16, wherein the preamble and the OFDM waveform for the RF sensing waveform are based on a common preamble and common OFDM waveform  that is common to the wireless communication that is transmitted or received with the second wireless device.
  18. The method of claim 17, wherein the RF sensing waveform is based on a configuration for multiple repetitions of a sounding reference signal sequence over the wideband.
  19. The method of claim 16, wherein the preamble and the OFDM waveform for the RF sensing waveform are different than for the wireless communication that is transmitted or received with the second wireless device.
  20. The method of claim 13, wherein the RF sensing waveform comprises at least one of a preamble and an orthogonal frequency-division multiplexing (OFDM) waveform that is transmitted over multiple carriers.
  21. The method of claim 20, wherein the RF sensing waveform is based on a frequency hopping pattern in which the at least one of the preamble or the OFDM waveform hops to different carriers across a wideband over time.
  22. The method of claim 20, wherein different sensing sequences are allocated to different sub-carriers across a wideband.
  23. The method of claim 20, wherein the preamble and the OFDM waveform for the RF sensing waveform are based on a common preamble and common OFDM waveform that is common to the wireless communication that is transmitted or received with the second wireless device.
  24. The method of claim 20, wherein the preamble and the OFDM waveform for the RF sensing waveform are different than for the wireless communication that is transmitted or received with the second wireless device.
  25. The method of claim 1, wherein the frequency band is associated with new radio (NR) communication, an unlicensed wireless local area network (WLAN) frequency band, or a THerz frequency band.
  26. The method of claim 1, wherein the first wireless device comprises a user equipment (UE) , a base station, or an access point.
  27. The method of claim 1, wherein the wireless communication transmitted or received with the second wireless device in the frequency band comprises sidelink communication.
  28. An apparatus for wireless communication at a first wireless device, comprising:
    means for transmitting a radio frequency (RF) sensing waveform in a frequency band during a first time duration; and
    means for transmitting or receiving wireless communication with a second wireless device in the frequency band during a second time duration.
  29. The apparatus of claim 28, further comprising means for performing the method of any of claims 2-27.
  30. An apparatus for wireless communication at a first wireless device, comprising:
    a memory; and
    at least one processor coupled to the memory, the memory and the at least one processor configured to perform the method of claims 1-27.
  31. A computer-readable medium storing computer executable code for wireless communication at a first wireless device, the code when executed by a processor cause the processor to perform the method of any of claims 1-27.
PCT/CN2020/094113 2020-06-03 2020-06-03 Radio frequency sensing coexistence with wireless communication WO2021243597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094113 WO2021243597A1 (en) 2020-06-03 2020-06-03 Radio frequency sensing coexistence with wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094113 WO2021243597A1 (en) 2020-06-03 2020-06-03 Radio frequency sensing coexistence with wireless communication

Publications (1)

Publication Number Publication Date
WO2021243597A1 true WO2021243597A1 (en) 2021-12-09

Family

ID=78831646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094113 WO2021243597A1 (en) 2020-06-03 2020-06-03 Radio frequency sensing coexistence with wireless communication

Country Status (1)

Country Link
WO (1) WO2021243597A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023107768A1 (en) * 2021-12-10 2023-06-15 Qualcomm Incorporated Sensing slots for cellular-based radio frequency sensing
WO2023194168A1 (en) 2022-04-05 2023-10-12 Signify Holding B.V. Controller for rf-based sensing arrangement
WO2024059957A1 (en) * 2022-09-19 2024-03-28 Qualcomm Incorporated Cyclic prefix orthogonal frequency division multiplexing compatible digital chirp

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159852A1 (en) * 2015-03-27 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Radar detection and/or protection in a wireless communication system operating in a spectrum shared with at least one radar system
US20180199377A1 (en) * 2017-01-10 2018-07-12 Qualcomm Incorporated Co-existence of millimeter wave communication and radar
WO2018182723A1 (en) * 2017-03-31 2018-10-04 Intel IP Corporation Device radar sensing
US10637530B1 (en) * 2019-06-13 2020-04-28 Qualcomm Incorporated Space time frequency multiplexing (STFM) for radar systems using complementary pair waveforms
WO2020096960A1 (en) * 2018-11-08 2020-05-14 Qualcomm Incorporated Wlan radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159852A1 (en) * 2015-03-27 2016-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Radar detection and/or protection in a wireless communication system operating in a spectrum shared with at least one radar system
US20180199377A1 (en) * 2017-01-10 2018-07-12 Qualcomm Incorporated Co-existence of millimeter wave communication and radar
WO2018182723A1 (en) * 2017-03-31 2018-10-04 Intel IP Corporation Device radar sensing
WO2020096960A1 (en) * 2018-11-08 2020-05-14 Qualcomm Incorporated Wlan radar
US10637530B1 (en) * 2019-06-13 2020-04-28 Qualcomm Incorporated Space time frequency multiplexing (STFM) for radar systems using complementary pair waveforms

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUMARI PREETI; GONZALEZ-PRELCIC NURIA; HEATH ROBERT W.: "Investigating the IEEE 802.11ad Standard for Millimeter Wave Automotive Radar", 2015 IEEE 82ND VEHICULAR TECHNOLOGY CONFERENCE (VTC2015-FALL), IEEE, 6 September 2015 (2015-09-06), pages 1 - 5, XP032857164, DOI: 10.1109/VTCFall.2015.7390996 *
NOKIA, NOKIA SHANGHAI BELL: "NR coexistence mechanisms for 60 GHz unlicensed band", 3GPP TSG RAN WG1 #101-E; R1-2003812, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 15 May 2020 (2020-05-15), e-Meeting; 20200525 - 20200605, XP051885583 *
ZTE CORPORATION: "Considerations on design requirements for NR beyond 52.6GHz", 3GPP TSG RAN MEETING #84; RP-191067, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 2 June 2019 (2019-06-02), Newport Beach, USA; 20190603 - 20190606, XP051747280 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023107768A1 (en) * 2021-12-10 2023-06-15 Qualcomm Incorporated Sensing slots for cellular-based radio frequency sensing
WO2023194168A1 (en) 2022-04-05 2023-10-12 Signify Holding B.V. Controller for rf-based sensing arrangement
WO2024059957A1 (en) * 2022-09-19 2024-03-28 Qualcomm Incorporated Cyclic prefix orthogonal frequency division multiplexing compatible digital chirp

Similar Documents

Publication Publication Date Title
US11172508B2 (en) Methods to avoid transmission collisions for NR V2X and LTE V2X within the same device
US11758547B2 (en) Default PDSCH beam selection
US20210226688A1 (en) Default quasi co-location assumption after beam failure recovery for single-downlink control information-based multiple transmit receive point communication
US11497027B2 (en) Half duplex FDD user equipment operation
US11937214B2 (en) Bandwidth part switch for sidelink communication
WO2021243597A1 (en) Radio frequency sensing coexistence with wireless communication
US11477683B2 (en) Event triggered uplink beam report
WO2021248404A1 (en) Method and apparatus of multi-cycle wireless radar sensing
US11601159B2 (en) Switching between different configurations of frequency and beam hopping for single-beam and multi-beam PUCCH
WO2022146545A1 (en) Sidelink fr2 inter-ue interference management
US11658786B2 (en) Configuration and procedure for search space used in small data transfer over pre-configured uplink resources
US20230209477A1 (en) Sidelink transmission reception reliability
US11616558B2 (en) Procedural delays and scheduling restriction based on component carrier groups
WO2022047745A1 (en) Nr sidelink fast intra-cell relay switching
WO2022027235A1 (en) Beam feedback based on object movement in wireless sensing
WO2022077207A1 (en) Assisted connectivity
WO2022027229A1 (en) Beam feedback based on object shape in wireless sensing
US20230276224A1 (en) Inter-band downlink carrier aggregation with reception switching for a reduced capability user equipment
US11844055B2 (en) Power control for beacon and echo procedure for channel state information measurement in sidelink networks
US11800488B2 (en) Paging transmission on sidelink
WO2021253143A1 (en) Coexistence between wireless sensing and wireless communication in cellular bands
US11757503B2 (en) UE panel specific beam application time
WO2023024065A1 (en) Multi-pusch repetitions with joint channel estimation
WO2022011634A1 (en) Method and apparatus for single beam paging in 5g
US20220338239A1 (en) Semi-persistent configuration of sps/cg parameter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939146

Country of ref document: EP

Kind code of ref document: A1